Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > divides | GIF version |
Description: Define the divides relation. 𝑀 ∥ 𝑁 means 𝑀 divides into 𝑁 with no remainder. For example, 3 ∥ 6 (ex-dvds 13765). As proven in dvdsval3 11753, 𝑀 ∥ 𝑁 ↔ (𝑁 mod 𝑀) = 0. See divides 11751 and dvdsval2 11752 for other equivalent expressions. (Contributed by Paul Chapman, 21-Mar-2011.) |
Ref | Expression |
---|---|
divides | ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ∥ 𝑁 ↔ ∃𝑛 ∈ ℤ (𝑛 · 𝑀) = 𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-br 3990 | . . 3 ⊢ (𝑀 ∥ 𝑁 ↔ 〈𝑀, 𝑁〉 ∈ ∥ ) | |
2 | df-dvds 11750 | . . . 4 ⊢ ∥ = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ ∃𝑛 ∈ ℤ (𝑛 · 𝑥) = 𝑦)} | |
3 | 2 | eleq2i 2237 | . . 3 ⊢ (〈𝑀, 𝑁〉 ∈ ∥ ↔ 〈𝑀, 𝑁〉 ∈ {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ ∃𝑛 ∈ ℤ (𝑛 · 𝑥) = 𝑦)}) |
4 | 1, 3 | bitri 183 | . 2 ⊢ (𝑀 ∥ 𝑁 ↔ 〈𝑀, 𝑁〉 ∈ {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ ∃𝑛 ∈ ℤ (𝑛 · 𝑥) = 𝑦)}) |
5 | oveq2 5861 | . . . . 5 ⊢ (𝑥 = 𝑀 → (𝑛 · 𝑥) = (𝑛 · 𝑀)) | |
6 | 5 | eqeq1d 2179 | . . . 4 ⊢ (𝑥 = 𝑀 → ((𝑛 · 𝑥) = 𝑦 ↔ (𝑛 · 𝑀) = 𝑦)) |
7 | 6 | rexbidv 2471 | . . 3 ⊢ (𝑥 = 𝑀 → (∃𝑛 ∈ ℤ (𝑛 · 𝑥) = 𝑦 ↔ ∃𝑛 ∈ ℤ (𝑛 · 𝑀) = 𝑦)) |
8 | eqeq2 2180 | . . . 4 ⊢ (𝑦 = 𝑁 → ((𝑛 · 𝑀) = 𝑦 ↔ (𝑛 · 𝑀) = 𝑁)) | |
9 | 8 | rexbidv 2471 | . . 3 ⊢ (𝑦 = 𝑁 → (∃𝑛 ∈ ℤ (𝑛 · 𝑀) = 𝑦 ↔ ∃𝑛 ∈ ℤ (𝑛 · 𝑀) = 𝑁)) |
10 | 7, 9 | opelopab2 4255 | . 2 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (〈𝑀, 𝑁〉 ∈ {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ ∃𝑛 ∈ ℤ (𝑛 · 𝑥) = 𝑦)} ↔ ∃𝑛 ∈ ℤ (𝑛 · 𝑀) = 𝑁)) |
11 | 4, 10 | syl5bb 191 | 1 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ∥ 𝑁 ↔ ∃𝑛 ∈ ℤ (𝑛 · 𝑀) = 𝑁)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 = wceq 1348 ∈ wcel 2141 ∃wrex 2449 〈cop 3586 class class class wbr 3989 {copab 4049 (class class class)co 5853 · cmul 7779 ℤcz 9212 ∥ cdvds 11749 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-rex 2454 df-v 2732 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-opab 4051 df-iota 5160 df-fv 5206 df-ov 5856 df-dvds 11750 |
This theorem is referenced by: dvdsval2 11752 dvds0lem 11763 dvds1lem 11764 dvds2lem 11765 0dvds 11773 dvdsle 11804 divconjdvds 11809 odd2np1 11832 even2n 11833 oddm1even 11834 opeo 11856 omeo 11857 m1exp1 11860 divalgb 11884 modremain 11888 zeqzmulgcd 11925 gcddiv 11974 dvdssqim 11979 coprmdvds2 12047 congr 12054 divgcdcoprm0 12055 cncongr2 12058 dvdsnprmd 12079 prmpwdvds 12307 |
Copyright terms: Public domain | W3C validator |