ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  divides GIF version

Theorem divides 11954
Description: Define the divides relation. 𝑀𝑁 means 𝑀 divides into 𝑁 with no remainder. For example, 3 ∥ 6 (ex-dvds 15376). As proven in dvdsval3 11956, 𝑀𝑁 ↔ (𝑁 mod 𝑀) = 0. See divides 11954 and dvdsval2 11955 for other equivalent expressions. (Contributed by Paul Chapman, 21-Mar-2011.)
Assertion
Ref Expression
divides ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀𝑁 ↔ ∃𝑛 ∈ ℤ (𝑛 · 𝑀) = 𝑁))
Distinct variable groups:   𝑛,𝑀   𝑛,𝑁

Proof of Theorem divides
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-br 4034 . . 3 (𝑀𝑁 ↔ ⟨𝑀, 𝑁⟩ ∈ ∥ )
2 df-dvds 11953 . . . 4 ∥ = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ ∃𝑛 ∈ ℤ (𝑛 · 𝑥) = 𝑦)}
32eleq2i 2263 . . 3 (⟨𝑀, 𝑁⟩ ∈ ∥ ↔ ⟨𝑀, 𝑁⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ ∃𝑛 ∈ ℤ (𝑛 · 𝑥) = 𝑦)})
41, 3bitri 184 . 2 (𝑀𝑁 ↔ ⟨𝑀, 𝑁⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ ∃𝑛 ∈ ℤ (𝑛 · 𝑥) = 𝑦)})
5 oveq2 5930 . . . . 5 (𝑥 = 𝑀 → (𝑛 · 𝑥) = (𝑛 · 𝑀))
65eqeq1d 2205 . . . 4 (𝑥 = 𝑀 → ((𝑛 · 𝑥) = 𝑦 ↔ (𝑛 · 𝑀) = 𝑦))
76rexbidv 2498 . . 3 (𝑥 = 𝑀 → (∃𝑛 ∈ ℤ (𝑛 · 𝑥) = 𝑦 ↔ ∃𝑛 ∈ ℤ (𝑛 · 𝑀) = 𝑦))
8 eqeq2 2206 . . . 4 (𝑦 = 𝑁 → ((𝑛 · 𝑀) = 𝑦 ↔ (𝑛 · 𝑀) = 𝑁))
98rexbidv 2498 . . 3 (𝑦 = 𝑁 → (∃𝑛 ∈ ℤ (𝑛 · 𝑀) = 𝑦 ↔ ∃𝑛 ∈ ℤ (𝑛 · 𝑀) = 𝑁))
107, 9opelopab2 4305 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (⟨𝑀, 𝑁⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ ∃𝑛 ∈ ℤ (𝑛 · 𝑥) = 𝑦)} ↔ ∃𝑛 ∈ ℤ (𝑛 · 𝑀) = 𝑁))
114, 10bitrid 192 1 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀𝑁 ↔ ∃𝑛 ∈ ℤ (𝑛 · 𝑀) = 𝑁))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1364  wcel 2167  wrex 2476  cop 3625   class class class wbr 4033  {copab 4093  (class class class)co 5922   · cmul 7884  cz 9326  cdvds 11952
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-rex 2481  df-v 2765  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-br 4034  df-opab 4095  df-iota 5219  df-fv 5266  df-ov 5925  df-dvds 11953
This theorem is referenced by:  dvdsval2  11955  dvds0lem  11966  dvds1lem  11967  dvds2lem  11968  0dvds  11976  dvdsle  12009  divconjdvds  12014  odd2np1  12038  even2n  12039  oddm1even  12040  opeo  12062  omeo  12063  m1exp1  12066  divalgb  12090  modremain  12094  zeqzmulgcd  12137  gcddiv  12186  dvdssqim  12191  coprmdvds2  12261  congr  12268  divgcdcoprm0  12269  cncongr2  12272  dvdsnprmd  12293  prmpwdvds  12524  lgsquadlem2  15319
  Copyright terms: Public domain W3C validator