ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  modm1div GIF version

Theorem modm1div 11984
Description: An integer greater than one divides another integer minus one iff the second integer modulo the first integer is one. (Contributed by AV, 30-May-2023.)
Assertion
Ref Expression
modm1div ((𝑁 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℤ) → ((𝐴 mod 𝑁) = 1 ↔ 𝑁 ∥ (𝐴 − 1)))

Proof of Theorem modm1div
StepHypRef Expression
1 eluzelz 9629 . . . . 5 (𝑁 ∈ (ℤ‘2) → 𝑁 ∈ ℤ)
2 zq 9719 . . . . 5 (𝑁 ∈ ℤ → 𝑁 ∈ ℚ)
31, 2syl 14 . . . 4 (𝑁 ∈ (ℤ‘2) → 𝑁 ∈ ℚ)
4 eluz2gt1 9695 . . . . 5 (𝑁 ∈ (ℤ‘2) → 1 < 𝑁)
54adantr 276 . . . 4 ((𝑁 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℤ) → 1 < 𝑁)
6 q1mod 10467 . . . . 5 ((𝑁 ∈ ℚ ∧ 1 < 𝑁) → (1 mod 𝑁) = 1)
76eqcomd 2202 . . . 4 ((𝑁 ∈ ℚ ∧ 1 < 𝑁) → 1 = (1 mod 𝑁))
83, 5, 7syl2an2r 595 . . 3 ((𝑁 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℤ) → 1 = (1 mod 𝑁))
98eqeq2d 2208 . 2 ((𝑁 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℤ) → ((𝐴 mod 𝑁) = 1 ↔ (𝐴 mod 𝑁) = (1 mod 𝑁)))
10 eluz2nn 9659 . . . 4 (𝑁 ∈ (ℤ‘2) → 𝑁 ∈ ℕ)
1110adantr 276 . . 3 ((𝑁 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℤ) → 𝑁 ∈ ℕ)
12 simpr 110 . . 3 ((𝑁 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℤ) → 𝐴 ∈ ℤ)
13 1zzd 9372 . . 3 ((𝑁 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℤ) → 1 ∈ ℤ)
14 moddvds 11983 . . 3 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ 1 ∈ ℤ) → ((𝐴 mod 𝑁) = (1 mod 𝑁) ↔ 𝑁 ∥ (𝐴 − 1)))
1511, 12, 13, 14syl3anc 1249 . 2 ((𝑁 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℤ) → ((𝐴 mod 𝑁) = (1 mod 𝑁) ↔ 𝑁 ∥ (𝐴 − 1)))
169, 15bitrd 188 1 ((𝑁 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℤ) → ((𝐴 mod 𝑁) = 1 ↔ 𝑁 ∥ (𝐴 − 1)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1364  wcel 2167   class class class wbr 4034  cfv 5259  (class class class)co 5925  1c1 7899   < clt 8080  cmin 8216  cn 9009  2c2 9060  cz 9345  cuz 9620  cq 9712   mod cmo 10433  cdvds 11971
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7989  ax-resscn 7990  ax-1cn 7991  ax-1re 7992  ax-icn 7993  ax-addcl 7994  ax-addrcl 7995  ax-mulcl 7996  ax-mulrcl 7997  ax-addcom 7998  ax-mulcom 7999  ax-addass 8000  ax-mulass 8001  ax-distr 8002  ax-i2m1 8003  ax-0lt1 8004  ax-1rid 8005  ax-0id 8006  ax-rnegex 8007  ax-precex 8008  ax-cnre 8009  ax-pre-ltirr 8010  ax-pre-ltwlin 8011  ax-pre-lttrn 8012  ax-pre-apti 8013  ax-pre-ltadd 8014  ax-pre-mulgt0 8015  ax-pre-mulext 8016  ax-arch 8017
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-po 4332  df-iso 4333  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-pnf 8082  df-mnf 8083  df-xr 8084  df-ltxr 8085  df-le 8086  df-sub 8218  df-neg 8219  df-reap 8621  df-ap 8628  df-div 8719  df-inn 9010  df-2 9068  df-n0 9269  df-z 9346  df-uz 9621  df-q 9713  df-rp 9748  df-fl 10379  df-mod 10434  df-dvds 11972
This theorem is referenced by:  modprm1div  12443
  Copyright terms: Public domain W3C validator