| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > oveq12 | GIF version | ||
| Description: Equality theorem for operation value. (Contributed by NM, 16-Jul-1995.) |
| Ref | Expression |
|---|---|
| oveq12 | ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴𝐹𝐶) = (𝐵𝐹𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq1 5929 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴𝐹𝐶) = (𝐵𝐹𝐶)) | |
| 2 | oveq2 5930 | . 2 ⊢ (𝐶 = 𝐷 → (𝐵𝐹𝐶) = (𝐵𝐹𝐷)) | |
| 3 | 1, 2 | sylan9eq 2249 | 1 ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴𝐹𝐶) = (𝐵𝐹𝐷)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 (class class class)co 5922 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-rex 2481 df-v 2765 df-un 3161 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-iota 5219 df-fv 5266 df-ov 5925 |
| This theorem is referenced by: oveq12i 5934 oveq12d 5940 oveqan12d 5941 ecopoveq 6689 ecopovtrn 6691 ecopovtrng 6694 th3qlem1 6696 th3qlem2 6697 mulcmpblnq 7435 addpipqqs 7437 ordpipqqs 7441 enq0breq 7503 mulcmpblnq0 7511 nqpnq0nq 7520 nqnq0a 7521 nqnq0m 7522 nq0m0r 7523 nq0a0 7524 distrlem5prl 7653 distrlem5pru 7654 addcmpblnr 7806 ltsrprg 7814 mulgt0sr 7845 add20 8501 cru 8629 qaddcl 9709 qmulcl 9711 xaddval 9920 xnn0xadd0 9942 fzopth 10136 modqval 10416 seqvalcd 10553 seqovcd 10559 1exp 10660 m1expeven 10678 nn0opthd 10814 faclbnd 10833 faclbnd3 10835 bcn0 10847 reval 11014 absval 11166 clim 11446 fsumparts 11635 dvds2add 11990 dvds2sub 11991 opoe 12060 omoe 12061 opeo 12062 omeo 12063 gcddvds 12130 gcdcl 12133 gcdeq0 12144 gcdneg 12149 gcdaddm 12151 gcdabs 12155 gcddiv 12186 eucalgval2 12221 lcmabs 12244 rpmul 12266 divgcdcoprmex 12270 prmexpb 12319 rpexp 12321 nn0gcdsq 12368 pcqmul 12472 mul4sq 12563 f1ocpbl 12954 plusfvalg 13006 0subm 13116 imasabl 13466 ringadd2 13583 dfrhm2 13710 isrhm 13714 isrim0 13717 rhmval 13729 aprval 13838 scafvalg 13863 rmodislmodlem 13906 rmodislmod 13907 lss1d 13939 znidom 14213 cnmpt2t 14529 cnmpt22f 14531 hmeofvalg 14539 bdmetval 14736 plycn 14998 mul2sq 15357 |
| Copyright terms: Public domain | W3C validator |