| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > oveqan12d | GIF version | ||
| Description: Equality deduction for operation value. (Contributed by NM, 10-Aug-1995.) |
| Ref | Expression |
|---|---|
| oveq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| opreqan12i.2 | ⊢ (𝜓 → 𝐶 = 𝐷) |
| Ref | Expression |
|---|---|
| oveqan12d | ⊢ ((𝜑 ∧ 𝜓) → (𝐴𝐹𝐶) = (𝐵𝐹𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | opreqan12i.2 | . 2 ⊢ (𝜓 → 𝐶 = 𝐷) | |
| 3 | oveq12 5931 | . 2 ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴𝐹𝐶) = (𝐵𝐹𝐷)) | |
| 4 | 1, 2, 3 | syl2an 289 | 1 ⊢ ((𝜑 ∧ 𝜓) → (𝐴𝐹𝐶) = (𝐵𝐹𝐷)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 (class class class)co 5922 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-rex 2481 df-v 2765 df-un 3161 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-iota 5219 df-fv 5266 df-ov 5925 |
| This theorem is referenced by: oveqan12rd 5942 offval 6143 offval3 6191 ecovdi 6705 ecovidi 6706 distrpig 7400 addcmpblnq 7434 addpipqqs 7437 mulpipq 7439 addcomnqg 7448 addcmpblnq0 7510 distrnq0 7526 recexprlem1ssl 7700 recexprlem1ssu 7701 1idsr 7835 addcnsrec 7909 mulcnsrec 7910 mulrid 8023 mulsub 8427 mulsub2 8428 muleqadd 8695 divmuldivap 8739 div2subap 8864 addltmul 9228 xnegdi 9943 fzsubel 10135 fzoval 10223 mulexp 10670 sqdivap 10695 crim 11023 readd 11034 remullem 11036 imadd 11042 cjadd 11049 cjreim 11068 sqrtmul 11200 sqabsadd 11220 sqabssub 11221 absmul 11234 abs2dif 11271 binom 11649 sinadd 11901 cosadd 11902 dvds2ln 11989 absmulgcd 12184 gcddiv 12186 bezoutr1 12200 lcmgcd 12246 nn0gcdsq 12368 crth 12392 pythagtriplem1 12434 pcqmul 12472 4sqlem4a 12560 4sqlem4 12561 idmhm 13101 resmhm 13119 eqgval 13353 idghm 13389 resghm 13390 isrhm 13714 rhmval 13729 xmetxp 14743 xmetxpbl 14744 txmetcnp 14754 divcnap 14801 rescncf 14817 relogoprlem 15104 lgsdir2 15274 |
| Copyright terms: Public domain | W3C validator |