Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > oveqan12d | GIF version |
Description: Equality deduction for operation value. (Contributed by NM, 10-Aug-1995.) |
Ref | Expression |
---|---|
oveq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
opreqan12i.2 | ⊢ (𝜓 → 𝐶 = 𝐷) |
Ref | Expression |
---|---|
oveqan12d | ⊢ ((𝜑 ∧ 𝜓) → (𝐴𝐹𝐶) = (𝐵𝐹𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | opreqan12i.2 | . 2 ⊢ (𝜓 → 𝐶 = 𝐷) | |
3 | oveq12 5850 | . 2 ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴𝐹𝐶) = (𝐵𝐹𝐷)) | |
4 | 1, 2, 3 | syl2an 287 | 1 ⊢ ((𝜑 ∧ 𝜓) → (𝐴𝐹𝐶) = (𝐵𝐹𝐷)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 = wceq 1343 (class class class)co 5841 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2296 df-rex 2449 df-v 2727 df-un 3119 df-sn 3581 df-pr 3582 df-op 3584 df-uni 3789 df-br 3982 df-iota 5152 df-fv 5195 df-ov 5844 |
This theorem is referenced by: oveqan12rd 5861 offval 6056 offval3 6099 ecovdi 6608 ecovidi 6609 distrpig 7270 addcmpblnq 7304 addpipqqs 7307 mulpipq 7309 addcomnqg 7318 addcmpblnq0 7380 distrnq0 7396 recexprlem1ssl 7570 recexprlem1ssu 7571 1idsr 7705 addcnsrec 7779 mulcnsrec 7780 mulid1 7892 mulsub 8295 mulsub2 8296 muleqadd 8561 divmuldivap 8604 div2subap 8729 addltmul 9089 xnegdi 9800 fzsubel 9991 fzoval 10079 mulexp 10490 sqdivap 10515 crim 10796 readd 10807 remullem 10809 imadd 10815 cjadd 10822 cjreim 10841 sqrtmul 10973 sqabsadd 10993 sqabssub 10994 absmul 11007 abs2dif 11044 binom 11421 sinadd 11673 cosadd 11674 dvds2ln 11760 absmulgcd 11946 gcddiv 11948 bezoutr1 11962 lcmgcd 12006 nn0gcdsq 12128 crth 12152 pythagtriplem1 12193 pcqmul 12231 4sqlem4a 12317 4sqlem4 12318 xmetxp 13107 xmetxpbl 13108 txmetcnp 13118 divcnap 13155 rescncf 13168 relogoprlem 13389 lgsdir2 13534 |
Copyright terms: Public domain | W3C validator |