ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  modm1div GIF version

Theorem modm1div 11825
Description: An integer greater than one divides another integer minus one iff the second integer modulo the first integer is one. (Contributed by AV, 30-May-2023.)
Assertion
Ref Expression
modm1div ((𝑁 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℤ) → ((𝐴 mod 𝑁) = 1 ↔ 𝑁 ∥ (𝐴 − 1)))

Proof of Theorem modm1div
StepHypRef Expression
1 eluzelz 9555 . . . . 5 (𝑁 ∈ (ℤ‘2) → 𝑁 ∈ ℤ)
2 zq 9644 . . . . 5 (𝑁 ∈ ℤ → 𝑁 ∈ ℚ)
31, 2syl 14 . . . 4 (𝑁 ∈ (ℤ‘2) → 𝑁 ∈ ℚ)
4 eluz2gt1 9620 . . . . 5 (𝑁 ∈ (ℤ‘2) → 1 < 𝑁)
54adantr 276 . . . 4 ((𝑁 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℤ) → 1 < 𝑁)
6 q1mod 10374 . . . . 5 ((𝑁 ∈ ℚ ∧ 1 < 𝑁) → (1 mod 𝑁) = 1)
76eqcomd 2195 . . . 4 ((𝑁 ∈ ℚ ∧ 1 < 𝑁) → 1 = (1 mod 𝑁))
83, 5, 7syl2an2r 595 . . 3 ((𝑁 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℤ) → 1 = (1 mod 𝑁))
98eqeq2d 2201 . 2 ((𝑁 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℤ) → ((𝐴 mod 𝑁) = 1 ↔ (𝐴 mod 𝑁) = (1 mod 𝑁)))
10 eluz2nn 9584 . . . 4 (𝑁 ∈ (ℤ‘2) → 𝑁 ∈ ℕ)
1110adantr 276 . . 3 ((𝑁 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℤ) → 𝑁 ∈ ℕ)
12 simpr 110 . . 3 ((𝑁 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℤ) → 𝐴 ∈ ℤ)
13 1zzd 9298 . . 3 ((𝑁 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℤ) → 1 ∈ ℤ)
14 moddvds 11824 . . 3 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ 1 ∈ ℤ) → ((𝐴 mod 𝑁) = (1 mod 𝑁) ↔ 𝑁 ∥ (𝐴 − 1)))
1511, 12, 13, 14syl3anc 1249 . 2 ((𝑁 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℤ) → ((𝐴 mod 𝑁) = (1 mod 𝑁) ↔ 𝑁 ∥ (𝐴 − 1)))
169, 15bitrd 188 1 ((𝑁 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℤ) → ((𝐴 mod 𝑁) = 1 ↔ 𝑁 ∥ (𝐴 − 1)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1364  wcel 2160   class class class wbr 4018  cfv 5231  (class class class)co 5891  1c1 7830   < clt 8010  cmin 8146  cn 8937  2c2 8988  cz 9271  cuz 9546  cq 9637   mod cmo 10340  cdvds 11812
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-sep 4136  ax-pow 4189  ax-pr 4224  ax-un 4448  ax-setind 4551  ax-cnex 7920  ax-resscn 7921  ax-1cn 7922  ax-1re 7923  ax-icn 7924  ax-addcl 7925  ax-addrcl 7926  ax-mulcl 7927  ax-mulrcl 7928  ax-addcom 7929  ax-mulcom 7930  ax-addass 7931  ax-mulass 7932  ax-distr 7933  ax-i2m1 7934  ax-0lt1 7935  ax-1rid 7936  ax-0id 7937  ax-rnegex 7938  ax-precex 7939  ax-cnre 7940  ax-pre-ltirr 7941  ax-pre-ltwlin 7942  ax-pre-lttrn 7943  ax-pre-apti 7944  ax-pre-ltadd 7945  ax-pre-mulgt0 7946  ax-pre-mulext 7947  ax-arch 7948
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-reu 2475  df-rmo 2476  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-iun 3903  df-br 4019  df-opab 4080  df-mpt 4081  df-id 4308  df-po 4311  df-iso 4312  df-xp 4647  df-rel 4648  df-cnv 4649  df-co 4650  df-dm 4651  df-rn 4652  df-res 4653  df-ima 4654  df-iota 5193  df-fun 5233  df-fn 5234  df-f 5235  df-fv 5239  df-riota 5847  df-ov 5894  df-oprab 5895  df-mpo 5896  df-1st 6159  df-2nd 6160  df-pnf 8012  df-mnf 8013  df-xr 8014  df-ltxr 8015  df-le 8016  df-sub 8148  df-neg 8149  df-reap 8550  df-ap 8557  df-div 8648  df-inn 8938  df-2 8996  df-n0 9195  df-z 9272  df-uz 9547  df-q 9638  df-rp 9672  df-fl 10288  df-mod 10341  df-dvds 11813
This theorem is referenced by:  modprm1div  12265
  Copyright terms: Public domain W3C validator