ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  shftvalg GIF version

Theorem shftvalg 10877
Description: Value of a sequence shifted by 𝐴. (Contributed by Scott Fenton, 16-Dec-2017.)
Assertion
Ref Expression
shftvalg ((𝐹𝑉𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐹 shift 𝐴)‘𝐵) = (𝐹‘(𝐵𝐴)))

Proof of Theorem shftvalg
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 oveq1 5903 . . . . . 6 (𝑓 = 𝐹 → (𝑓 shift 𝐴) = (𝐹 shift 𝐴))
21fveq1d 5536 . . . . 5 (𝑓 = 𝐹 → ((𝑓 shift 𝐴)‘𝐵) = ((𝐹 shift 𝐴)‘𝐵))
3 fveq1 5533 . . . . 5 (𝑓 = 𝐹 → (𝑓‘(𝐵𝐴)) = (𝐹‘(𝐵𝐴)))
42, 3eqeq12d 2204 . . . 4 (𝑓 = 𝐹 → (((𝑓 shift 𝐴)‘𝐵) = (𝑓‘(𝐵𝐴)) ↔ ((𝐹 shift 𝐴)‘𝐵) = (𝐹‘(𝐵𝐴))))
54imbi2d 230 . . 3 (𝑓 = 𝐹 → (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝑓 shift 𝐴)‘𝐵) = (𝑓‘(𝐵𝐴))) ↔ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐹 shift 𝐴)‘𝐵) = (𝐹‘(𝐵𝐴)))))
6 vex 2755 . . . 4 𝑓 ∈ V
76shftval 10866 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝑓 shift 𝐴)‘𝐵) = (𝑓‘(𝐵𝐴)))
85, 7vtoclg 2812 . 2 (𝐹𝑉 → ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐹 shift 𝐴)‘𝐵) = (𝐹‘(𝐵𝐴))))
983impib 1203 1 ((𝐹𝑉𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐹 shift 𝐴)‘𝐵) = (𝐹‘(𝐵𝐴)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 980   = wceq 1364  wcel 2160  cfv 5235  (class class class)co 5896  cc 7839  cmin 8158   shift cshi 10855
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-coll 4133  ax-sep 4136  ax-pow 4192  ax-pr 4227  ax-un 4451  ax-setind 4554  ax-resscn 7933  ax-1cn 7934  ax-icn 7936  ax-addcl 7937  ax-addrcl 7938  ax-mulcl 7939  ax-addcom 7941  ax-addass 7943  ax-distr 7945  ax-i2m1 7946  ax-0id 7949  ax-rnegex 7950  ax-cnre 7952
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-ral 2473  df-rex 2474  df-reu 2475  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-iun 3903  df-br 4019  df-opab 4080  df-mpt 4081  df-id 4311  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-rn 4655  df-res 4656  df-ima 4657  df-iota 5196  df-fun 5237  df-fn 5238  df-f 5239  df-f1 5240  df-fo 5241  df-f1o 5242  df-fv 5243  df-riota 5852  df-ov 5899  df-oprab 5900  df-mpo 5901  df-sub 8160  df-shft 10856
This theorem is referenced by:  seq3shft  10879  climshftlemg  11342
  Copyright terms: Public domain W3C validator