Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > oveq12 | GIF version |
Description: Equality theorem for operation value. (Contributed by NM, 16-Jul-1995.) |
Ref | Expression |
---|---|
oveq12 | ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴𝐹𝐶) = (𝐵𝐹𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq1 5849 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴𝐹𝐶) = (𝐵𝐹𝐶)) | |
2 | oveq2 5850 | . 2 ⊢ (𝐶 = 𝐷 → (𝐵𝐹𝐶) = (𝐵𝐹𝐷)) | |
3 | 1, 2 | sylan9eq 2219 | 1 ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴𝐹𝐶) = (𝐵𝐹𝐷)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 = wceq 1343 (class class class)co 5842 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-rex 2450 df-v 2728 df-un 3120 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-iota 5153 df-fv 5196 df-ov 5845 |
This theorem is referenced by: oveq12i 5854 oveq12d 5860 oveqan12d 5861 ecopoveq 6596 ecopovtrn 6598 ecopovtrng 6601 th3qlem1 6603 th3qlem2 6604 mulcmpblnq 7309 addpipqqs 7311 ordpipqqs 7315 enq0breq 7377 mulcmpblnq0 7385 nqpnq0nq 7394 nqnq0a 7395 nqnq0m 7396 nq0m0r 7397 nq0a0 7398 distrlem5prl 7527 distrlem5pru 7528 addcmpblnr 7680 ltsrprg 7688 mulgt0sr 7719 add20 8372 cru 8500 qaddcl 9573 qmulcl 9575 xaddval 9781 xnn0xadd0 9803 fzopth 9996 modqval 10259 seqvalcd 10394 seqovcd 10398 1exp 10484 m1expeven 10502 nn0opthd 10635 faclbnd 10654 faclbnd3 10656 bcn0 10668 reval 10791 absval 10943 clim 11222 fsumparts 11411 dvds2add 11765 dvds2sub 11766 opoe 11832 omoe 11833 opeo 11834 omeo 11835 gcddvds 11896 gcdcl 11899 gcdeq0 11910 gcdneg 11915 gcdaddm 11917 gcdabs 11921 gcddiv 11952 eucalgval2 11985 lcmabs 12008 rpmul 12030 divgcdcoprmex 12034 prmexpb 12083 rpexp 12085 nn0gcdsq 12132 pcqmul 12235 mul4sq 12324 plusfvalg 12594 cnmpt2t 12943 cnmpt22f 12945 hmeofvalg 12953 bdmetval 13150 mul2sq 13602 |
Copyright terms: Public domain | W3C validator |