Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 4t3lem | GIF version |
Description: Lemma for 4t3e12 9440 and related theorems. (Contributed by Mario Carneiro, 19-Apr-2015.) |
Ref | Expression |
---|---|
4t3lem.1 | ⊢ 𝐴 ∈ ℕ0 |
4t3lem.2 | ⊢ 𝐵 ∈ ℕ0 |
4t3lem.3 | ⊢ 𝐶 = (𝐵 + 1) |
4t3lem.4 | ⊢ (𝐴 · 𝐵) = 𝐷 |
4t3lem.5 | ⊢ (𝐷 + 𝐴) = 𝐸 |
Ref | Expression |
---|---|
4t3lem | ⊢ (𝐴 · 𝐶) = 𝐸 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 4t3lem.3 | . . 3 ⊢ 𝐶 = (𝐵 + 1) | |
2 | 1 | oveq2i 5864 | . 2 ⊢ (𝐴 · 𝐶) = (𝐴 · (𝐵 + 1)) |
3 | 4t3lem.1 | . . . . . 6 ⊢ 𝐴 ∈ ℕ0 | |
4 | 3 | nn0cni 9147 | . . . . 5 ⊢ 𝐴 ∈ ℂ |
5 | 4t3lem.2 | . . . . . 6 ⊢ 𝐵 ∈ ℕ0 | |
6 | 5 | nn0cni 9147 | . . . . 5 ⊢ 𝐵 ∈ ℂ |
7 | ax-1cn 7867 | . . . . 5 ⊢ 1 ∈ ℂ | |
8 | 4, 6, 7 | adddii 7930 | . . . 4 ⊢ (𝐴 · (𝐵 + 1)) = ((𝐴 · 𝐵) + (𝐴 · 1)) |
9 | 4t3lem.4 | . . . . 5 ⊢ (𝐴 · 𝐵) = 𝐷 | |
10 | 4 | mulid1i 7922 | . . . . 5 ⊢ (𝐴 · 1) = 𝐴 |
11 | 9, 10 | oveq12i 5865 | . . . 4 ⊢ ((𝐴 · 𝐵) + (𝐴 · 1)) = (𝐷 + 𝐴) |
12 | 8, 11 | eqtri 2191 | . . 3 ⊢ (𝐴 · (𝐵 + 1)) = (𝐷 + 𝐴) |
13 | 4t3lem.5 | . . 3 ⊢ (𝐷 + 𝐴) = 𝐸 | |
14 | 12, 13 | eqtri 2191 | . 2 ⊢ (𝐴 · (𝐵 + 1)) = 𝐸 |
15 | 2, 14 | eqtri 2191 | 1 ⊢ (𝐴 · 𝐶) = 𝐸 |
Colors of variables: wff set class |
Syntax hints: = wceq 1348 ∈ wcel 2141 (class class class)co 5853 1c1 7775 + caddc 7777 · cmul 7779 ℕ0cn0 9135 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 ax-sep 4107 ax-cnex 7865 ax-resscn 7866 ax-1cn 7867 ax-1re 7868 ax-icn 7869 ax-addcl 7870 ax-addrcl 7871 ax-mulcl 7872 ax-mulcom 7875 ax-mulass 7877 ax-distr 7878 ax-1rid 7881 ax-rnegex 7883 ax-cnre 7885 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-un 3125 df-in 3127 df-ss 3134 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-br 3990 df-iota 5160 df-fv 5206 df-ov 5856 df-inn 8879 df-n0 9136 |
This theorem is referenced by: 4t3e12 9440 4t4e16 9441 5t2e10 9442 5t3e15 9443 5t4e20 9444 5t5e25 9445 6t3e18 9447 6t4e24 9448 6t5e30 9449 6t6e36 9450 7t3e21 9452 7t4e28 9453 7t5e35 9454 7t6e42 9455 7t7e49 9456 8t3e24 9458 8t4e32 9459 8t5e40 9460 8t6e48 9461 8t7e56 9462 8t8e64 9463 9t3e27 9465 9t4e36 9466 9t5e45 9467 9t6e54 9468 9t7e63 9469 9t8e72 9470 9t9e81 9471 |
Copyright terms: Public domain | W3C validator |