Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 4t3lem | GIF version |
Description: Lemma for 4t3e12 9371 and related theorems. (Contributed by Mario Carneiro, 19-Apr-2015.) |
Ref | Expression |
---|---|
4t3lem.1 | ⊢ 𝐴 ∈ ℕ0 |
4t3lem.2 | ⊢ 𝐵 ∈ ℕ0 |
4t3lem.3 | ⊢ 𝐶 = (𝐵 + 1) |
4t3lem.4 | ⊢ (𝐴 · 𝐵) = 𝐷 |
4t3lem.5 | ⊢ (𝐷 + 𝐴) = 𝐸 |
Ref | Expression |
---|---|
4t3lem | ⊢ (𝐴 · 𝐶) = 𝐸 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 4t3lem.3 | . . 3 ⊢ 𝐶 = (𝐵 + 1) | |
2 | 1 | oveq2i 5825 | . 2 ⊢ (𝐴 · 𝐶) = (𝐴 · (𝐵 + 1)) |
3 | 4t3lem.1 | . . . . . 6 ⊢ 𝐴 ∈ ℕ0 | |
4 | 3 | nn0cni 9081 | . . . . 5 ⊢ 𝐴 ∈ ℂ |
5 | 4t3lem.2 | . . . . . 6 ⊢ 𝐵 ∈ ℕ0 | |
6 | 5 | nn0cni 9081 | . . . . 5 ⊢ 𝐵 ∈ ℂ |
7 | ax-1cn 7804 | . . . . 5 ⊢ 1 ∈ ℂ | |
8 | 4, 6, 7 | adddii 7867 | . . . 4 ⊢ (𝐴 · (𝐵 + 1)) = ((𝐴 · 𝐵) + (𝐴 · 1)) |
9 | 4t3lem.4 | . . . . 5 ⊢ (𝐴 · 𝐵) = 𝐷 | |
10 | 4 | mulid1i 7859 | . . . . 5 ⊢ (𝐴 · 1) = 𝐴 |
11 | 9, 10 | oveq12i 5826 | . . . 4 ⊢ ((𝐴 · 𝐵) + (𝐴 · 1)) = (𝐷 + 𝐴) |
12 | 8, 11 | eqtri 2175 | . . 3 ⊢ (𝐴 · (𝐵 + 1)) = (𝐷 + 𝐴) |
13 | 4t3lem.5 | . . 3 ⊢ (𝐷 + 𝐴) = 𝐸 | |
14 | 12, 13 | eqtri 2175 | . 2 ⊢ (𝐴 · (𝐵 + 1)) = 𝐸 |
15 | 2, 14 | eqtri 2175 | 1 ⊢ (𝐴 · 𝐶) = 𝐸 |
Colors of variables: wff set class |
Syntax hints: = wceq 1332 ∈ wcel 2125 (class class class)co 5814 1c1 7712 + caddc 7714 · cmul 7716 ℕ0cn0 9069 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1424 ax-7 1425 ax-gen 1426 ax-ie1 1470 ax-ie2 1471 ax-8 1481 ax-10 1482 ax-11 1483 ax-i12 1484 ax-bndl 1486 ax-4 1487 ax-17 1503 ax-i9 1507 ax-ial 1511 ax-i5r 1512 ax-ext 2136 ax-sep 4078 ax-cnex 7802 ax-resscn 7803 ax-1cn 7804 ax-1re 7805 ax-icn 7806 ax-addcl 7807 ax-addrcl 7808 ax-mulcl 7809 ax-mulcom 7812 ax-mulass 7814 ax-distr 7815 ax-1rid 7818 ax-rnegex 7820 ax-cnre 7822 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1335 df-nf 1438 df-sb 1740 df-clab 2141 df-cleq 2147 df-clel 2150 df-nfc 2285 df-ral 2437 df-rex 2438 df-v 2711 df-un 3102 df-in 3104 df-ss 3111 df-sn 3562 df-pr 3563 df-op 3565 df-uni 3769 df-int 3804 df-br 3962 df-iota 5128 df-fv 5171 df-ov 5817 df-inn 8813 df-n0 9070 |
This theorem is referenced by: 4t3e12 9371 4t4e16 9372 5t2e10 9373 5t3e15 9374 5t4e20 9375 5t5e25 9376 6t3e18 9378 6t4e24 9379 6t5e30 9380 6t6e36 9381 7t3e21 9383 7t4e28 9384 7t5e35 9385 7t6e42 9386 7t7e49 9387 8t3e24 9389 8t4e32 9390 8t5e40 9391 8t6e48 9392 8t7e56 9393 8t8e64 9394 9t3e27 9396 9t4e36 9397 9t5e45 9398 9t6e54 9399 9t7e63 9400 9t8e72 9401 9t9e81 9402 |
Copyright terms: Public domain | W3C validator |