![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > oveqan12d | GIF version |
Description: Equality deduction for operation value. (Contributed by NM, 10-Aug-1995.) |
Ref | Expression |
---|---|
oveq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
opreqan12i.2 | ⊢ (𝜓 → 𝐶 = 𝐷) |
Ref | Expression |
---|---|
oveqan12d | ⊢ ((𝜑 ∧ 𝜓) → (𝐴𝐹𝐶) = (𝐵𝐹𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | opreqan12i.2 | . 2 ⊢ (𝜓 → 𝐶 = 𝐷) | |
3 | oveq12 5927 | . 2 ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴𝐹𝐶) = (𝐵𝐹𝐷)) | |
4 | 1, 2, 3 | syl2an 289 | 1 ⊢ ((𝜑 ∧ 𝜓) → (𝐴𝐹𝐶) = (𝐵𝐹𝐷)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 (class class class)co 5918 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-rex 2478 df-v 2762 df-un 3157 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-br 4030 df-iota 5215 df-fv 5262 df-ov 5921 |
This theorem is referenced by: oveqan12rd 5938 offval 6138 offval3 6186 ecovdi 6700 ecovidi 6701 distrpig 7393 addcmpblnq 7427 addpipqqs 7430 mulpipq 7432 addcomnqg 7441 addcmpblnq0 7503 distrnq0 7519 recexprlem1ssl 7693 recexprlem1ssu 7694 1idsr 7828 addcnsrec 7902 mulcnsrec 7903 mulrid 8016 mulsub 8420 mulsub2 8421 muleqadd 8687 divmuldivap 8731 div2subap 8856 addltmul 9219 xnegdi 9934 fzsubel 10126 fzoval 10214 mulexp 10649 sqdivap 10674 crim 11002 readd 11013 remullem 11015 imadd 11021 cjadd 11028 cjreim 11047 sqrtmul 11179 sqabsadd 11199 sqabssub 11200 absmul 11213 abs2dif 11250 binom 11627 sinadd 11879 cosadd 11880 dvds2ln 11967 absmulgcd 12154 gcddiv 12156 bezoutr1 12170 lcmgcd 12216 nn0gcdsq 12338 crth 12362 pythagtriplem1 12403 pcqmul 12441 4sqlem4a 12529 4sqlem4 12530 idmhm 13041 resmhm 13059 eqgval 13293 idghm 13329 resghm 13330 isrhm 13654 rhmval 13669 xmetxp 14675 xmetxpbl 14676 txmetcnp 14686 divcnap 14723 rescncf 14736 relogoprlem 15003 lgsdir2 15149 |
Copyright terms: Public domain | W3C validator |