ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nnnegz GIF version

Theorem nnnegz 9445
Description: The negative of a positive integer is an integer. (Contributed by NM, 12-Jan-2002.)
Assertion
Ref Expression
nnnegz (𝑁 ∈ ℕ → -𝑁 ∈ ℤ)

Proof of Theorem nnnegz
StepHypRef Expression
1 nnre 9113 . . 3 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ)
21renegcld 8522 . 2 (𝑁 ∈ ℕ → -𝑁 ∈ ℝ)
3 nncn 9114 . . . 4 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
4 negneg 8392 . . . . . 6 (𝑁 ∈ ℂ → --𝑁 = 𝑁)
54eleq1d 2298 . . . . 5 (𝑁 ∈ ℂ → (--𝑁 ∈ ℕ ↔ 𝑁 ∈ ℕ))
65biimprd 158 . . . 4 (𝑁 ∈ ℂ → (𝑁 ∈ ℕ → --𝑁 ∈ ℕ))
73, 6mpcom 36 . . 3 (𝑁 ∈ ℕ → --𝑁 ∈ ℕ)
873mix3d 1198 . 2 (𝑁 ∈ ℕ → (-𝑁 = 0 ∨ -𝑁 ∈ ℕ ∨ --𝑁 ∈ ℕ))
9 elz 9444 . 2 (-𝑁 ∈ ℤ ↔ (-𝑁 ∈ ℝ ∧ (-𝑁 = 0 ∨ -𝑁 ∈ ℕ ∨ --𝑁 ∈ ℕ)))
102, 8, 9sylanbrc 417 1 (𝑁 ∈ ℕ → -𝑁 ∈ ℤ)
Colors of variables: wff set class
Syntax hints:  wi 4  w3o 1001   = wceq 1395  wcel 2200  cc 7993  cr 7994  0cc0 7995  -cneg 8314  cn 9106  cz 9442
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-setind 4628  ax-cnex 8086  ax-resscn 8087  ax-1cn 8088  ax-1re 8089  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-addcom 8095  ax-addass 8097  ax-distr 8099  ax-i2m1 8100  ax-0id 8103  ax-rnegex 8104  ax-cnre 8106
This theorem depends on definitions:  df-bi 117  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-br 4083  df-opab 4145  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-iota 5277  df-fun 5319  df-fv 5325  df-riota 5953  df-ov 6003  df-oprab 6004  df-mpo 6005  df-sub 8315  df-neg 8316  df-inn 9107  df-z 9443
This theorem is referenced by:  znegcl  9473  neg1z  9474  zeo  9548  btwnz  9562  expaddzaplem  10799  mulgnegnn  13664  mulgneg2  13688
  Copyright terms: Public domain W3C validator