ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  5t3e15 GIF version

Theorem 5t3e15 9611
Description: 5 times 3 equals 15. (Contributed by Mario Carneiro, 19-Apr-2015.) (Revised by AV, 6-Sep-2021.)
Assertion
Ref Expression
5t3e15 (5 · 3) = 15

Proof of Theorem 5t3e15
StepHypRef Expression
1 5nn0 9322 . 2 5 ∈ ℕ0
2 2nn0 9319 . 2 2 ∈ ℕ0
3 df-3 9103 . 2 3 = (2 + 1)
4 5t2e10 9610 . 2 (5 · 2) = 10
5 dec10p 9553 . 2 (10 + 5) = 15
61, 2, 3, 4, 54t3lem 9607 1 (5 · 3) = 15
Colors of variables: wff set class
Syntax hints:   = wceq 1373  (class class class)co 5951  0cc0 7932  1c1 7933   · cmul 7937  2c2 9094  3c3 9095  5c5 9097  cdc 9511
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188  ax-sep 4166  ax-cnex 8023  ax-resscn 8024  ax-1cn 8025  ax-1re 8026  ax-icn 8027  ax-addcl 8028  ax-addrcl 8029  ax-mulcl 8030  ax-mulcom 8033  ax-addass 8034  ax-mulass 8035  ax-distr 8036  ax-1rid 8039  ax-0id 8040  ax-rnegex 8041  ax-cnre 8043
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-rab 2494  df-v 2775  df-un 3171  df-in 3173  df-ss 3180  df-sn 3640  df-pr 3641  df-op 3643  df-uni 3853  df-int 3888  df-br 4048  df-iota 5237  df-fv 5284  df-ov 5954  df-inn 9044  df-2 9102  df-3 9103  df-4 9104  df-5 9105  df-6 9106  df-7 9107  df-8 9108  df-9 9109  df-n0 9303  df-dec 9512
This theorem is referenced by:  5t4e20  9612
  Copyright terms: Public domain W3C validator