| Step | Hyp | Ref
| Expression |
| 1 | | oveq1 5929 |
. . . . . . . 8
⊢ (𝑥 = 0 → (𝑥 · 𝑋) = (0 · 𝑋)) |
| 2 | 1 | oveq1d 5937 |
. . . . . . 7
⊢ (𝑥 = 0 → ((𝑥 · 𝑋) × 𝑌) = ((0 · 𝑋) × 𝑌)) |
| 3 | | oveq1 5929 |
. . . . . . 7
⊢ (𝑥 = 0 → (𝑥 · (𝑋 × 𝑌)) = (0 · (𝑋 × 𝑌))) |
| 4 | 2, 3 | eqeq12d 2211 |
. . . . . 6
⊢ (𝑥 = 0 → (((𝑥 · 𝑋) × 𝑌) = (𝑥 · (𝑋 × 𝑌)) ↔ ((0 · 𝑋) × 𝑌) = (0 · (𝑋 × 𝑌)))) |
| 5 | 4 | imbi2d 230 |
. . . . 5
⊢ (𝑥 = 0 → ((((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑅 ∈ SRing) → ((𝑥 · 𝑋) × 𝑌) = (𝑥 · (𝑋 × 𝑌))) ↔ (((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑅 ∈ SRing) → ((0 · 𝑋) × 𝑌) = (0 · (𝑋 × 𝑌))))) |
| 6 | | oveq1 5929 |
. . . . . . . 8
⊢ (𝑥 = 𝑦 → (𝑥 · 𝑋) = (𝑦 · 𝑋)) |
| 7 | 6 | oveq1d 5937 |
. . . . . . 7
⊢ (𝑥 = 𝑦 → ((𝑥 · 𝑋) × 𝑌) = ((𝑦 · 𝑋) × 𝑌)) |
| 8 | | oveq1 5929 |
. . . . . . 7
⊢ (𝑥 = 𝑦 → (𝑥 · (𝑋 × 𝑌)) = (𝑦 · (𝑋 × 𝑌))) |
| 9 | 7, 8 | eqeq12d 2211 |
. . . . . 6
⊢ (𝑥 = 𝑦 → (((𝑥 · 𝑋) × 𝑌) = (𝑥 · (𝑋 × 𝑌)) ↔ ((𝑦 · 𝑋) × 𝑌) = (𝑦 · (𝑋 × 𝑌)))) |
| 10 | 9 | imbi2d 230 |
. . . . 5
⊢ (𝑥 = 𝑦 → ((((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑅 ∈ SRing) → ((𝑥 · 𝑋) × 𝑌) = (𝑥 · (𝑋 × 𝑌))) ↔ (((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑅 ∈ SRing) → ((𝑦 · 𝑋) × 𝑌) = (𝑦 · (𝑋 × 𝑌))))) |
| 11 | | oveq1 5929 |
. . . . . . . 8
⊢ (𝑥 = (𝑦 + 1) → (𝑥 · 𝑋) = ((𝑦 + 1) · 𝑋)) |
| 12 | 11 | oveq1d 5937 |
. . . . . . 7
⊢ (𝑥 = (𝑦 + 1) → ((𝑥 · 𝑋) × 𝑌) = (((𝑦 + 1) · 𝑋) × 𝑌)) |
| 13 | | oveq1 5929 |
. . . . . . 7
⊢ (𝑥 = (𝑦 + 1) → (𝑥 · (𝑋 × 𝑌)) = ((𝑦 + 1) · (𝑋 × 𝑌))) |
| 14 | 12, 13 | eqeq12d 2211 |
. . . . . 6
⊢ (𝑥 = (𝑦 + 1) → (((𝑥 · 𝑋) × 𝑌) = (𝑥 · (𝑋 × 𝑌)) ↔ (((𝑦 + 1) · 𝑋) × 𝑌) = ((𝑦 + 1) · (𝑋 × 𝑌)))) |
| 15 | 14 | imbi2d 230 |
. . . . 5
⊢ (𝑥 = (𝑦 + 1) → ((((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑅 ∈ SRing) → ((𝑥 · 𝑋) × 𝑌) = (𝑥 · (𝑋 × 𝑌))) ↔ (((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑅 ∈ SRing) → (((𝑦 + 1) · 𝑋) × 𝑌) = ((𝑦 + 1) · (𝑋 × 𝑌))))) |
| 16 | | oveq1 5929 |
. . . . . . . 8
⊢ (𝑥 = 𝑁 → (𝑥 · 𝑋) = (𝑁 · 𝑋)) |
| 17 | 16 | oveq1d 5937 |
. . . . . . 7
⊢ (𝑥 = 𝑁 → ((𝑥 · 𝑋) × 𝑌) = ((𝑁 · 𝑋) × 𝑌)) |
| 18 | | oveq1 5929 |
. . . . . . 7
⊢ (𝑥 = 𝑁 → (𝑥 · (𝑋 × 𝑌)) = (𝑁 · (𝑋 × 𝑌))) |
| 19 | 17, 18 | eqeq12d 2211 |
. . . . . 6
⊢ (𝑥 = 𝑁 → (((𝑥 · 𝑋) × 𝑌) = (𝑥 · (𝑋 × 𝑌)) ↔ ((𝑁 · 𝑋) × 𝑌) = (𝑁 · (𝑋 × 𝑌)))) |
| 20 | 19 | imbi2d 230 |
. . . . 5
