ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nnnegz GIF version

Theorem nnnegz 9281
Description: The negative of a positive integer is an integer. (Contributed by NM, 12-Jan-2002.)
Assertion
Ref Expression
nnnegz (𝑁 ∈ ℕ → -𝑁 ∈ ℤ)

Proof of Theorem nnnegz
StepHypRef Expression
1 nnre 8951 . . 3 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ)
21renegcld 8362 . 2 (𝑁 ∈ ℕ → -𝑁 ∈ ℝ)
3 nncn 8952 . . . 4 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
4 negneg 8232 . . . . . 6 (𝑁 ∈ ℂ → --𝑁 = 𝑁)
54eleq1d 2258 . . . . 5 (𝑁 ∈ ℂ → (--𝑁 ∈ ℕ ↔ 𝑁 ∈ ℕ))
65biimprd 158 . . . 4 (𝑁 ∈ ℂ → (𝑁 ∈ ℕ → --𝑁 ∈ ℕ))
73, 6mpcom 36 . . 3 (𝑁 ∈ ℕ → --𝑁 ∈ ℕ)
873mix3d 1176 . 2 (𝑁 ∈ ℕ → (-𝑁 = 0 ∨ -𝑁 ∈ ℕ ∨ --𝑁 ∈ ℕ))
9 elz 9280 . 2 (-𝑁 ∈ ℤ ↔ (-𝑁 ∈ ℝ ∧ (-𝑁 = 0 ∨ -𝑁 ∈ ℕ ∨ --𝑁 ∈ ℕ)))
102, 8, 9sylanbrc 417 1 (𝑁 ∈ ℕ → -𝑁 ∈ ℤ)
Colors of variables: wff set class
Syntax hints:  wi 4  w3o 979   = wceq 1364  wcel 2160  cc 7834  cr 7835  0cc0 7836  -cneg 8154  cn 8944  cz 9278
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2163  ax-ext 2171  ax-sep 4136  ax-pow 4189  ax-pr 4224  ax-setind 4551  ax-cnex 7927  ax-resscn 7928  ax-1cn 7929  ax-1re 7930  ax-icn 7931  ax-addcl 7932  ax-addrcl 7933  ax-mulcl 7934  ax-addcom 7936  ax-addass 7938  ax-distr 7940  ax-i2m1 7941  ax-0id 7944  ax-rnegex 7945  ax-cnre 7947
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-ral 2473  df-rex 2474  df-reu 2475  df-rab 2477  df-v 2754  df-sbc 2978  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-br 4019  df-opab 4080  df-id 4308  df-xp 4647  df-rel 4648  df-cnv 4649  df-co 4650  df-dm 4651  df-iota 5193  df-fun 5234  df-fv 5240  df-riota 5848  df-ov 5895  df-oprab 5896  df-mpo 5897  df-sub 8155  df-neg 8156  df-inn 8945  df-z 9279
This theorem is referenced by:  znegcl  9309  neg1z  9310  zeo  9383  btwnz  9397  expaddzaplem  10589  mulgnegnn  13065  mulgneg2  13089
  Copyright terms: Public domain W3C validator