![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > oveq12 | GIF version |
Description: Equality theorem for operation value. (Contributed by NM, 16-Jul-1995.) |
Ref | Expression |
---|---|
oveq12 | ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴𝐹𝐶) = (𝐵𝐹𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq1 5898 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴𝐹𝐶) = (𝐵𝐹𝐶)) | |
2 | oveq2 5899 | . 2 ⊢ (𝐶 = 𝐷 → (𝐵𝐹𝐶) = (𝐵𝐹𝐷)) | |
3 | 1, 2 | sylan9eq 2242 | 1 ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴𝐹𝐶) = (𝐵𝐹𝐷)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 (class class class)co 5891 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2171 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-rex 2474 df-v 2754 df-un 3148 df-sn 3613 df-pr 3614 df-op 3616 df-uni 3825 df-br 4019 df-iota 5193 df-fv 5239 df-ov 5894 |
This theorem is referenced by: oveq12i 5903 oveq12d 5909 oveqan12d 5910 ecopoveq 6648 ecopovtrn 6650 ecopovtrng 6653 th3qlem1 6655 th3qlem2 6656 mulcmpblnq 7385 addpipqqs 7387 ordpipqqs 7391 enq0breq 7453 mulcmpblnq0 7461 nqpnq0nq 7470 nqnq0a 7471 nqnq0m 7472 nq0m0r 7473 nq0a0 7474 distrlem5prl 7603 distrlem5pru 7604 addcmpblnr 7756 ltsrprg 7764 mulgt0sr 7795 add20 8449 cru 8577 qaddcl 9653 qmulcl 9655 xaddval 9863 xnn0xadd0 9885 fzopth 10079 modqval 10342 seqvalcd 10477 seqovcd 10481 1exp 10567 m1expeven 10585 nn0opthd 10720 faclbnd 10739 faclbnd3 10741 bcn0 10753 reval 10876 absval 11028 clim 11307 fsumparts 11496 dvds2add 11850 dvds2sub 11851 opoe 11918 omoe 11919 opeo 11920 omeo 11921 gcddvds 11982 gcdcl 11985 gcdeq0 11996 gcdneg 12001 gcdaddm 12003 gcdabs 12007 gcddiv 12038 eucalgval2 12071 lcmabs 12094 rpmul 12116 divgcdcoprmex 12120 prmexpb 12169 rpexp 12171 nn0gcdsq 12218 pcqmul 12321 mul4sq 12410 f1ocpbl 12754 plusfvalg 12805 0subm 12902 imasabl 13234 ringadd2 13342 dfrhm2 13465 isrhm 13469 isrim0 13472 rhmval 13484 aprval 13559 scafvalg 13584 rmodislmodlem 13627 rmodislmod 13628 lss1d 13660 cnmpt2t 14190 cnmpt22f 14192 hmeofvalg 14200 bdmetval 14397 mul2sq 14860 |
Copyright terms: Public domain | W3C validator |