⊢ (𝑥 = 𝑁 → ((((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑅 ∈ SRing) → ((𝑥 · 𝑋) × 𝑌) = (𝑥 · (𝑋 × 𝑌))) ↔ (((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑅 ∈ SRing) → ((𝑁 · 𝑋) × 𝑌) = (𝑁 · (𝑋 × 𝑌))))) |
| 21 | | simpr 110 |
. . . . . . 7
⊢ (((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑅 ∈ SRing) → 𝑅 ∈ SRing) |
| 22 | | simpr 110 |
. . . . . . . 8
⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑌 ∈ 𝐵) |
| 23 | 22 | adantr 276 |
. . . . . . 7
⊢ (((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑅 ∈ SRing) → 𝑌 ∈ 𝐵) |
| 24 | | srgmulgass.b |
. . . . . . . 8
⊢ 𝐵 = (Base‘𝑅) |
| 25 | | srgmulgass.t |
. . . . . . . 8
⊢ × =
(.r‘𝑅) |
| 26 | | eqid 2196 |
. . . . . . . 8
⊢
(0g‘𝑅) = (0g‘𝑅) |
| 27 | 24, 25, 26 | srglz 13541 |
. . . . . . 7
⊢ ((𝑅 ∈ SRing ∧ 𝑌 ∈ 𝐵) → ((0g‘𝑅) × 𝑌) = (0g‘𝑅)) |
| 28 | 21, 23, 27 | syl2anc 411 |
. . . . . 6
⊢ (((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑅 ∈ SRing) →
((0g‘𝑅)
×
𝑌) =
(0g‘𝑅)) |
| 29 | | simpl 109 |
. . . . . . . . 9
⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑋 ∈ 𝐵) |
| 30 | 29 | adantr 276 |
. . . . . . . 8
⊢ (((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑅 ∈ SRing) → 𝑋 ∈ 𝐵) |
| 31 | | srgmulgass.m |
. . . . . . . . 9
⊢ · =
(.g‘𝑅) |
| 32 | 24, 26, 31 | mulg0 13255 |
. . . . . . . 8
⊢ (𝑋 ∈ 𝐵 → (0 · 𝑋) = (0g‘𝑅)) |
| 33 | 30, 32 | syl 14 |
. . . . . . 7
⊢ (((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑅 ∈ SRing) → (0 · 𝑋) = (0g‘𝑅)) |
| 34 | 33 | oveq1d 5937 |
. . . . . 6
⊢ (((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑅 ∈ SRing) → ((0 · 𝑋) × 𝑌) = ((0g‘𝑅) × 𝑌)) |
| 35 | 24, 25 | srgcl 13526 |
. . . . . . . 8
⊢ ((𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 × 𝑌) ∈ 𝐵) |
| 36 | 21, 30, 23, 35 | syl3anc 1249 |
. . . . . . 7
⊢ (((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑅 ∈ SRing) → (𝑋 × 𝑌) ∈ 𝐵) |
| 37 | 24, 26, 31 | mulg0 13255 |
. . . . . . 7
⊢ ((𝑋 × 𝑌) ∈ 𝐵 → (0 · (𝑋 × 𝑌)) = (0g‘𝑅)) |
| 38 | 36, 37 | syl 14 |
. . . . . 6
⊢ (((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑅 ∈ SRing) → (0 · (𝑋 × 𝑌)) = (0g‘𝑅)) |
| 39 | 28, 34, 38 | 3eqtr4d 2239 |
. . . . 5
⊢ (((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑅 ∈ SRing) → ((0 · 𝑋) × 𝑌) = (0 · (𝑋 × 𝑌))) |
| 40 | | srgmnd 13523 |
. . . . . . . . . . . . . 14
⊢ (𝑅 ∈ SRing → 𝑅 ∈ Mnd) |
| 41 | 40 | adantl 277 |
. . . . . . . . . . . . 13
⊢ (((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑅 ∈ SRing) → 𝑅 ∈ Mnd) |
| 42 | 41 | adantl 277 |
. . . . . . . . . . . 12
