![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 4t3lem | GIF version |
Description: Lemma for 4t3e12 9512 and related theorems. (Contributed by Mario Carneiro, 19-Apr-2015.) |
Ref | Expression |
---|---|
4t3lem.1 | ⊢ 𝐴 ∈ ℕ0 |
4t3lem.2 | ⊢ 𝐵 ∈ ℕ0 |
4t3lem.3 | ⊢ 𝐶 = (𝐵 + 1) |
4t3lem.4 | ⊢ (𝐴 · 𝐵) = 𝐷 |
4t3lem.5 | ⊢ (𝐷 + 𝐴) = 𝐸 |
Ref | Expression |
---|---|
4t3lem | ⊢ (𝐴 · 𝐶) = 𝐸 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 4t3lem.3 | . . 3 ⊢ 𝐶 = (𝐵 + 1) | |
2 | 1 | oveq2i 5908 | . 2 ⊢ (𝐴 · 𝐶) = (𝐴 · (𝐵 + 1)) |
3 | 4t3lem.1 | . . . . . 6 ⊢ 𝐴 ∈ ℕ0 | |
4 | 3 | nn0cni 9219 | . . . . 5 ⊢ 𝐴 ∈ ℂ |
5 | 4t3lem.2 | . . . . . 6 ⊢ 𝐵 ∈ ℕ0 | |
6 | 5 | nn0cni 9219 | . . . . 5 ⊢ 𝐵 ∈ ℂ |
7 | ax-1cn 7935 | . . . . 5 ⊢ 1 ∈ ℂ | |
8 | 4, 6, 7 | adddii 7998 | . . . 4 ⊢ (𝐴 · (𝐵 + 1)) = ((𝐴 · 𝐵) + (𝐴 · 1)) |
9 | 4t3lem.4 | . . . . 5 ⊢ (𝐴 · 𝐵) = 𝐷 | |
10 | 4 | mulid1i 7990 | . . . . 5 ⊢ (𝐴 · 1) = 𝐴 |
11 | 9, 10 | oveq12i 5909 | . . . 4 ⊢ ((𝐴 · 𝐵) + (𝐴 · 1)) = (𝐷 + 𝐴) |
12 | 8, 11 | eqtri 2210 | . . 3 ⊢ (𝐴 · (𝐵 + 1)) = (𝐷 + 𝐴) |
13 | 4t3lem.5 | . . 3 ⊢ (𝐷 + 𝐴) = 𝐸 | |
14 | 12, 13 | eqtri 2210 | . 2 ⊢ (𝐴 · (𝐵 + 1)) = 𝐸 |
15 | 2, 14 | eqtri 2210 | 1 ⊢ (𝐴 · 𝐶) = 𝐸 |
Colors of variables: wff set class |
Syntax hints: = wceq 1364 ∈ wcel 2160 (class class class)co 5897 1c1 7843 + caddc 7845 · cmul 7847 ℕ0cn0 9207 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2171 ax-sep 4136 ax-cnex 7933 ax-resscn 7934 ax-1cn 7935 ax-1re 7936 ax-icn 7937 ax-addcl 7938 ax-addrcl 7939 ax-mulcl 7940 ax-mulcom 7943 ax-mulass 7945 ax-distr 7946 ax-1rid 7949 ax-rnegex 7951 ax-cnre 7953 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ral 2473 df-rex 2474 df-v 2754 df-un 3148 df-in 3150 df-ss 3157 df-sn 3613 df-pr 3614 df-op 3616 df-uni 3825 df-int 3860 df-br 4019 df-iota 5196 df-fv 5243 df-ov 5900 df-inn 8951 df-n0 9208 |
This theorem is referenced by: 4t3e12 9512 4t4e16 9513 5t2e10 9514 5t3e15 9515 5t4e20 9516 5t5e25 9517 6t3e18 9519 6t4e24 9520 6t5e30 9521 6t6e36 9522 7t3e21 9524 7t4e28 9525 7t5e35 9526 7t6e42 9527 7t7e49 9528 8t3e24 9530 8t4e32 9531 8t5e40 9532 8t6e48 9533 8t7e56 9534 8t8e64 9535 9t3e27 9537 9t4e36 9538 9t5e45 9539 9t6e54 9540 9t7e63 9541 9t8e72 9542 9t9e81 9543 |
Copyright terms: Public domain | W3C validator |