ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  5t3e15 GIF version

Theorem 5t3e15 9430
Description: 5 times 3 equals 15. (Contributed by Mario Carneiro, 19-Apr-2015.) (Revised by AV, 6-Sep-2021.)
Assertion
Ref Expression
5t3e15 (5 · 3) = 15

Proof of Theorem 5t3e15
StepHypRef Expression
1 5nn0 9142 . 2 5 ∈ ℕ0
2 2nn0 9139 . 2 2 ∈ ℕ0
3 df-3 8925 . 2 3 = (2 + 1)
4 5t2e10 9429 . 2 (5 · 2) = 10
5 dec10p 9372 . 2 (10 + 5) = 15
61, 2, 3, 4, 54t3lem 9426 1 (5 · 3) = 15
Colors of variables: wff set class
Syntax hints:   = wceq 1348  (class class class)co 5850  0cc0 7761  1c1 7762   · cmul 7766  2c2 8916  3c3 8917  5c5 8919  cdc 9330
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152  ax-sep 4105  ax-cnex 7852  ax-resscn 7853  ax-1cn 7854  ax-1re 7855  ax-icn 7856  ax-addcl 7857  ax-addrcl 7858  ax-mulcl 7859  ax-mulcom 7862  ax-addass 7863  ax-mulass 7864  ax-distr 7865  ax-1rid 7868  ax-0id 7869  ax-rnegex 7870  ax-cnre 7872
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-rab 2457  df-v 2732  df-un 3125  df-in 3127  df-ss 3134  df-sn 3587  df-pr 3588  df-op 3590  df-uni 3795  df-int 3830  df-br 3988  df-iota 5158  df-fv 5204  df-ov 5853  df-inn 8866  df-2 8924  df-3 8925  df-4 8926  df-5 8927  df-6 8928  df-7 8929  df-8 8930  df-9 8931  df-n0 9123  df-dec 9331
This theorem is referenced by:  5t4e20  9431
  Copyright terms: Public domain W3C validator