ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iccneg GIF version

Theorem iccneg 10021
Description: Membership in a negated closed real interval. (Contributed by Paul Chapman, 26-Nov-2007.)
Assertion
Ref Expression
iccneg ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐶 ∈ (𝐴[,]𝐵) ↔ -𝐶 ∈ (-𝐵[,]-𝐴)))

Proof of Theorem iccneg
StepHypRef Expression
1 renegcl 8249 . . . . 5 (𝐶 ∈ ℝ → -𝐶 ∈ ℝ)
2 ax-1 6 . . . . 5 (𝐶 ∈ ℝ → (-𝐶 ∈ ℝ → 𝐶 ∈ ℝ))
31, 2impbid2 143 . . . 4 (𝐶 ∈ ℝ → (𝐶 ∈ ℝ ↔ -𝐶 ∈ ℝ))
433ad2ant3 1022 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐶 ∈ ℝ ↔ -𝐶 ∈ ℝ))
5 ancom 266 . . . 4 ((𝐶𝐵𝐴𝐶) ↔ (𝐴𝐶𝐶𝐵))
6 leneg 8453 . . . . . . 7 ((𝐶 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐶𝐵 ↔ -𝐵 ≤ -𝐶))
76ancoms 268 . . . . . 6 ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐶𝐵 ↔ -𝐵 ≤ -𝐶))
873adant1 1017 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐶𝐵 ↔ -𝐵 ≤ -𝐶))
9 leneg 8453 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴𝐶 ↔ -𝐶 ≤ -𝐴))
1093adant2 1018 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴𝐶 ↔ -𝐶 ≤ -𝐴))
118, 10anbi12d 473 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐶𝐵𝐴𝐶) ↔ (-𝐵 ≤ -𝐶 ∧ -𝐶 ≤ -𝐴)))
125, 11bitr3id 194 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴𝐶𝐶𝐵) ↔ (-𝐵 ≤ -𝐶 ∧ -𝐶 ≤ -𝐴)))
134, 12anbi12d 473 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐶 ∈ ℝ ∧ (𝐴𝐶𝐶𝐵)) ↔ (-𝐶 ∈ ℝ ∧ (-𝐵 ≤ -𝐶 ∧ -𝐶 ≤ -𝐴))))
14 elicc2 9970 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐶 ∈ (𝐴[,]𝐵) ↔ (𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶𝐵)))
15143adant3 1019 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐶 ∈ (𝐴[,]𝐵) ↔ (𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶𝐵)))
16 3anass 984 . . 3 ((𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶𝐵) ↔ (𝐶 ∈ ℝ ∧ (𝐴𝐶𝐶𝐵)))
1715, 16bitrdi 196 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐶 ∈ (𝐴[,]𝐵) ↔ (𝐶 ∈ ℝ ∧ (𝐴𝐶𝐶𝐵))))
18 renegcl 8249 . . . . 5 (𝐵 ∈ ℝ → -𝐵 ∈ ℝ)
19 renegcl 8249 . . . . 5 (𝐴 ∈ ℝ → -𝐴 ∈ ℝ)
20 elicc2 9970 . . . . 5 ((-𝐵 ∈ ℝ ∧ -𝐴 ∈ ℝ) → (-𝐶 ∈ (-𝐵[,]-𝐴) ↔ (-𝐶 ∈ ℝ ∧ -𝐵 ≤ -𝐶 ∧ -𝐶 ≤ -𝐴)))
2118, 19, 20syl2anr 290 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (-𝐶 ∈ (-𝐵[,]-𝐴) ↔ (-𝐶 ∈ ℝ ∧ -𝐵 ≤ -𝐶 ∧ -𝐶 ≤ -𝐴)))
22213adant3 1019 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (-𝐶 ∈ (-𝐵[,]-𝐴) ↔ (-𝐶 ∈ ℝ ∧ -𝐵 ≤ -𝐶 ∧ -𝐶 ≤ -𝐴)))
23 3anass 984 . . 3 ((-𝐶 ∈ ℝ ∧ -𝐵 ≤ -𝐶 ∧ -𝐶 ≤ -𝐴) ↔ (-𝐶 ∈ ℝ ∧ (-𝐵 ≤ -𝐶 ∧ -𝐶 ≤ -𝐴)))
2422, 23bitrdi 196 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (-𝐶 ∈ (-𝐵[,]-𝐴) ↔ (-𝐶 ∈ ℝ ∧ (-𝐵 ≤ -𝐶 ∧ -𝐶 ≤ -𝐴))))
2513, 17, 243bitr4d 220 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐶 ∈ (𝐴[,]𝐵) ↔ -𝐶 ∈ (-𝐵[,]-𝐴)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 980  wcel 2160   class class class wbr 4018  (class class class)co 5897  cr 7841  cle 8024  -cneg 8160  [,]cicc 9923
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-sep 4136  ax-pow 4192  ax-pr 4227  ax-un 4451  ax-setind 4554  ax-cnex 7933  ax-resscn 7934  ax-1cn 7935  ax-1re 7936  ax-icn 7937  ax-addcl 7938  ax-addrcl 7939  ax-mulcl 7940  ax-addcom 7942  ax-addass 7944  ax-distr 7946  ax-i2m1 7947  ax-0id 7950  ax-rnegex 7951  ax-cnre 7953  ax-pre-ltirr 7954  ax-pre-ltwlin 7955  ax-pre-lttrn 7956  ax-pre-ltadd 7958
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-reu 2475  df-rab 2477  df-v 2754  df-sbc 2978  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-br 4019  df-opab 4080  df-id 4311  df-po 4314  df-iso 4315  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-iota 5196  df-fun 5237  df-fv 5243  df-riota 5852  df-ov 5900  df-oprab 5901  df-mpo 5902  df-pnf 8025  df-mnf 8026  df-xr 8027  df-ltxr 8028  df-le 8029  df-sub 8161  df-neg 8162  df-icc 9927
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator