| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > divides | GIF version | ||
| Description: Define the divides relation. 𝑀 ∥ 𝑁 means 𝑀 divides into 𝑁 with no remainder. For example, 3 ∥ 6 (ex-dvds 16118). As proven in dvdsval3 12310, 𝑀 ∥ 𝑁 ↔ (𝑁 mod 𝑀) = 0. See divides 12308 and dvdsval2 12309 for other equivalent expressions. (Contributed by Paul Chapman, 21-Mar-2011.) |
| Ref | Expression |
|---|---|
| divides | ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ∥ 𝑁 ↔ ∃𝑛 ∈ ℤ (𝑛 · 𝑀) = 𝑁)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-br 4084 | . . 3 ⊢ (𝑀 ∥ 𝑁 ↔ 〈𝑀, 𝑁〉 ∈ ∥ ) | |
| 2 | df-dvds 12307 | . . . 4 ⊢ ∥ = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ ∃𝑛 ∈ ℤ (𝑛 · 𝑥) = 𝑦)} | |
| 3 | 2 | eleq2i 2296 | . . 3 ⊢ (〈𝑀, 𝑁〉 ∈ ∥ ↔ 〈𝑀, 𝑁〉 ∈ {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ ∃𝑛 ∈ ℤ (𝑛 · 𝑥) = 𝑦)}) |
| 4 | 1, 3 | bitri 184 | . 2 ⊢ (𝑀 ∥ 𝑁 ↔ 〈𝑀, 𝑁〉 ∈ {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ ∃𝑛 ∈ ℤ (𝑛 · 𝑥) = 𝑦)}) |
| 5 | oveq2 6015 | . . . . 5 ⊢ (𝑥 = 𝑀 → (𝑛 · 𝑥) = (𝑛 · 𝑀)) | |
| 6 | 5 | eqeq1d 2238 | . . . 4 ⊢ (𝑥 = 𝑀 → ((𝑛 · 𝑥) = 𝑦 ↔ (𝑛 · 𝑀) = 𝑦)) |
| 7 | 6 | rexbidv 2531 | . . 3 ⊢ (𝑥 = 𝑀 → (∃𝑛 ∈ ℤ (𝑛 · 𝑥) = 𝑦 ↔ ∃𝑛 ∈ ℤ (𝑛 · 𝑀) = 𝑦)) |
| 8 | eqeq2 2239 | . . . 4 ⊢ (𝑦 = 𝑁 → ((𝑛 · 𝑀) = 𝑦 ↔ (𝑛 · 𝑀) = 𝑁)) | |
| 9 | 8 | rexbidv 2531 | . . 3 ⊢ (𝑦 = 𝑁 → (∃𝑛 ∈ ℤ (𝑛 · 𝑀) = 𝑦 ↔ ∃𝑛 ∈ ℤ (𝑛 · 𝑀) = 𝑁)) |
| 10 | 7, 9 | opelopab2 4359 | . 2 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (〈𝑀, 𝑁〉 ∈ {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ ∃𝑛 ∈ ℤ (𝑛 · 𝑥) = 𝑦)} ↔ ∃𝑛 ∈ ℤ (𝑛 · 𝑀) = 𝑁)) |
| 11 | 4, 10 | bitrid 192 | 1 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ∥ 𝑁 ↔ ∃𝑛 ∈ ℤ (𝑛 · 𝑀) = 𝑁)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1395 ∈ wcel 2200 ∃wrex 2509 〈cop 3669 class class class wbr 4083 {copab 4144 (class class class)co 6007 · cmul 8012 ℤcz 9454 ∥ cdvds 12306 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-rex 2514 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-br 4084 df-opab 4146 df-iota 5278 df-fv 5326 df-ov 6010 df-dvds 12307 |
| This theorem is referenced by: dvdsval2 12309 dvds0lem 12320 dvds1lem 12321 dvds2lem 12322 0dvds 12330 dvdsle 12363 divconjdvds 12368 odd2np1 12392 even2n 12393 oddm1even 12394 opeo 12416 omeo 12417 m1exp1 12420 divalgb 12444 modremain 12448 zeqzmulgcd 12499 gcddiv 12548 dvdssqim 12553 coprmdvds2 12623 congr 12630 divgcdcoprm0 12631 cncongr2 12634 dvdsnprmd 12655 prmpwdvds 12886 lgsquadlem2 15765 |
| Copyright terms: Public domain | W3C validator |