ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iccneg GIF version

Theorem iccneg 9712
Description: Membership in a negated closed real interval. (Contributed by Paul Chapman, 26-Nov-2007.)
Assertion
Ref Expression
iccneg ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐶 ∈ (𝐴[,]𝐵) ↔ -𝐶 ∈ (-𝐵[,]-𝐴)))

Proof of Theorem iccneg
StepHypRef Expression
1 renegcl 7987 . . . . 5 (𝐶 ∈ ℝ → -𝐶 ∈ ℝ)
2 ax-1 6 . . . . 5 (𝐶 ∈ ℝ → (-𝐶 ∈ ℝ → 𝐶 ∈ ℝ))
31, 2impbid2 142 . . . 4 (𝐶 ∈ ℝ → (𝐶 ∈ ℝ ↔ -𝐶 ∈ ℝ))
433ad2ant3 987 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐶 ∈ ℝ ↔ -𝐶 ∈ ℝ))
5 ancom 264 . . . 4 ((𝐶𝐵𝐴𝐶) ↔ (𝐴𝐶𝐶𝐵))
6 leneg 8191 . . . . . . 7 ((𝐶 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐶𝐵 ↔ -𝐵 ≤ -𝐶))
76ancoms 266 . . . . . 6 ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐶𝐵 ↔ -𝐵 ≤ -𝐶))
873adant1 982 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐶𝐵 ↔ -𝐵 ≤ -𝐶))
9 leneg 8191 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴𝐶 ↔ -𝐶 ≤ -𝐴))
1093adant2 983 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴𝐶 ↔ -𝐶 ≤ -𝐴))
118, 10anbi12d 462 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐶𝐵𝐴𝐶) ↔ (-𝐵 ≤ -𝐶 ∧ -𝐶 ≤ -𝐴)))
125, 11syl5bbr 193 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴𝐶𝐶𝐵) ↔ (-𝐵 ≤ -𝐶 ∧ -𝐶 ≤ -𝐴)))
134, 12anbi12d 462 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐶 ∈ ℝ ∧ (𝐴𝐶𝐶𝐵)) ↔ (-𝐶 ∈ ℝ ∧ (-𝐵 ≤ -𝐶 ∧ -𝐶 ≤ -𝐴))))
14 elicc2 9661 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐶 ∈ (𝐴[,]𝐵) ↔ (𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶𝐵)))
15143adant3 984 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐶 ∈ (𝐴[,]𝐵) ↔ (𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶𝐵)))
16 3anass 949 . . 3 ((𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶𝐵) ↔ (𝐶 ∈ ℝ ∧ (𝐴𝐶𝐶𝐵)))
1715, 16syl6bb 195 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐶 ∈ (𝐴[,]𝐵) ↔ (𝐶 ∈ ℝ ∧ (𝐴𝐶𝐶𝐵))))
18 renegcl 7987 . . . . 5 (𝐵 ∈ ℝ → -𝐵 ∈ ℝ)
19 renegcl 7987 . . . . 5 (𝐴 ∈ ℝ → -𝐴 ∈ ℝ)
20 elicc2 9661 . . . . 5 ((-𝐵 ∈ ℝ ∧ -𝐴 ∈ ℝ) → (-𝐶 ∈ (-𝐵[,]-𝐴) ↔ (-𝐶 ∈ ℝ ∧ -𝐵 ≤ -𝐶 ∧ -𝐶 ≤ -𝐴)))
2118, 19, 20syl2anr 286 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (-𝐶 ∈ (-𝐵[,]-𝐴) ↔ (-𝐶 ∈ ℝ ∧ -𝐵 ≤ -𝐶 ∧ -𝐶 ≤ -𝐴)))
22213adant3 984 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (-𝐶 ∈ (-𝐵[,]-𝐴) ↔ (-𝐶 ∈ ℝ ∧ -𝐵 ≤ -𝐶 ∧ -𝐶 ≤ -𝐴)))
23 3anass 949 . . 3 ((-𝐶 ∈ ℝ ∧ -𝐵 ≤ -𝐶 ∧ -𝐶 ≤ -𝐴) ↔ (-𝐶 ∈ ℝ ∧ (-𝐵 ≤ -𝐶 ∧ -𝐶 ≤ -𝐴)))
2422, 23syl6bb 195 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (-𝐶 ∈ (-𝐵[,]-𝐴) ↔ (-𝐶 ∈ ℝ ∧ (-𝐵 ≤ -𝐶 ∧ -𝐶 ≤ -𝐴))))
2513, 17, 243bitr4d 219 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐶 ∈ (𝐴[,]𝐵) ↔ -𝐶 ∈ (-𝐵[,]-𝐴)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  w3a 945  wcel 1463   class class class wbr 3897  (class class class)co 5740  cr 7583  cle 7765  -cneg 7898  [,]cicc 9614
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 586  ax-in2 587  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-13 1474  ax-14 1475  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097  ax-sep 4014  ax-pow 4066  ax-pr 4099  ax-un 4323  ax-setind 4420  ax-cnex 7675  ax-resscn 7676  ax-1cn 7677  ax-1re 7678  ax-icn 7679  ax-addcl 7680  ax-addrcl 7681  ax-mulcl 7682  ax-addcom 7684  ax-addass 7686  ax-distr 7688  ax-i2m1 7689  ax-0id 7692  ax-rnegex 7693  ax-cnre 7695  ax-pre-ltirr 7696  ax-pre-ltwlin 7697  ax-pre-lttrn 7698  ax-pre-ltadd 7700
This theorem depends on definitions:  df-bi 116  df-3or 946  df-3an 947  df-tru 1317  df-fal 1320  df-nf 1420  df-sb 1719  df-eu 1978  df-mo 1979  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2245  df-ne 2284  df-nel 2379  df-ral 2396  df-rex 2397  df-reu 2398  df-rab 2400  df-v 2660  df-sbc 2881  df-dif 3041  df-un 3043  df-in 3045  df-ss 3052  df-pw 3480  df-sn 3501  df-pr 3502  df-op 3504  df-uni 3705  df-br 3898  df-opab 3958  df-id 4183  df-po 4186  df-iso 4187  df-xp 4513  df-rel 4514  df-cnv 4515  df-co 4516  df-dm 4517  df-iota 5056  df-fun 5093  df-fv 5099  df-riota 5696  df-ov 5743  df-oprab 5744  df-mpo 5745  df-pnf 7766  df-mnf 7767  df-xr 7768  df-ltxr 7769  df-le 7770  df-sub 7899  df-neg 7900  df-icc 9618
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator