| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > oveq12 | GIF version | ||
| Description: Equality theorem for operation value. (Contributed by NM, 16-Jul-1995.) |
| Ref | Expression |
|---|---|
| oveq12 | ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴𝐹𝐶) = (𝐵𝐹𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq1 5930 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴𝐹𝐶) = (𝐵𝐹𝐶)) | |
| 2 | oveq2 5931 | . 2 ⊢ (𝐶 = 𝐷 → (𝐵𝐹𝐶) = (𝐵𝐹𝐷)) | |
| 3 | 1, 2 | sylan9eq 2249 | 1 ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴𝐹𝐶) = (𝐵𝐹𝐷)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 (class class class)co 5923 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-rex 2481 df-v 2765 df-un 3161 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-iota 5220 df-fv 5267 df-ov 5926 |
| This theorem is referenced by: oveq12i 5935 oveq12d 5941 oveqan12d 5942 ecopoveq 6690 ecopovtrn 6692 ecopovtrng 6695 th3qlem1 6697 th3qlem2 6698 mulcmpblnq 7437 addpipqqs 7439 ordpipqqs 7443 enq0breq 7505 mulcmpblnq0 7513 nqpnq0nq 7522 nqnq0a 7523 nqnq0m 7524 nq0m0r 7525 nq0a0 7526 distrlem5prl 7655 distrlem5pru 7656 addcmpblnr 7808 ltsrprg 7816 mulgt0sr 7847 add20 8503 cru 8631 qaddcl 9711 qmulcl 9713 xaddval 9922 xnn0xadd0 9944 fzopth 10138 modqval 10418 seqvalcd 10555 seqovcd 10561 1exp 10662 m1expeven 10680 nn0opthd 10816 faclbnd 10835 faclbnd3 10837 bcn0 10849 reval 11016 absval 11168 clim 11448 fsumparts 11637 dvds2add 11992 dvds2sub 11993 opoe 12062 omoe 12063 opeo 12064 omeo 12065 gcddvds 12140 gcdcl 12143 gcdeq0 12154 gcdneg 12159 gcdaddm 12161 gcdabs 12165 gcddiv 12196 eucalgval2 12231 lcmabs 12254 rpmul 12276 divgcdcoprmex 12280 prmexpb 12329 rpexp 12331 nn0gcdsq 12378 pcqmul 12482 mul4sq 12573 f1ocpbl 12964 plusfvalg 13016 0subm 13126 imasabl 13476 ringadd2 13593 dfrhm2 13720 isrhm 13724 isrim0 13727 rhmval 13739 aprval 13848 scafvalg 13873 rmodislmodlem 13916 rmodislmod 13917 lss1d 13949 znidom 14223 cnmpt2t 14539 cnmpt22f 14541 hmeofvalg 14549 bdmetval 14746 plycn 15008 mul2sq 15367 |
| Copyright terms: Public domain | W3C validator |