![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 4t3lem | GIF version |
Description: Lemma for 4t3e12 9481 and related theorems. (Contributed by Mario Carneiro, 19-Apr-2015.) |
Ref | Expression |
---|---|
4t3lem.1 | โข ๐ด โ โ0 |
4t3lem.2 | โข ๐ต โ โ0 |
4t3lem.3 | โข ๐ถ = (๐ต + 1) |
4t3lem.4 | โข (๐ด ยท ๐ต) = ๐ท |
4t3lem.5 | โข (๐ท + ๐ด) = ๐ธ |
Ref | Expression |
---|---|
4t3lem | โข (๐ด ยท ๐ถ) = ๐ธ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 4t3lem.3 | . . 3 โข ๐ถ = (๐ต + 1) | |
2 | 1 | oveq2i 5886 | . 2 โข (๐ด ยท ๐ถ) = (๐ด ยท (๐ต + 1)) |
3 | 4t3lem.1 | . . . . . 6 โข ๐ด โ โ0 | |
4 | 3 | nn0cni 9188 | . . . . 5 โข ๐ด โ โ |
5 | 4t3lem.2 | . . . . . 6 โข ๐ต โ โ0 | |
6 | 5 | nn0cni 9188 | . . . . 5 โข ๐ต โ โ |
7 | ax-1cn 7904 | . . . . 5 โข 1 โ โ | |
8 | 4, 6, 7 | adddii 7967 | . . . 4 โข (๐ด ยท (๐ต + 1)) = ((๐ด ยท ๐ต) + (๐ด ยท 1)) |
9 | 4t3lem.4 | . . . . 5 โข (๐ด ยท ๐ต) = ๐ท | |
10 | 4 | mulid1i 7959 | . . . . 5 โข (๐ด ยท 1) = ๐ด |
11 | 9, 10 | oveq12i 5887 | . . . 4 โข ((๐ด ยท ๐ต) + (๐ด ยท 1)) = (๐ท + ๐ด) |
12 | 8, 11 | eqtri 2198 | . . 3 โข (๐ด ยท (๐ต + 1)) = (๐ท + ๐ด) |
13 | 4t3lem.5 | . . 3 โข (๐ท + ๐ด) = ๐ธ | |
14 | 12, 13 | eqtri 2198 | . 2 โข (๐ด ยท (๐ต + 1)) = ๐ธ |
15 | 2, 14 | eqtri 2198 | 1 โข (๐ด ยท ๐ถ) = ๐ธ |
Colors of variables: wff set class |
Syntax hints: = wceq 1353 โ wcel 2148 (class class class)co 5875 1c1 7812 + caddc 7814 ยท cmul 7816 โ0cn0 9176 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-ext 2159 ax-sep 4122 ax-cnex 7902 ax-resscn 7903 ax-1cn 7904 ax-1re 7905 ax-icn 7906 ax-addcl 7907 ax-addrcl 7908 ax-mulcl 7909 ax-mulcom 7912 ax-mulass 7914 ax-distr 7915 ax-1rid 7918 ax-rnegex 7920 ax-cnre 7922 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ral 2460 df-rex 2461 df-v 2740 df-un 3134 df-in 3136 df-ss 3143 df-sn 3599 df-pr 3600 df-op 3602 df-uni 3811 df-int 3846 df-br 4005 df-iota 5179 df-fv 5225 df-ov 5878 df-inn 8920 df-n0 9177 |
This theorem is referenced by: 4t3e12 9481 4t4e16 9482 5t2e10 9483 5t3e15 9484 5t4e20 9485 5t5e25 9486 6t3e18 9488 6t4e24 9489 6t5e30 9490 6t6e36 9491 7t3e21 9493 7t4e28 9494 7t5e35 9495 7t6e42 9496 7t7e49 9497 8t3e24 9499 8t4e32 9500 8t5e40 9501 8t6e48 9502 8t7e56 9503 8t8e64 9504 9t3e27 9506 9t4e36 9507 9t5e45 9508 9t6e54 9509 9t7e63 9510 9t8e72 9511 9t9e81 9512 |
Copyright terms: Public domain | W3C validator |