ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iccneg GIF version

Theorem iccneg 10111
Description: Membership in a negated closed real interval. (Contributed by Paul Chapman, 26-Nov-2007.)
Assertion
Ref Expression
iccneg ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐶 ∈ (𝐴[,]𝐵) ↔ -𝐶 ∈ (-𝐵[,]-𝐴)))

Proof of Theorem iccneg
StepHypRef Expression
1 renegcl 8333 . . . . 5 (𝐶 ∈ ℝ → -𝐶 ∈ ℝ)
2 ax-1 6 . . . . 5 (𝐶 ∈ ℝ → (-𝐶 ∈ ℝ → 𝐶 ∈ ℝ))
31, 2impbid2 143 . . . 4 (𝐶 ∈ ℝ → (𝐶 ∈ ℝ ↔ -𝐶 ∈ ℝ))
433ad2ant3 1023 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐶 ∈ ℝ ↔ -𝐶 ∈ ℝ))
5 ancom 266 . . . 4 ((𝐶𝐵𝐴𝐶) ↔ (𝐴𝐶𝐶𝐵))
6 leneg 8538 . . . . . . 7 ((𝐶 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐶𝐵 ↔ -𝐵 ≤ -𝐶))
76ancoms 268 . . . . . 6 ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐶𝐵 ↔ -𝐵 ≤ -𝐶))
873adant1 1018 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐶𝐵 ↔ -𝐵 ≤ -𝐶))
9 leneg 8538 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴𝐶 ↔ -𝐶 ≤ -𝐴))
1093adant2 1019 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴𝐶 ↔ -𝐶 ≤ -𝐴))
118, 10anbi12d 473 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐶𝐵𝐴𝐶) ↔ (-𝐵 ≤ -𝐶 ∧ -𝐶 ≤ -𝐴)))
125, 11bitr3id 194 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴𝐶𝐶𝐵) ↔ (-𝐵 ≤ -𝐶 ∧ -𝐶 ≤ -𝐴)))
134, 12anbi12d 473 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐶 ∈ ℝ ∧ (𝐴𝐶𝐶𝐵)) ↔ (-𝐶 ∈ ℝ ∧ (-𝐵 ≤ -𝐶 ∧ -𝐶 ≤ -𝐴))))
14 elicc2 10060 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐶 ∈ (𝐴[,]𝐵) ↔ (𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶𝐵)))
15143adant3 1020 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐶 ∈ (𝐴[,]𝐵) ↔ (𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶𝐵)))
16 3anass 985 . . 3 ((𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶𝐵) ↔ (𝐶 ∈ ℝ ∧ (𝐴𝐶𝐶𝐵)))
1715, 16bitrdi 196 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐶 ∈ (𝐴[,]𝐵) ↔ (𝐶 ∈ ℝ ∧ (𝐴𝐶𝐶𝐵))))
18 renegcl 8333 . . . . 5 (𝐵 ∈ ℝ → -𝐵 ∈ ℝ)
19 renegcl 8333 . . . . 5 (𝐴 ∈ ℝ → -𝐴 ∈ ℝ)
20 elicc2 10060 . . . . 5 ((-𝐵 ∈ ℝ ∧ -𝐴 ∈ ℝ) → (-𝐶 ∈ (-𝐵[,]-𝐴) ↔ (-𝐶 ∈ ℝ ∧ -𝐵 ≤ -𝐶 ∧ -𝐶 ≤ -𝐴)))
2118, 19, 20syl2anr 290 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (-𝐶 ∈ (-𝐵[,]-𝐴) ↔ (-𝐶 ∈ ℝ ∧ -𝐵 ≤ -𝐶 ∧ -𝐶 ≤ -𝐴)))
22213adant3 1020 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (-𝐶 ∈ (-𝐵[,]-𝐴) ↔ (-𝐶 ∈ ℝ ∧ -𝐵 ≤ -𝐶 ∧ -𝐶 ≤ -𝐴)))
23 3anass 985 . . 3 ((-𝐶 ∈ ℝ ∧ -𝐵 ≤ -𝐶 ∧ -𝐶 ≤ -𝐴) ↔ (-𝐶 ∈ ℝ ∧ (-𝐵 ≤ -𝐶 ∧ -𝐶 ≤ -𝐴)))
2422, 23bitrdi 196 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (-𝐶 ∈ (-𝐵[,]-𝐴) ↔ (-𝐶 ∈ ℝ ∧ (-𝐵 ≤ -𝐶 ∧ -𝐶 ≤ -𝐴))))
2513, 17, 243bitr4d 220 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐶 ∈ (𝐴[,]𝐵) ↔ -𝐶 ∈ (-𝐵[,]-𝐴)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 981  wcel 2176   class class class wbr 4044  (class class class)co 5944  cr 7924  cle 8108  -cneg 8244  [,]cicc 10013
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-cnex 8016  ax-resscn 8017  ax-1cn 8018  ax-1re 8019  ax-icn 8020  ax-addcl 8021  ax-addrcl 8022  ax-mulcl 8023  ax-addcom 8025  ax-addass 8027  ax-distr 8029  ax-i2m1 8030  ax-0id 8033  ax-rnegex 8034  ax-cnre 8036  ax-pre-ltirr 8037  ax-pre-ltwlin 8038  ax-pre-lttrn 8039  ax-pre-ltadd 8041
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rab 2493  df-v 2774  df-sbc 2999  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-br 4045  df-opab 4106  df-id 4340  df-po 4343  df-iso 4344  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-iota 5232  df-fun 5273  df-fv 5279  df-riota 5899  df-ov 5947  df-oprab 5948  df-mpo 5949  df-pnf 8109  df-mnf 8110  df-xr 8111  df-ltxr 8112  df-le 8113  df-sub 8245  df-neg 8246  df-icc 10017
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator