| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > oveq12 | GIF version | ||
| Description: Equality theorem for operation value. (Contributed by NM, 16-Jul-1995.) |
| Ref | Expression |
|---|---|
| oveq12 | ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴𝐹𝐶) = (𝐵𝐹𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq1 5951 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴𝐹𝐶) = (𝐵𝐹𝐶)) | |
| 2 | oveq2 5952 | . 2 ⊢ (𝐶 = 𝐷 → (𝐵𝐹𝐶) = (𝐵𝐹𝐷)) | |
| 3 | 1, 2 | sylan9eq 2258 | 1 ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴𝐹𝐶) = (𝐵𝐹𝐷)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1373 (class class class)co 5944 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-rex 2490 df-v 2774 df-un 3170 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-br 4045 df-iota 5232 df-fv 5279 df-ov 5947 |
| This theorem is referenced by: oveq12i 5956 oveq12d 5962 oveqan12d 5963 ecopoveq 6717 ecopovtrn 6719 ecopovtrng 6722 th3qlem1 6724 th3qlem2 6725 mulcmpblnq 7481 addpipqqs 7483 ordpipqqs 7487 enq0breq 7549 mulcmpblnq0 7557 nqpnq0nq 7566 nqnq0a 7567 nqnq0m 7568 nq0m0r 7569 nq0a0 7570 distrlem5prl 7699 distrlem5pru 7700 addcmpblnr 7852 ltsrprg 7860 mulgt0sr 7891 add20 8547 cru 8675 qaddcl 9756 qmulcl 9758 xaddval 9967 xnn0xadd0 9989 fzopth 10183 modqval 10469 seqvalcd 10606 seqovcd 10612 1exp 10713 m1expeven 10731 nn0opthd 10867 faclbnd 10886 faclbnd3 10888 bcn0 10900 reval 11160 absval 11312 clim 11592 fsumparts 11781 dvds2add 12136 dvds2sub 12137 opoe 12206 omoe 12207 opeo 12208 omeo 12209 gcddvds 12284 gcdcl 12287 gcdeq0 12298 gcdneg 12303 gcdaddm 12305 gcdabs 12309 gcddiv 12340 eucalgval2 12375 lcmabs 12398 rpmul 12420 divgcdcoprmex 12424 prmexpb 12473 rpexp 12475 nn0gcdsq 12522 pcqmul 12626 mul4sq 12717 f1ocpbl 13143 plusfvalg 13195 0subm 13316 imasabl 13672 ringadd2 13789 dfrhm2 13916 isrhm 13920 isrim0 13923 rhmval 13935 aprval 14044 scafvalg 14069 rmodislmodlem 14112 rmodislmod 14113 lss1d 14145 znidom 14419 mplvalcoe 14452 cnmpt2t 14765 cnmpt22f 14767 hmeofvalg 14775 bdmetval 14972 plycn 15234 mul2sq 15593 |
| Copyright terms: Public domain | W3C validator |