ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  4t3lem GIF version

Theorem 4t3lem 9620
Description: Lemma for 4t3e12 9621 and related theorems. (Contributed by Mario Carneiro, 19-Apr-2015.)
Hypotheses
Ref Expression
4t3lem.1 𝐴 ∈ ℕ0
4t3lem.2 𝐵 ∈ ℕ0
4t3lem.3 𝐶 = (𝐵 + 1)
4t3lem.4 (𝐴 · 𝐵) = 𝐷
4t3lem.5 (𝐷 + 𝐴) = 𝐸
Assertion
Ref Expression
4t3lem (𝐴 · 𝐶) = 𝐸

Proof of Theorem 4t3lem
StepHypRef Expression
1 4t3lem.3 . . 3 𝐶 = (𝐵 + 1)
21oveq2i 5968 . 2 (𝐴 · 𝐶) = (𝐴 · (𝐵 + 1))
3 4t3lem.1 . . . . . 6 𝐴 ∈ ℕ0
43nn0cni 9327 . . . . 5 𝐴 ∈ ℂ
5 4t3lem.2 . . . . . 6 𝐵 ∈ ℕ0
65nn0cni 9327 . . . . 5 𝐵 ∈ ℂ
7 ax-1cn 8038 . . . . 5 1 ∈ ℂ
84, 6, 7adddii 8102 . . . 4 (𝐴 · (𝐵 + 1)) = ((𝐴 · 𝐵) + (𝐴 · 1))
9 4t3lem.4 . . . . 5 (𝐴 · 𝐵) = 𝐷
104mulridi 8094 . . . . 5 (𝐴 · 1) = 𝐴
119, 10oveq12i 5969 . . . 4 ((𝐴 · 𝐵) + (𝐴 · 1)) = (𝐷 + 𝐴)
128, 11eqtri 2227 . . 3 (𝐴 · (𝐵 + 1)) = (𝐷 + 𝐴)
13 4t3lem.5 . . 3 (𝐷 + 𝐴) = 𝐸
1412, 13eqtri 2227 . 2 (𝐴 · (𝐵 + 1)) = 𝐸
152, 14eqtri 2227 1 (𝐴 · 𝐶) = 𝐸
Colors of variables: wff set class
Syntax hints:   = wceq 1373  wcel 2177  (class class class)co 5957  1c1 7946   + caddc 7948   · cmul 7950  0cn0 9315
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188  ax-sep 4170  ax-cnex 8036  ax-resscn 8037  ax-1cn 8038  ax-1re 8039  ax-icn 8040  ax-addcl 8041  ax-addrcl 8042  ax-mulcl 8043  ax-mulcom 8046  ax-mulass 8048  ax-distr 8049  ax-1rid 8052  ax-rnegex 8054  ax-cnre 8056
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-v 2775  df-un 3174  df-in 3176  df-ss 3183  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-int 3892  df-br 4052  df-iota 5241  df-fv 5288  df-ov 5960  df-inn 9057  df-n0 9316
This theorem is referenced by:  4t3e12  9621  4t4e16  9622  5t2e10  9623  5t3e15  9624  5t4e20  9625  5t5e25  9626  6t3e18  9628  6t4e24  9629  6t5e30  9630  6t6e36  9631  7t3e21  9633  7t4e28  9634  7t5e35  9635  7t6e42  9636  7t7e49  9637  8t3e24  9639  8t4e32  9640  8t5e40  9641  8t6e48  9642  8t7e56  9643  8t8e64  9644  9t3e27  9646  9t4e36  9647  9t5e45  9648  9t6e54  9649  9t7e63  9650  9t8e72  9651  9t9e81  9652
  Copyright terms: Public domain W3C validator