Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > oveqan12d | GIF version |
Description: Equality deduction for operation value. (Contributed by NM, 10-Aug-1995.) |
Ref | Expression |
---|---|
oveq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
opreqan12i.2 | ⊢ (𝜓 → 𝐶 = 𝐷) |
Ref | Expression |
---|---|
oveqan12d | ⊢ ((𝜑 ∧ 𝜓) → (𝐴𝐹𝐶) = (𝐵𝐹𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | opreqan12i.2 | . 2 ⊢ (𝜓 → 𝐶 = 𝐷) | |
3 | oveq12 5874 | . 2 ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴𝐹𝐶) = (𝐵𝐹𝐷)) | |
4 | 1, 2, 3 | syl2an 289 | 1 ⊢ ((𝜑 ∧ 𝜓) → (𝐴𝐹𝐶) = (𝐵𝐹𝐷)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1353 (class class class)co 5865 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-ext 2157 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1459 df-sb 1761 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-rex 2459 df-v 2737 df-un 3131 df-sn 3595 df-pr 3596 df-op 3598 df-uni 3806 df-br 3999 df-iota 5170 df-fv 5216 df-ov 5868 |
This theorem is referenced by: oveqan12rd 5885 offval 6080 offval3 6125 ecovdi 6636 ecovidi 6637 distrpig 7307 addcmpblnq 7341 addpipqqs 7344 mulpipq 7346 addcomnqg 7355 addcmpblnq0 7417 distrnq0 7433 recexprlem1ssl 7607 recexprlem1ssu 7608 1idsr 7742 addcnsrec 7816 mulcnsrec 7817 mulid1 7929 mulsub 8332 mulsub2 8333 muleqadd 8598 divmuldivap 8642 div2subap 8767 addltmul 9128 xnegdi 9839 fzsubel 10030 fzoval 10118 mulexp 10529 sqdivap 10554 crim 10835 readd 10846 remullem 10848 imadd 10854 cjadd 10861 cjreim 10880 sqrtmul 11012 sqabsadd 11032 sqabssub 11033 absmul 11046 abs2dif 11083 binom 11460 sinadd 11712 cosadd 11713 dvds2ln 11799 absmulgcd 11985 gcddiv 11987 bezoutr1 12001 lcmgcd 12045 nn0gcdsq 12167 crth 12191 pythagtriplem1 12232 pcqmul 12270 4sqlem4a 12356 4sqlem4 12357 idmhm 12723 xmetxp 13578 xmetxpbl 13579 txmetcnp 13589 divcnap 13626 rescncf 13639 relogoprlem 13860 lgsdir2 14005 |
Copyright terms: Public domain | W3C validator |