![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 5t3e15 | GIF version |
Description: 5 times 3 equals 15. (Contributed by Mario Carneiro, 19-Apr-2015.) (Revised by AV, 6-Sep-2021.) |
Ref | Expression |
---|---|
5t3e15 | ⊢ (5 · 3) = ;15 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 5nn0 9260 | . 2 ⊢ 5 ∈ ℕ0 | |
2 | 2nn0 9257 | . 2 ⊢ 2 ∈ ℕ0 | |
3 | df-3 9042 | . 2 ⊢ 3 = (2 + 1) | |
4 | 5t2e10 9547 | . 2 ⊢ (5 · 2) = ;10 | |
5 | dec10p 9490 | . 2 ⊢ (;10 + 5) = ;15 | |
6 | 1, 2, 3, 4, 5 | 4t3lem 9544 | 1 ⊢ (5 · 3) = ;15 |
Colors of variables: wff set class |
Syntax hints: = wceq 1364 (class class class)co 5918 0cc0 7872 1c1 7873 · cmul 7877 2c2 9033 3c3 9034 5c5 9036 ;cdc 9448 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 ax-sep 4147 ax-cnex 7963 ax-resscn 7964 ax-1cn 7965 ax-1re 7966 ax-icn 7967 ax-addcl 7968 ax-addrcl 7969 ax-mulcl 7970 ax-mulcom 7973 ax-addass 7974 ax-mulass 7975 ax-distr 7976 ax-1rid 7979 ax-0id 7980 ax-rnegex 7981 ax-cnre 7983 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-rab 2481 df-v 2762 df-un 3157 df-in 3159 df-ss 3166 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-int 3871 df-br 4030 df-iota 5215 df-fv 5262 df-ov 5921 df-inn 8983 df-2 9041 df-3 9042 df-4 9043 df-5 9044 df-6 9045 df-7 9046 df-8 9047 df-9 9048 df-n0 9241 df-dec 9449 |
This theorem is referenced by: 5t4e20 9549 |
Copyright terms: Public domain | W3C validator |