| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > oveq12 | GIF version | ||
| Description: Equality theorem for operation value. (Contributed by NM, 16-Jul-1995.) |
| Ref | Expression |
|---|---|
| oveq12 | ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴𝐹𝐶) = (𝐵𝐹𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq1 5932 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴𝐹𝐶) = (𝐵𝐹𝐶)) | |
| 2 | oveq2 5933 | . 2 ⊢ (𝐶 = 𝐷 → (𝐵𝐹𝐶) = (𝐵𝐹𝐷)) | |
| 3 | 1, 2 | sylan9eq 2249 | 1 ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴𝐹𝐶) = (𝐵𝐹𝐷)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 (class class class)co 5925 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-rex 2481 df-v 2765 df-un 3161 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-iota 5220 df-fv 5267 df-ov 5928 |
| This theorem is referenced by: oveq12i 5937 oveq12d 5943 oveqan12d 5944 ecopoveq 6698 ecopovtrn 6700 ecopovtrng 6703 th3qlem1 6705 th3qlem2 6706 mulcmpblnq 7454 addpipqqs 7456 ordpipqqs 7460 enq0breq 7522 mulcmpblnq0 7530 nqpnq0nq 7539 nqnq0a 7540 nqnq0m 7541 nq0m0r 7542 nq0a0 7543 distrlem5prl 7672 distrlem5pru 7673 addcmpblnr 7825 ltsrprg 7833 mulgt0sr 7864 add20 8520 cru 8648 qaddcl 9728 qmulcl 9730 xaddval 9939 xnn0xadd0 9961 fzopth 10155 modqval 10435 seqvalcd 10572 seqovcd 10578 1exp 10679 m1expeven 10697 nn0opthd 10833 faclbnd 10852 faclbnd3 10854 bcn0 10866 reval 11033 absval 11185 clim 11465 fsumparts 11654 dvds2add 12009 dvds2sub 12010 opoe 12079 omoe 12080 opeo 12081 omeo 12082 gcddvds 12157 gcdcl 12160 gcdeq0 12171 gcdneg 12176 gcdaddm 12178 gcdabs 12182 gcddiv 12213 eucalgval2 12248 lcmabs 12271 rpmul 12293 divgcdcoprmex 12297 prmexpb 12346 rpexp 12348 nn0gcdsq 12395 pcqmul 12499 mul4sq 12590 f1ocpbl 13015 plusfvalg 13067 0subm 13188 imasabl 13544 ringadd2 13661 dfrhm2 13788 isrhm 13792 isrim0 13795 rhmval 13807 aprval 13916 scafvalg 13941 rmodislmodlem 13984 rmodislmod 13985 lss1d 14017 znidom 14291 mplvalcoe 14324 cnmpt2t 14637 cnmpt22f 14639 hmeofvalg 14647 bdmetval 14844 plycn 15106 mul2sq 15465 |
| Copyright terms: Public domain | W3C validator |