| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mhmlin | GIF version | ||
| Description: A monoid homomorphism commutes with composition. (Contributed by Mario Carneiro, 7-Mar-2015.) |
| Ref | Expression |
|---|---|
| mhmlin.b | ⊢ 𝐵 = (Base‘𝑆) |
| mhmlin.p | ⊢ + = (+g‘𝑆) |
| mhmlin.q | ⊢ ⨣ = (+g‘𝑇) |
| Ref | Expression |
|---|---|
| mhmlin | ⊢ ((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝐹‘(𝑋 + 𝑌)) = ((𝐹‘𝑋) ⨣ (𝐹‘𝑌))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mhmlin.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝑆) | |
| 2 | eqid 2209 | . . . . . 6 ⊢ (Base‘𝑇) = (Base‘𝑇) | |
| 3 | mhmlin.p | . . . . . 6 ⊢ + = (+g‘𝑆) | |
| 4 | mhmlin.q | . . . . . 6 ⊢ ⨣ = (+g‘𝑇) | |
| 5 | eqid 2209 | . . . . . 6 ⊢ (0g‘𝑆) = (0g‘𝑆) | |
| 6 | eqid 2209 | . . . . . 6 ⊢ (0g‘𝑇) = (0g‘𝑇) | |
| 7 | 1, 2, 3, 4, 5, 6 | ismhm 13460 | . . . . 5 ⊢ (𝐹 ∈ (𝑆 MndHom 𝑇) ↔ ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) ∧ (𝐹:𝐵⟶(Base‘𝑇) ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝐹‘(𝑥 + 𝑦)) = ((𝐹‘𝑥) ⨣ (𝐹‘𝑦)) ∧ (𝐹‘(0g‘𝑆)) = (0g‘𝑇)))) |
| 8 | 7 | simprbi 275 | . . . 4 ⊢ (𝐹 ∈ (𝑆 MndHom 𝑇) → (𝐹:𝐵⟶(Base‘𝑇) ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝐹‘(𝑥 + 𝑦)) = ((𝐹‘𝑥) ⨣ (𝐹‘𝑦)) ∧ (𝐹‘(0g‘𝑆)) = (0g‘𝑇))) |
| 9 | 8 | simp2d 1015 | . . 3 ⊢ (𝐹 ∈ (𝑆 MndHom 𝑇) → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝐹‘(𝑥 + 𝑦)) = ((𝐹‘𝑥) ⨣ (𝐹‘𝑦))) |
| 10 | fvoveq1 5997 | . . . . 5 ⊢ (𝑥 = 𝑋 → (𝐹‘(𝑥 + 𝑦)) = (𝐹‘(𝑋 + 𝑦))) | |
| 11 | fveq2 5603 | . . . . . 6 ⊢ (𝑥 = 𝑋 → (𝐹‘𝑥) = (𝐹‘𝑋)) | |
| 12 | 11 | oveq1d 5989 | . . . . 5 ⊢ (𝑥 = 𝑋 → ((𝐹‘𝑥) ⨣ (𝐹‘𝑦)) = ((𝐹‘𝑋) ⨣ (𝐹‘𝑦))) |
| 13 | 10, 12 | eqeq12d 2224 | . . . 4 ⊢ (𝑥 = 𝑋 → ((𝐹‘(𝑥 + 𝑦)) = ((𝐹‘𝑥) ⨣ (𝐹‘𝑦)) ↔ (𝐹‘(𝑋 + 𝑦)) = ((𝐹‘𝑋) ⨣ (𝐹‘𝑦)))) |
| 14 | oveq2 5982 | . . . . . 6 ⊢ (𝑦 = 𝑌 → (𝑋 + 𝑦) = (𝑋 + 𝑌)) | |
| 15 | 14 | fveq2d 5607 | . . . . 5 ⊢ (𝑦 = 𝑌 → (𝐹‘(𝑋 + 𝑦)) = (𝐹‘(𝑋 + 𝑌))) |
| 16 | fveq2 5603 | . . . . . 6 ⊢ (𝑦 = 𝑌 → (𝐹‘𝑦) = (𝐹‘𝑌)) | |
| 17 | 16 | oveq2d 5990 | . . . . 5 ⊢ (𝑦 = 𝑌 → ((𝐹‘𝑋) ⨣ (𝐹‘𝑦)) = ((𝐹‘𝑋) ⨣ (𝐹‘𝑌))) |
| 18 | 15, 17 | eqeq12d 2224 | . . . 4 ⊢ (𝑦 = 𝑌 → ((𝐹‘(𝑋 + 𝑦)) = ((𝐹‘𝑋) ⨣ (𝐹‘𝑦)) ↔ (𝐹‘(𝑋 + 𝑌)) = ((𝐹‘𝑋) ⨣ (𝐹‘𝑌)))) |
| 19 | 13, 18 | rspc2v 2900 | . . 3 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝐹‘(𝑥 + 𝑦)) = ((𝐹‘𝑥) ⨣ (𝐹‘𝑦)) → (𝐹‘(𝑋 + 𝑌)) = ((𝐹‘𝑋) ⨣ (𝐹‘𝑌)))) |
| 20 | 9, 19 | syl5com 29 | . 2 ⊢ (𝐹 ∈ (𝑆 MndHom 𝑇) → ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝐹‘(𝑋 + 𝑌)) = ((𝐹‘𝑋) ⨣ (𝐹‘𝑌)))) |
| 21 | 20 | 3impib 1206 | 1 ⊢ ((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝐹‘(𝑋 + 𝑌)) = ((𝐹‘𝑋) ⨣ (𝐹‘𝑌))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 983 = wceq 1375 ∈ wcel 2180 ∀wral 2488 ⟶wf 5290 ‘cfv 5294 (class class class)co 5974 Basecbs 12998 +gcplusg 13076 0gc0g 13255 Mndcmnd 13415 MndHom cmhm 13456 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-13 2182 ax-14 2183 ax-ext 2191 ax-sep 4181 ax-pow 4237 ax-pr 4272 ax-un 4501 ax-setind 4606 ax-cnex 8058 ax-resscn 8059 ax-1re 8061 ax-addrcl 8064 |
| This theorem depends on definitions: df-bi 117 df-3an 985 df-tru 1378 df-fal 1381 df-nf 1487 df-sb 1789 df-eu 2060 df-mo 2061 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ne 2381 df-ral 2493 df-rex 2494 df-rab 2497 df-v 2781 df-sbc 3009 df-csb 3105 df-dif 3179 df-un 3181 df-in 3183 df-ss 3190 df-pw 3631 df-sn 3652 df-pr 3653 df-op 3655 df-uni 3868 df-int 3903 df-iun 3946 df-br 4063 df-opab 4125 df-mpt 4126 df-id 4361 df-xp 4702 df-rel 4703 df-cnv 4704 df-co 4705 df-dm 4706 df-rn 4707 df-res 4708 df-ima 4709 df-iota 5254 df-fun 5296 df-fn 5297 df-f 5298 df-fv 5302 df-ov 5977 df-oprab 5978 df-mpo 5979 df-1st 6256 df-2nd 6257 df-map 6767 df-inn 9079 df-ndx 13001 df-slot 13002 df-base 13004 df-mhm 13458 |
| This theorem is referenced by: mhmf1o 13469 resmhm 13486 resmhm2 13487 resmhm2b 13488 mhmco 13489 mhmima 13490 mhmeql 13491 gsumwmhm 13497 mhmmulg 13666 ghmmhmb 13757 gsumfzmhm 13846 rhmmul 14093 |
| Copyright terms: Public domain | W3C validator |