| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > oveq12 | GIF version | ||
| Description: Equality theorem for operation value. (Contributed by NM, 16-Jul-1995.) |
| Ref | Expression |
|---|---|
| oveq12 | ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴𝐹𝐶) = (𝐵𝐹𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq1 6008 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴𝐹𝐶) = (𝐵𝐹𝐶)) | |
| 2 | oveq2 6009 | . 2 ⊢ (𝐶 = 𝐷 → (𝐵𝐹𝐶) = (𝐵𝐹𝐷)) | |
| 3 | 1, 2 | sylan9eq 2282 | 1 ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴𝐹𝐶) = (𝐵𝐹𝐷)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1395 (class class class)co 6001 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-rex 2514 df-v 2801 df-un 3201 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-br 4084 df-iota 5278 df-fv 5326 df-ov 6004 |
| This theorem is referenced by: oveq12i 6013 oveq12d 6019 oveqan12d 6020 ecopoveq 6777 ecopovtrn 6779 ecopovtrng 6782 th3qlem1 6784 th3qlem2 6785 mulcmpblnq 7555 addpipqqs 7557 ordpipqqs 7561 enq0breq 7623 mulcmpblnq0 7631 nqpnq0nq 7640 nqnq0a 7641 nqnq0m 7642 nq0m0r 7643 nq0a0 7644 distrlem5prl 7773 distrlem5pru 7774 addcmpblnr 7926 ltsrprg 7934 mulgt0sr 7965 add20 8621 cru 8749 qaddcl 9830 qmulcl 9832 xaddval 10041 xnn0xadd0 10063 fzopth 10257 modqval 10546 seqvalcd 10683 seqovcd 10689 1exp 10790 m1expeven 10808 nn0opthd 10944 faclbnd 10963 faclbnd3 10965 bcn0 10977 ccatopth 11248 ccatopth2 11249 reval 11360 absval 11512 clim 11792 fsumparts 11981 dvds2add 12336 dvds2sub 12337 opoe 12406 omoe 12407 opeo 12408 omeo 12409 gcddvds 12484 gcdcl 12487 gcdeq0 12498 gcdneg 12503 gcdaddm 12505 gcdabs 12509 gcddiv 12540 eucalgval2 12575 lcmabs 12598 rpmul 12620 divgcdcoprmex 12624 prmexpb 12673 rpexp 12675 nn0gcdsq 12722 pcqmul 12826 mul4sq 12917 f1ocpbl 13344 plusfvalg 13396 0subm 13517 imasabl 13873 ringadd2 13990 dfrhm2 14118 isrhm 14122 isrim0 14125 rhmval 14137 aprval 14246 scafvalg 14271 rmodislmodlem 14314 rmodislmod 14315 lss1d 14347 znidom 14621 mplvalcoe 14654 cnmpt2t 14967 cnmpt22f 14969 hmeofvalg 14977 bdmetval 15174 plycn 15436 mul2sq 15795 |
| Copyright terms: Public domain | W3C validator |