| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > oveqan12d | GIF version | ||
| Description: Equality deduction for operation value. (Contributed by NM, 10-Aug-1995.) |
| Ref | Expression |
|---|---|
| oveq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| opreqan12i.2 | ⊢ (𝜓 → 𝐶 = 𝐷) |
| Ref | Expression |
|---|---|
| oveqan12d | ⊢ ((𝜑 ∧ 𝜓) → (𝐴𝐹𝐶) = (𝐵𝐹𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | opreqan12i.2 | . 2 ⊢ (𝜓 → 𝐶 = 𝐷) | |
| 3 | oveq12 5953 | . 2 ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴𝐹𝐶) = (𝐵𝐹𝐷)) | |
| 4 | 1, 2, 3 | syl2an 289 | 1 ⊢ ((𝜑 ∧ 𝜓) → (𝐴𝐹𝐶) = (𝐵𝐹𝐷)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1373 (class class class)co 5944 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-rex 2490 df-v 2774 df-un 3170 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-br 4045 df-iota 5232 df-fv 5279 df-ov 5947 |
| This theorem is referenced by: oveqan12rd 5964 offval 6166 offval3 6219 ecovdi 6733 ecovidi 6734 distrpig 7446 addcmpblnq 7480 addpipqqs 7483 mulpipq 7485 addcomnqg 7494 addcmpblnq0 7556 distrnq0 7572 recexprlem1ssl 7746 recexprlem1ssu 7747 1idsr 7881 addcnsrec 7955 mulcnsrec 7956 mulrid 8069 mulsub 8473 mulsub2 8474 muleqadd 8741 divmuldivap 8785 div2subap 8910 addltmul 9274 xnegdi 9990 fzsubel 10182 fzoval 10270 mulexp 10723 sqdivap 10748 crim 11169 readd 11180 remullem 11182 imadd 11188 cjadd 11195 cjreim 11214 sqrtmul 11346 sqabsadd 11366 sqabssub 11367 absmul 11380 abs2dif 11417 binom 11795 sinadd 12047 cosadd 12048 dvds2ln 12135 absmulgcd 12338 gcddiv 12340 bezoutr1 12354 lcmgcd 12400 nn0gcdsq 12522 crth 12546 pythagtriplem1 12588 pcqmul 12626 4sqlem4a 12714 4sqlem4 12715 prdsplusgval 13115 prdsmulrval 13117 idmhm 13301 resmhm 13319 eqgval 13559 idghm 13595 resghm 13596 isrhm 13920 rhmval 13935 xmetxp 14979 xmetxpbl 14980 txmetcnp 14990 divcnap 15037 rescncf 15053 relogoprlem 15340 lgsdir2 15510 |
| Copyright terms: Public domain | W3C validator |