![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > divides | GIF version |
Description: Define the divides relation. ๐ โฅ ๐ means ๐ divides into ๐ with no remainder. For example, 3 โฅ 6 (ex-dvds 14886). As proven in dvdsval3 11818, ๐ โฅ ๐ โ (๐ mod ๐) = 0. See divides 11816 and dvdsval2 11817 for other equivalent expressions. (Contributed by Paul Chapman, 21-Mar-2011.) |
Ref | Expression |
---|---|
divides | โข ((๐ โ โค โง ๐ โ โค) โ (๐ โฅ ๐ โ โ๐ โ โค (๐ ยท ๐) = ๐)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-br 4019 | . . 3 โข (๐ โฅ ๐ โ โจ๐, ๐โฉ โ โฅ ) | |
2 | df-dvds 11815 | . . . 4 โข โฅ = {โจ๐ฅ, ๐ฆโฉ โฃ ((๐ฅ โ โค โง ๐ฆ โ โค) โง โ๐ โ โค (๐ ยท ๐ฅ) = ๐ฆ)} | |
3 | 2 | eleq2i 2256 | . . 3 โข (โจ๐, ๐โฉ โ โฅ โ โจ๐, ๐โฉ โ {โจ๐ฅ, ๐ฆโฉ โฃ ((๐ฅ โ โค โง ๐ฆ โ โค) โง โ๐ โ โค (๐ ยท ๐ฅ) = ๐ฆ)}) |
4 | 1, 3 | bitri 184 | . 2 โข (๐ โฅ ๐ โ โจ๐, ๐โฉ โ {โจ๐ฅ, ๐ฆโฉ โฃ ((๐ฅ โ โค โง ๐ฆ โ โค) โง โ๐ โ โค (๐ ยท ๐ฅ) = ๐ฆ)}) |
5 | oveq2 5900 | . . . . 5 โข (๐ฅ = ๐ โ (๐ ยท ๐ฅ) = (๐ ยท ๐)) | |
6 | 5 | eqeq1d 2198 | . . . 4 โข (๐ฅ = ๐ โ ((๐ ยท ๐ฅ) = ๐ฆ โ (๐ ยท ๐) = ๐ฆ)) |
7 | 6 | rexbidv 2491 | . . 3 โข (๐ฅ = ๐ โ (โ๐ โ โค (๐ ยท ๐ฅ) = ๐ฆ โ โ๐ โ โค (๐ ยท ๐) = ๐ฆ)) |
8 | eqeq2 2199 | . . . 4 โข (๐ฆ = ๐ โ ((๐ ยท ๐) = ๐ฆ โ (๐ ยท ๐) = ๐)) | |
9 | 8 | rexbidv 2491 | . . 3 โข (๐ฆ = ๐ โ (โ๐ โ โค (๐ ยท ๐) = ๐ฆ โ โ๐ โ โค (๐ ยท ๐) = ๐)) |
10 | 7, 9 | opelopab2 4285 | . 2 โข ((๐ โ โค โง ๐ โ โค) โ (โจ๐, ๐โฉ โ {โจ๐ฅ, ๐ฆโฉ โฃ ((๐ฅ โ โค โง ๐ฆ โ โค) โง โ๐ โ โค (๐ ยท ๐ฅ) = ๐ฆ)} โ โ๐ โ โค (๐ ยท ๐) = ๐)) |
11 | 4, 10 | bitrid 192 | 1 โข ((๐ โ โค โง ๐ โ โค) โ (๐ โฅ ๐ โ โ๐ โ โค (๐ ยท ๐) = ๐)) |
Colors of variables: wff set class |
Syntax hints: โ wi 4 โง wa 104 โ wb 105 = wceq 1364 โ wcel 2160 โwrex 2469 โจcop 3610 class class class wbr 4018 {copab 4078 (class class class)co 5892 ยท cmul 7836 โคcz 9273 โฅ cdvds 11814 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2163 ax-ext 2171 ax-sep 4136 ax-pow 4189 ax-pr 4224 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2041 df-mo 2042 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-rex 2474 df-v 2754 df-un 3148 df-in 3150 df-ss 3157 df-pw 3592 df-sn 3613 df-pr 3614 df-op 3616 df-uni 3825 df-br 4019 df-opab 4080 df-iota 5193 df-fv 5240 df-ov 5895 df-dvds 11815 |
This theorem is referenced by: dvdsval2 11817 dvds0lem 11828 dvds1lem 11829 dvds2lem 11830 0dvds 11838 dvdsle 11870 divconjdvds 11875 odd2np1 11898 even2n 11899 oddm1even 11900 opeo 11922 omeo 11923 m1exp1 11926 divalgb 11950 modremain 11954 zeqzmulgcd 11991 gcddiv 12040 dvdssqim 12045 coprmdvds2 12113 congr 12120 divgcdcoprm0 12121 cncongr2 12124 dvdsnprmd 12145 prmpwdvds 12373 |
Copyright terms: Public domain | W3C validator |