ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  divides GIF version

Theorem divides 11973
Description: Define the divides relation. 𝑀𝑁 means 𝑀 divides into 𝑁 with no remainder. For example, 3 ∥ 6 (ex-dvds 15462). As proven in dvdsval3 11975, 𝑀𝑁 ↔ (𝑁 mod 𝑀) = 0. See divides 11973 and dvdsval2 11974 for other equivalent expressions. (Contributed by Paul Chapman, 21-Mar-2011.)
Assertion
Ref Expression
divides ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀𝑁 ↔ ∃𝑛 ∈ ℤ (𝑛 · 𝑀) = 𝑁))
Distinct variable groups:   𝑛,𝑀   𝑛,𝑁

Proof of Theorem divides
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-br 4035 . . 3 (𝑀𝑁 ↔ ⟨𝑀, 𝑁⟩ ∈ ∥ )
2 df-dvds 11972 . . . 4 ∥ = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ ∃𝑛 ∈ ℤ (𝑛 · 𝑥) = 𝑦)}
32eleq2i 2263 . . 3 (⟨𝑀, 𝑁⟩ ∈ ∥ ↔ ⟨𝑀, 𝑁⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ ∃𝑛 ∈ ℤ (𝑛 · 𝑥) = 𝑦)})
41, 3bitri 184 . 2 (𝑀𝑁 ↔ ⟨𝑀, 𝑁⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ ∃𝑛 ∈ ℤ (𝑛 · 𝑥) = 𝑦)})
5 oveq2 5933 . . . . 5 (𝑥 = 𝑀 → (𝑛 · 𝑥) = (𝑛 · 𝑀))
65eqeq1d 2205 . . . 4 (𝑥 = 𝑀 → ((𝑛 · 𝑥) = 𝑦 ↔ (𝑛 · 𝑀) = 𝑦))
76rexbidv 2498 . . 3 (𝑥 = 𝑀 → (∃𝑛 ∈ ℤ (𝑛 · 𝑥) = 𝑦 ↔ ∃𝑛 ∈ ℤ (𝑛 · 𝑀) = 𝑦))
8 eqeq2 2206 . . . 4 (𝑦 = 𝑁 → ((𝑛 · 𝑀) = 𝑦 ↔ (𝑛 · 𝑀) = 𝑁))
98rexbidv 2498 . . 3 (𝑦 = 𝑁 → (∃𝑛 ∈ ℤ (𝑛 · 𝑀) = 𝑦 ↔ ∃𝑛 ∈ ℤ (𝑛 · 𝑀) = 𝑁))
107, 9opelopab2 4306 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (⟨𝑀, 𝑁⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ ∃𝑛 ∈ ℤ (𝑛 · 𝑥) = 𝑦)} ↔ ∃𝑛 ∈ ℤ (𝑛 · 𝑀) = 𝑁))
114, 10bitrid 192 1 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀𝑁 ↔ ∃𝑛 ∈ ℤ (𝑛 · 𝑀) = 𝑁))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1364  wcel 2167  wrex 2476  cop 3626   class class class wbr 4034  {copab 4094  (class class class)co 5925   · cmul 7903  cz 9345  cdvds 11971
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-rex 2481  df-v 2765  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-br 4035  df-opab 4096  df-iota 5220  df-fv 5267  df-ov 5928  df-dvds 11972
This theorem is referenced by:  dvdsval2  11974  dvds0lem  11985  dvds1lem  11986  dvds2lem  11987  0dvds  11995  dvdsle  12028  divconjdvds  12033  odd2np1  12057  even2n  12058  oddm1even  12059  opeo  12081  omeo  12082  m1exp1  12085  divalgb  12109  modremain  12113  zeqzmulgcd  12164  gcddiv  12213  dvdssqim  12218  coprmdvds2  12288  congr  12295  divgcdcoprm0  12296  cncongr2  12299  dvdsnprmd  12320  prmpwdvds  12551  lgsquadlem2  15405
  Copyright terms: Public domain W3C validator