⊢ ((𝑦 ∈ ℕ0
∧ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑅 ∈ SRing)) → 𝑅 ∈ Mnd) |
| 43 | | simpl 109 |
. . . . . . . . . . . 12
⊢ ((𝑦 ∈ ℕ0
∧ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑅 ∈ SRing)) → 𝑦 ∈ ℕ0) |
| 44 | 30 | adantl 277 |
. . . . . . . . . . . 12
⊢ ((𝑦 ∈ ℕ0
∧ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑅 ∈ SRing)) → 𝑋 ∈ 𝐵) |
| 45 | | eqid 2196 |
. . . . . . . . . . . . 13
⊢
(+g‘𝑅) = (+g‘𝑅) |
| 46 | 24, 31, 45 | mulgnn0p1 13263 |
. . . . . . . . . . . 12
⊢ ((𝑅 ∈ Mnd ∧ 𝑦 ∈ ℕ0
∧ 𝑋 ∈ 𝐵) → ((𝑦 + 1) · 𝑋) = ((𝑦 · 𝑋)(+g‘𝑅)𝑋)) |
| 47 | 42, 43, 44, 46 | syl3anc 1249 |
. . . . . . . . . . 11
⊢ ((𝑦 ∈ ℕ0
∧ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑅 ∈ SRing)) → ((𝑦 + 1) · 𝑋) = ((𝑦 · 𝑋)(+g‘𝑅)𝑋)) |
| 48 | 47 | oveq1d 5937 |
. . . . . . . . . 10
⊢ ((𝑦 ∈ ℕ0
∧ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑅 ∈ SRing)) → (((𝑦 + 1) · 𝑋) × 𝑌) = (((𝑦 · 𝑋)(+g‘𝑅)𝑋) × 𝑌)) |
| 49 | 21 | adantl 277 |
. . . . . . . . . . 11
⊢ ((𝑦 ∈ ℕ0
∧ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑅 ∈ SRing)) → 𝑅 ∈ SRing) |
| 50 | 24, 31 | mulgnn0cl 13268 |
. . . . . . . . . . . 12
⊢ ((𝑅 ∈ Mnd ∧ 𝑦 ∈ ℕ0
∧ 𝑋 ∈ 𝐵) → (𝑦 · 𝑋) ∈ 𝐵) |
| 51 | 42, 43, 44, 50 | syl3anc 1249 |
. . . . . . . . . . 11
⊢ ((𝑦 ∈ ℕ0
∧ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑅 ∈ SRing)) → (𝑦 · 𝑋) ∈ 𝐵) |
| 52 | 23 | adantl 277 |
. . . . . . . . . . 11
⊢ ((𝑦 ∈ ℕ0
∧ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑅 ∈ SRing)) → 𝑌 ∈ 𝐵) |
| 53 | 24, 45, 25 | srgdir 13531 |
. . . . . . . . . . 11
⊢ ((𝑅 ∈ SRing ∧ ((𝑦 · 𝑋) ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (((𝑦 · 𝑋)(+g‘𝑅)𝑋) × 𝑌) = (((𝑦 · 𝑋) × 𝑌)(+g‘𝑅)(𝑋 × 𝑌))) |
| 54 | 49, 51, 44, 52, 53 | syl13anc 1251 |
. . . . . . . . . 10
⊢ ((𝑦 ∈ ℕ0
∧ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑅 ∈ SRing)) → (((𝑦 · 𝑋)(+g‘𝑅)𝑋) × 𝑌) = (((𝑦 · 𝑋) × 𝑌)(+g‘𝑅)(𝑋 × 𝑌))) |
| 55 | 48, 54 | eqtrd 2229 |
. . . . . . . . 9
⊢ ((𝑦 ∈ ℕ0
∧ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑅 ∈ SRing)) → (((𝑦 + 1) · 𝑋) × 𝑌) = (((𝑦 · 𝑋) × 𝑌)(+g‘𝑅)(𝑋 × 𝑌))) |
| 56 | 55 | adantr 276 |
. . . . . . . 8
⊢ (((𝑦 ∈ ℕ0
∧ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑅 ∈ SRing)) ∧ ((𝑦 · 𝑋) × 𝑌) = (𝑦 · (𝑋 × 𝑌))) → (((𝑦 + 1) · 𝑋) × 𝑌) = (((𝑦 · 𝑋) × 𝑌)(+g‘𝑅)(𝑋 × 𝑌))) |
| 57 | | oveq1 5929 |
. . . . . . . . 9
⊢ (((𝑦 · 𝑋) × 𝑌) = (𝑦 · (𝑋 × 𝑌)) → (((𝑦 · 𝑋) × 𝑌)(+g‘𝑅)(𝑋 × 𝑌)) = ((𝑦 · (𝑋 × 𝑌))(+g‘𝑅)(𝑋 × 𝑌))) |
