| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 4t3lem | GIF version | ||
| Description: Lemma for 4t3e12 9671 and related theorems. (Contributed by Mario Carneiro, 19-Apr-2015.) |
| Ref | Expression |
|---|---|
| 4t3lem.1 | ⊢ 𝐴 ∈ ℕ0 |
| 4t3lem.2 | ⊢ 𝐵 ∈ ℕ0 |
| 4t3lem.3 | ⊢ 𝐶 = (𝐵 + 1) |
| 4t3lem.4 | ⊢ (𝐴 · 𝐵) = 𝐷 |
| 4t3lem.5 | ⊢ (𝐷 + 𝐴) = 𝐸 |
| Ref | Expression |
|---|---|
| 4t3lem | ⊢ (𝐴 · 𝐶) = 𝐸 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 4t3lem.3 | . . 3 ⊢ 𝐶 = (𝐵 + 1) | |
| 2 | 1 | oveq2i 6011 | . 2 ⊢ (𝐴 · 𝐶) = (𝐴 · (𝐵 + 1)) |
| 3 | 4t3lem.1 | . . . . . 6 ⊢ 𝐴 ∈ ℕ0 | |
| 4 | 3 | nn0cni 9377 | . . . . 5 ⊢ 𝐴 ∈ ℂ |
| 5 | 4t3lem.2 | . . . . . 6 ⊢ 𝐵 ∈ ℕ0 | |
| 6 | 5 | nn0cni 9377 | . . . . 5 ⊢ 𝐵 ∈ ℂ |
| 7 | ax-1cn 8088 | . . . . 5 ⊢ 1 ∈ ℂ | |
| 8 | 4, 6, 7 | adddii 8152 | . . . 4 ⊢ (𝐴 · (𝐵 + 1)) = ((𝐴 · 𝐵) + (𝐴 · 1)) |
| 9 | 4t3lem.4 | . . . . 5 ⊢ (𝐴 · 𝐵) = 𝐷 | |
| 10 | 4 | mulridi 8144 | . . . . 5 ⊢ (𝐴 · 1) = 𝐴 |
| 11 | 9, 10 | oveq12i 6012 | . . . 4 ⊢ ((𝐴 · 𝐵) + (𝐴 · 1)) = (𝐷 + 𝐴) |
| 12 | 8, 11 | eqtri 2250 | . . 3 ⊢ (𝐴 · (𝐵 + 1)) = (𝐷 + 𝐴) |
| 13 | 4t3lem.5 | . . 3 ⊢ (𝐷 + 𝐴) = 𝐸 | |
| 14 | 12, 13 | eqtri 2250 | . 2 ⊢ (𝐴 · (𝐵 + 1)) = 𝐸 |
| 15 | 2, 14 | eqtri 2250 | 1 ⊢ (𝐴 · 𝐶) = 𝐸 |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1395 ∈ wcel 2200 (class class class)co 6000 1c1 7996 + caddc 7998 · cmul 8000 ℕ0cn0 9365 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 ax-sep 4201 ax-cnex 8086 ax-resscn 8087 ax-1cn 8088 ax-1re 8089 ax-icn 8090 ax-addcl 8091 ax-addrcl 8092 ax-mulcl 8093 ax-mulcom 8096 ax-mulass 8098 ax-distr 8099 ax-1rid 8102 ax-rnegex 8104 ax-cnre 8106 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-br 4083 df-iota 5277 df-fv 5325 df-ov 6003 df-inn 9107 df-n0 9366 |
| This theorem is referenced by: 4t3e12 9671 4t4e16 9672 5t2e10 9673 5t3e15 9674 5t4e20 9675 5t5e25 9676 6t3e18 9678 6t4e24 9679 6t5e30 9680 6t6e36 9681 7t3e21 9683 7t4e28 9684 7t5e35 9685 7t6e42 9686 7t7e49 9687 8t3e24 9689 8t4e32 9690 8t5e40 9691 8t6e48 9692 8t7e56 9693 8t8e64 9694 9t3e27 9696 9t4e36 9697 9t5e45 9698 9t6e54 9699 9t7e63 9700 9t8e72 9701 9t9e81 9702 |
| Copyright terms: Public domain | W3C validator |