Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > oveq12 | GIF version |
Description: Equality theorem for operation value. (Contributed by NM, 16-Jul-1995.) |
Ref | Expression |
---|---|
oveq12 | ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴𝐹𝐶) = (𝐵𝐹𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq1 5860 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴𝐹𝐶) = (𝐵𝐹𝐶)) | |
2 | oveq2 5861 | . 2 ⊢ (𝐶 = 𝐷 → (𝐵𝐹𝐶) = (𝐵𝐹𝐷)) | |
3 | 1, 2 | sylan9eq 2223 | 1 ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴𝐹𝐶) = (𝐵𝐹𝐷)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 = wceq 1348 (class class class)co 5853 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-rex 2454 df-v 2732 df-un 3125 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-iota 5160 df-fv 5206 df-ov 5856 |
This theorem is referenced by: oveq12i 5865 oveq12d 5871 oveqan12d 5872 ecopoveq 6608 ecopovtrn 6610 ecopovtrng 6613 th3qlem1 6615 th3qlem2 6616 mulcmpblnq 7330 addpipqqs 7332 ordpipqqs 7336 enq0breq 7398 mulcmpblnq0 7406 nqpnq0nq 7415 nqnq0a 7416 nqnq0m 7417 nq0m0r 7418 nq0a0 7419 distrlem5prl 7548 distrlem5pru 7549 addcmpblnr 7701 ltsrprg 7709 mulgt0sr 7740 add20 8393 cru 8521 qaddcl 9594 qmulcl 9596 xaddval 9802 xnn0xadd0 9824 fzopth 10017 modqval 10280 seqvalcd 10415 seqovcd 10419 1exp 10505 m1expeven 10523 nn0opthd 10656 faclbnd 10675 faclbnd3 10677 bcn0 10689 reval 10813 absval 10965 clim 11244 fsumparts 11433 dvds2add 11787 dvds2sub 11788 opoe 11854 omoe 11855 opeo 11856 omeo 11857 gcddvds 11918 gcdcl 11921 gcdeq0 11932 gcdneg 11937 gcdaddm 11939 gcdabs 11943 gcddiv 11974 eucalgval2 12007 lcmabs 12030 rpmul 12052 divgcdcoprmex 12056 prmexpb 12105 rpexp 12107 nn0gcdsq 12154 pcqmul 12257 mul4sq 12346 plusfvalg 12617 0subm 12702 cnmpt2t 13087 cnmpt22f 13089 hmeofvalg 13097 bdmetval 13294 mul2sq 13746 |
Copyright terms: Public domain | W3C validator |