| 58 | 35 | 3expb 1206 |
. . . . . . . . . . . . 13
⊢ ((𝑅 ∈ SRing ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝑋 × 𝑌) ∈ 𝐵) |
| 59 | 58 | ancoms 268 |
. . . . . . . . . . . 12
⊢ (((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑅 ∈ SRing) → (𝑋 × 𝑌) ∈ 𝐵) |
| 60 | 59 | adantl 277 |
. . . . . . . . . . 11
⊢ ((𝑦 ∈ ℕ0
∧ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑅 ∈ SRing)) → (𝑋 × 𝑌) ∈ 𝐵) |
| 61 | 24, 31, 45 | mulgnn0p1 13263 |
. . . . . . . . . . 11
⊢ ((𝑅 ∈ Mnd ∧ 𝑦 ∈ ℕ0
∧ (𝑋 × 𝑌) ∈ 𝐵) → ((𝑦 + 1) · (𝑋 × 𝑌)) = ((𝑦 · (𝑋 × 𝑌))(+g‘𝑅)(𝑋 × 𝑌))) |
| 62 | 42, 43, 60, 61 | syl3anc 1249 |
. . . . . . . . . 10
⊢ ((𝑦 ∈ ℕ0
∧ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑅 ∈ SRing)) → ((𝑦 + 1) · (𝑋 × 𝑌)) = ((𝑦 · (𝑋 × 𝑌))(+g‘𝑅)(𝑋 × 𝑌))) |
| 63 | 62 | eqcomd 2202 |
. . . . . . . . 9
⊢ ((𝑦 ∈ ℕ0
∧ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑅 ∈ SRing)) → ((𝑦 · (𝑋 × 𝑌))(+g‘𝑅)(𝑋 × 𝑌)) = ((𝑦 + 1) · (𝑋 × 𝑌))) |
| 64 | 57, 63 | sylan9eqr 2251 |
. . . . . . . 8
⊢ (((𝑦 ∈ ℕ0
∧ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑅 ∈ SRing)) ∧ ((𝑦 · 𝑋) × 𝑌) = (𝑦 · (𝑋 × 𝑌))) → (((𝑦 · 𝑋) × 𝑌)(+g‘𝑅)(𝑋 × 𝑌)) = ((𝑦 + 1) · (𝑋 × 𝑌))) |
| 65 | 56, 64 | eqtrd 2229 |
. . . . . . 7
⊢ (((𝑦 ∈ ℕ0
∧ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑅 ∈ SRing)) ∧ ((𝑦 · 𝑋) × 𝑌) = (𝑦 · (𝑋 × 𝑌))) → (((𝑦 + 1) · 𝑋) × 𝑌) = ((𝑦 + 1) · (𝑋 × 𝑌))) |
| 66 | 65 | exp31 364 |
. . . . . 6
⊢ (𝑦 ∈ ℕ0
→ (((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑅 ∈ SRing) → (((𝑦 · 𝑋) × 𝑌) = (𝑦 · (𝑋 × 𝑌)) → (((𝑦 + 1) · 𝑋) × 𝑌) = ((𝑦 + 1) · (𝑋 × 𝑌))))) |
| 67 | 66 | a2d 26 |
. . . . 5
⊢ (𝑦 ∈ ℕ0
→ ((((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑅 ∈ SRing) → ((𝑦 · 𝑋) × 𝑌) = (𝑦 · (𝑋 × 𝑌))) → (((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑅 ∈ SRing) → (((𝑦 + 1) · 𝑋) × 𝑌) = ((𝑦 + 1) · (𝑋 × 𝑌))))) |
| 68 | 5, 10, 15, 20, 39, 67 | nn0ind 9440 |
. . . 4
⊢ (𝑁 ∈ ℕ0
→ (((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑅 ∈ SRing) → ((𝑁 · 𝑋) × 𝑌) = (𝑁 · (𝑋 × 𝑌)))) |
| 69 | 68 | expd 258 |
. . 3
⊢ (𝑁 ∈ ℕ0
→ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑅 ∈ SRing → ((𝑁 · 𝑋) × 𝑌) = (𝑁 · (𝑋 × 𝑌))))) |
| 70 | 69 | 3impib 1203 |
. 2
⊢ ((𝑁 ∈ ℕ0
∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑅 ∈ SRing → ((𝑁 · 𝑋) × 𝑌) = (𝑁 · (𝑋 × 𝑌)))) |
| 71 | 70 | impcom 125 |
1
⊢ ((𝑅 ∈ SRing ∧ (𝑁 ∈ ℕ0
∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → ((𝑁 · 𝑋) × 𝑌) = (𝑁 · (𝑋 × 𝑌))) |