Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > iccneg | GIF version |
Description: Membership in a negated closed real interval. (Contributed by Paul Chapman, 26-Nov-2007.) |
Ref | Expression |
---|---|
iccneg | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐶 ∈ (𝐴[,]𝐵) ↔ -𝐶 ∈ (-𝐵[,]-𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | renegcl 8180 | . . . . 5 ⊢ (𝐶 ∈ ℝ → -𝐶 ∈ ℝ) | |
2 | ax-1 6 | . . . . 5 ⊢ (𝐶 ∈ ℝ → (-𝐶 ∈ ℝ → 𝐶 ∈ ℝ)) | |
3 | 1, 2 | impbid2 142 | . . . 4 ⊢ (𝐶 ∈ ℝ → (𝐶 ∈ ℝ ↔ -𝐶 ∈ ℝ)) |
4 | 3 | 3ad2ant3 1015 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐶 ∈ ℝ ↔ -𝐶 ∈ ℝ)) |
5 | ancom 264 | . . . 4 ⊢ ((𝐶 ≤ 𝐵 ∧ 𝐴 ≤ 𝐶) ↔ (𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵)) | |
6 | leneg 8384 | . . . . . . 7 ⊢ ((𝐶 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐶 ≤ 𝐵 ↔ -𝐵 ≤ -𝐶)) | |
7 | 6 | ancoms 266 | . . . . . 6 ⊢ ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐶 ≤ 𝐵 ↔ -𝐵 ≤ -𝐶)) |
8 | 7 | 3adant1 1010 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐶 ≤ 𝐵 ↔ -𝐵 ≤ -𝐶)) |
9 | leneg 8384 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 ≤ 𝐶 ↔ -𝐶 ≤ -𝐴)) | |
10 | 9 | 3adant2 1011 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 ≤ 𝐶 ↔ -𝐶 ≤ -𝐴)) |
11 | 8, 10 | anbi12d 470 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐶 ≤ 𝐵 ∧ 𝐴 ≤ 𝐶) ↔ (-𝐵 ≤ -𝐶 ∧ -𝐶 ≤ -𝐴))) |
12 | 5, 11 | bitr3id 193 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵) ↔ (-𝐵 ≤ -𝐶 ∧ -𝐶 ≤ -𝐴))) |
13 | 4, 12 | anbi12d 470 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐶 ∈ ℝ ∧ (𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵)) ↔ (-𝐶 ∈ ℝ ∧ (-𝐵 ≤ -𝐶 ∧ -𝐶 ≤ -𝐴)))) |
14 | elicc2 9895 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐶 ∈ (𝐴[,]𝐵) ↔ (𝐶 ∈ ℝ ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵))) | |
15 | 14 | 3adant3 1012 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐶 ∈ (𝐴[,]𝐵) ↔ (𝐶 ∈ ℝ ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵))) |
16 | 3anass 977 | . . 3 ⊢ ((𝐶 ∈ ℝ ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵) ↔ (𝐶 ∈ ℝ ∧ (𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵))) | |
17 | 15, 16 | bitrdi 195 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐶 ∈ (𝐴[,]𝐵) ↔ (𝐶 ∈ ℝ ∧ (𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵)))) |
18 | renegcl 8180 | . . . . 5 ⊢ (𝐵 ∈ ℝ → -𝐵 ∈ ℝ) | |
19 | renegcl 8180 | . . . . 5 ⊢ (𝐴 ∈ ℝ → -𝐴 ∈ ℝ) | |
20 | elicc2 9895 | . . . . 5 ⊢ ((-𝐵 ∈ ℝ ∧ -𝐴 ∈ ℝ) → (-𝐶 ∈ (-𝐵[,]-𝐴) ↔ (-𝐶 ∈ ℝ ∧ -𝐵 ≤ -𝐶 ∧ -𝐶 ≤ -𝐴))) | |
21 | 18, 19, 20 | syl2anr 288 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (-𝐶 ∈ (-𝐵[,]-𝐴) ↔ (-𝐶 ∈ ℝ ∧ -𝐵 ≤ -𝐶 ∧ -𝐶 ≤ -𝐴))) |
22 | 21 | 3adant3 1012 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (-𝐶 ∈ (-𝐵[,]-𝐴) ↔ (-𝐶 ∈ ℝ ∧ -𝐵 ≤ -𝐶 ∧ -𝐶 ≤ -𝐴))) |
23 | 3anass 977 | . . 3 ⊢ ((-𝐶 ∈ ℝ ∧ -𝐵 ≤ -𝐶 ∧ -𝐶 ≤ -𝐴) ↔ (-𝐶 ∈ ℝ ∧ (-𝐵 ≤ -𝐶 ∧ -𝐶 ≤ -𝐴))) | |
24 | 22, 23 | bitrdi 195 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (-𝐶 ∈ (-𝐵[,]-𝐴) ↔ (-𝐶 ∈ ℝ ∧ (-𝐵 ≤ -𝐶 ∧ -𝐶 ≤ -𝐴)))) |
25 | 13, 17, 24 | 3bitr4d 219 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐶 ∈ (𝐴[,]𝐵) ↔ -𝐶 ∈ (-𝐵[,]-𝐴))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 ∧ w3a 973 ∈ wcel 2141 class class class wbr 3989 (class class class)co 5853 ℝcr 7773 ≤ cle 7955 -cneg 8091 [,]cicc 9848 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-cnex 7865 ax-resscn 7866 ax-1cn 7867 ax-1re 7868 ax-icn 7869 ax-addcl 7870 ax-addrcl 7871 ax-mulcl 7872 ax-addcom 7874 ax-addass 7876 ax-distr 7878 ax-i2m1 7879 ax-0id 7882 ax-rnegex 7883 ax-cnre 7885 ax-pre-ltirr 7886 ax-pre-ltwlin 7887 ax-pre-lttrn 7888 ax-pre-ltadd 7890 |
This theorem depends on definitions: df-bi 116 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-opab 4051 df-id 4278 df-po 4281 df-iso 4282 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-iota 5160 df-fun 5200 df-fv 5206 df-riota 5809 df-ov 5856 df-oprab 5857 df-mpo 5858 df-pnf 7956 df-mnf 7957 df-xr 7958 df-ltxr 7959 df-le 7960 df-sub 8092 df-neg 8093 df-icc 9852 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |