| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > oveqan12d | GIF version | ||
| Description: Equality deduction for operation value. (Contributed by NM, 10-Aug-1995.) |
| Ref | Expression |
|---|---|
| oveq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| opreqan12i.2 | ⊢ (𝜓 → 𝐶 = 𝐷) |
| Ref | Expression |
|---|---|
| oveqan12d | ⊢ ((𝜑 ∧ 𝜓) → (𝐴𝐹𝐶) = (𝐵𝐹𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | opreqan12i.2 | . 2 ⊢ (𝜓 → 𝐶 = 𝐷) | |
| 3 | oveq12 5955 | . 2 ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴𝐹𝐶) = (𝐵𝐹𝐷)) | |
| 4 | 1, 2, 3 | syl2an 289 | 1 ⊢ ((𝜑 ∧ 𝜓) → (𝐴𝐹𝐶) = (𝐵𝐹𝐷)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1373 (class class class)co 5946 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-rex 2490 df-v 2774 df-un 3170 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-br 4046 df-iota 5233 df-fv 5280 df-ov 5949 |
| This theorem is referenced by: oveqan12rd 5966 offval 6168 offval3 6221 ecovdi 6735 ecovidi 6736 distrpig 7448 addcmpblnq 7482 addpipqqs 7485 mulpipq 7487 addcomnqg 7496 addcmpblnq0 7558 distrnq0 7574 recexprlem1ssl 7748 recexprlem1ssu 7749 1idsr 7883 addcnsrec 7957 mulcnsrec 7958 mulrid 8071 mulsub 8475 mulsub2 8476 muleqadd 8743 divmuldivap 8787 div2subap 8912 addltmul 9276 xnegdi 9992 fzsubel 10184 fzoval 10272 mulexp 10725 sqdivap 10750 crim 11202 readd 11213 remullem 11215 imadd 11221 cjadd 11228 cjreim 11247 sqrtmul 11379 sqabsadd 11399 sqabssub 11400 absmul 11413 abs2dif 11450 binom 11828 sinadd 12080 cosadd 12081 dvds2ln 12168 absmulgcd 12371 gcddiv 12373 bezoutr1 12387 lcmgcd 12433 nn0gcdsq 12555 crth 12579 pythagtriplem1 12621 pcqmul 12659 4sqlem4a 12747 4sqlem4 12748 prdsplusgval 13148 prdsmulrval 13150 idmhm 13334 resmhm 13352 eqgval 13592 idghm 13628 resghm 13629 isrhm 13953 rhmval 13968 xmetxp 15012 xmetxpbl 15013 txmetcnp 15023 divcnap 15070 rescncf 15086 relogoprlem 15373 lgsdir2 15543 |
| Copyright terms: Public domain | W3C validator |