ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  4t3lem GIF version

Theorem 4t3lem 9439
Description: Lemma for 4t3e12 9440 and related theorems. (Contributed by Mario Carneiro, 19-Apr-2015.)
Hypotheses
Ref Expression
4t3lem.1 𝐴 ∈ ℕ0
4t3lem.2 𝐵 ∈ ℕ0
4t3lem.3 𝐶 = (𝐵 + 1)
4t3lem.4 (𝐴 · 𝐵) = 𝐷
4t3lem.5 (𝐷 + 𝐴) = 𝐸
Assertion
Ref Expression
4t3lem (𝐴 · 𝐶) = 𝐸

Proof of Theorem 4t3lem
StepHypRef Expression
1 4t3lem.3 . . 3 𝐶 = (𝐵 + 1)
21oveq2i 5864 . 2 (𝐴 · 𝐶) = (𝐴 · (𝐵 + 1))
3 4t3lem.1 . . . . . 6 𝐴 ∈ ℕ0
43nn0cni 9147 . . . . 5 𝐴 ∈ ℂ
5 4t3lem.2 . . . . . 6 𝐵 ∈ ℕ0
65nn0cni 9147 . . . . 5 𝐵 ∈ ℂ
7 ax-1cn 7867 . . . . 5 1 ∈ ℂ
84, 6, 7adddii 7930 . . . 4 (𝐴 · (𝐵 + 1)) = ((𝐴 · 𝐵) + (𝐴 · 1))
9 4t3lem.4 . . . . 5 (𝐴 · 𝐵) = 𝐷
104mulid1i 7922 . . . . 5 (𝐴 · 1) = 𝐴
119, 10oveq12i 5865 . . . 4 ((𝐴 · 𝐵) + (𝐴 · 1)) = (𝐷 + 𝐴)
128, 11eqtri 2191 . . 3 (𝐴 · (𝐵 + 1)) = (𝐷 + 𝐴)
13 4t3lem.5 . . 3 (𝐷 + 𝐴) = 𝐸
1412, 13eqtri 2191 . 2 (𝐴 · (𝐵 + 1)) = 𝐸
152, 14eqtri 2191 1 (𝐴 · 𝐶) = 𝐸
Colors of variables: wff set class
Syntax hints:   = wceq 1348  wcel 2141  (class class class)co 5853  1c1 7775   + caddc 7777   · cmul 7779  0cn0 9135
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152  ax-sep 4107  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-mulcom 7875  ax-mulass 7877  ax-distr 7878  ax-1rid 7881  ax-rnegex 7883  ax-cnre 7885
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-un 3125  df-in 3127  df-ss 3134  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-br 3990  df-iota 5160  df-fv 5206  df-ov 5856  df-inn 8879  df-n0 9136
This theorem is referenced by:  4t3e12  9440  4t4e16  9441  5t2e10  9442  5t3e15  9443  5t4e20  9444  5t5e25  9445  6t3e18  9447  6t4e24  9448  6t5e30  9449  6t6e36  9450  7t3e21  9452  7t4e28  9453  7t5e35  9454  7t6e42  9455  7t7e49  9456  8t3e24  9458  8t4e32  9459  8t5e40  9460  8t6e48  9461  8t7e56  9462  8t8e64  9463  9t3e27  9465  9t4e36  9466  9t5e45  9467  9t6e54  9468  9t7e63  9469  9t8e72  9470  9t9e81  9471
  Copyright terms: Public domain W3C validator