ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  4t3lem GIF version

Theorem 4t3lem 9572
Description: Lemma for 4t3e12 9573 and related theorems. (Contributed by Mario Carneiro, 19-Apr-2015.)
Hypotheses
Ref Expression
4t3lem.1 𝐴 ∈ ℕ0
4t3lem.2 𝐵 ∈ ℕ0
4t3lem.3 𝐶 = (𝐵 + 1)
4t3lem.4 (𝐴 · 𝐵) = 𝐷
4t3lem.5 (𝐷 + 𝐴) = 𝐸
Assertion
Ref Expression
4t3lem (𝐴 · 𝐶) = 𝐸

Proof of Theorem 4t3lem
StepHypRef Expression
1 4t3lem.3 . . 3 𝐶 = (𝐵 + 1)
21oveq2i 5936 . 2 (𝐴 · 𝐶) = (𝐴 · (𝐵 + 1))
3 4t3lem.1 . . . . . 6 𝐴 ∈ ℕ0
43nn0cni 9280 . . . . 5 𝐴 ∈ ℂ
5 4t3lem.2 . . . . . 6 𝐵 ∈ ℕ0
65nn0cni 9280 . . . . 5 𝐵 ∈ ℂ
7 ax-1cn 7991 . . . . 5 1 ∈ ℂ
84, 6, 7adddii 8055 . . . 4 (𝐴 · (𝐵 + 1)) = ((𝐴 · 𝐵) + (𝐴 · 1))
9 4t3lem.4 . . . . 5 (𝐴 · 𝐵) = 𝐷
104mulridi 8047 . . . . 5 (𝐴 · 1) = 𝐴
119, 10oveq12i 5937 . . . 4 ((𝐴 · 𝐵) + (𝐴 · 1)) = (𝐷 + 𝐴)
128, 11eqtri 2217 . . 3 (𝐴 · (𝐵 + 1)) = (𝐷 + 𝐴)
13 4t3lem.5 . . 3 (𝐷 + 𝐴) = 𝐸
1412, 13eqtri 2217 . 2 (𝐴 · (𝐵 + 1)) = 𝐸
152, 14eqtri 2217 1 (𝐴 · 𝐶) = 𝐸
Colors of variables: wff set class
Syntax hints:   = wceq 1364  wcel 2167  (class class class)co 5925  1c1 7899   + caddc 7901   · cmul 7903  0cn0 9268
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178  ax-sep 4152  ax-cnex 7989  ax-resscn 7990  ax-1cn 7991  ax-1re 7992  ax-icn 7993  ax-addcl 7994  ax-addrcl 7995  ax-mulcl 7996  ax-mulcom 7999  ax-mulass 8001  ax-distr 8002  ax-1rid 8005  ax-rnegex 8007  ax-cnre 8009
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-un 3161  df-in 3163  df-ss 3170  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-br 4035  df-iota 5220  df-fv 5267  df-ov 5928  df-inn 9010  df-n0 9269
This theorem is referenced by:  4t3e12  9573  4t4e16  9574  5t2e10  9575  5t3e15  9576  5t4e20  9577  5t5e25  9578  6t3e18  9580  6t4e24  9581  6t5e30  9582  6t6e36  9583  7t3e21  9585  7t4e28  9586  7t5e35  9587  7t6e42  9588  7t7e49  9589  8t3e24  9591  8t4e32  9592  8t5e40  9593  8t6e48  9594  8t7e56  9595  8t8e64  9596  9t3e27  9598  9t4e36  9599  9t5e45  9600  9t6e54  9601  9t7e63  9602  9t8e72  9603  9t9e81  9604
  Copyright terms: Public domain W3C validator