![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nnnegz | GIF version |
Description: The negative of a positive integer is an integer. (Contributed by NM, 12-Jan-2002.) |
Ref | Expression |
---|---|
nnnegz | ⊢ (𝑁 ∈ ℕ → -𝑁 ∈ ℤ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnre 8989 | . . 3 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℝ) | |
2 | 1 | renegcld 8399 | . 2 ⊢ (𝑁 ∈ ℕ → -𝑁 ∈ ℝ) |
3 | nncn 8990 | . . . 4 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℂ) | |
4 | negneg 8269 | . . . . . 6 ⊢ (𝑁 ∈ ℂ → --𝑁 = 𝑁) | |
5 | 4 | eleq1d 2262 | . . . . 5 ⊢ (𝑁 ∈ ℂ → (--𝑁 ∈ ℕ ↔ 𝑁 ∈ ℕ)) |
6 | 5 | biimprd 158 | . . . 4 ⊢ (𝑁 ∈ ℂ → (𝑁 ∈ ℕ → --𝑁 ∈ ℕ)) |
7 | 3, 6 | mpcom 36 | . . 3 ⊢ (𝑁 ∈ ℕ → --𝑁 ∈ ℕ) |
8 | 7 | 3mix3d 1176 | . 2 ⊢ (𝑁 ∈ ℕ → (-𝑁 = 0 ∨ -𝑁 ∈ ℕ ∨ --𝑁 ∈ ℕ)) |
9 | elz 9319 | . 2 ⊢ (-𝑁 ∈ ℤ ↔ (-𝑁 ∈ ℝ ∧ (-𝑁 = 0 ∨ -𝑁 ∈ ℕ ∨ --𝑁 ∈ ℕ))) | |
10 | 2, 8, 9 | sylanbrc 417 | 1 ⊢ (𝑁 ∈ ℕ → -𝑁 ∈ ℤ) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∨ w3o 979 = wceq 1364 ∈ wcel 2164 ℂcc 7870 ℝcr 7871 0cc0 7872 -cneg 8191 ℕcn 8982 ℤcz 9317 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 ax-pr 4238 ax-setind 4569 ax-cnex 7963 ax-resscn 7964 ax-1cn 7965 ax-1re 7966 ax-icn 7967 ax-addcl 7968 ax-addrcl 7969 ax-mulcl 7970 ax-addcom 7972 ax-addass 7974 ax-distr 7976 ax-i2m1 7977 ax-0id 7980 ax-rnegex 7981 ax-cnre 7983 |
This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-ral 2477 df-rex 2478 df-reu 2479 df-rab 2481 df-v 2762 df-sbc 2986 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-int 3871 df-br 4030 df-opab 4091 df-id 4324 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-iota 5215 df-fun 5256 df-fv 5262 df-riota 5873 df-ov 5921 df-oprab 5922 df-mpo 5923 df-sub 8192 df-neg 8193 df-inn 8983 df-z 9318 |
This theorem is referenced by: znegcl 9348 neg1z 9349 zeo 9422 btwnz 9436 expaddzaplem 10653 mulgnegnn 13202 mulgneg2 13226 |
Copyright terms: Public domain | W3C validator |