| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nnnegz | GIF version | ||
| Description: The negative of a positive integer is an integer. (Contributed by NM, 12-Jan-2002.) |
| Ref | Expression |
|---|---|
| nnnegz | ⊢ (𝑁 ∈ ℕ → -𝑁 ∈ ℤ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnre 8997 | . . 3 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℝ) | |
| 2 | 1 | renegcld 8406 | . 2 ⊢ (𝑁 ∈ ℕ → -𝑁 ∈ ℝ) |
| 3 | nncn 8998 | . . . 4 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℂ) | |
| 4 | negneg 8276 | . . . . . 6 ⊢ (𝑁 ∈ ℂ → --𝑁 = 𝑁) | |
| 5 | 4 | eleq1d 2265 | . . . . 5 ⊢ (𝑁 ∈ ℂ → (--𝑁 ∈ ℕ ↔ 𝑁 ∈ ℕ)) |
| 6 | 5 | biimprd 158 | . . . 4 ⊢ (𝑁 ∈ ℂ → (𝑁 ∈ ℕ → --𝑁 ∈ ℕ)) |
| 7 | 3, 6 | mpcom 36 | . . 3 ⊢ (𝑁 ∈ ℕ → --𝑁 ∈ ℕ) |
| 8 | 7 | 3mix3d 1176 | . 2 ⊢ (𝑁 ∈ ℕ → (-𝑁 = 0 ∨ -𝑁 ∈ ℕ ∨ --𝑁 ∈ ℕ)) |
| 9 | elz 9328 | . 2 ⊢ (-𝑁 ∈ ℤ ↔ (-𝑁 ∈ ℝ ∧ (-𝑁 = 0 ∨ -𝑁 ∈ ℕ ∨ --𝑁 ∈ ℕ))) | |
| 10 | 2, 8, 9 | sylanbrc 417 | 1 ⊢ (𝑁 ∈ ℕ → -𝑁 ∈ ℤ) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∨ w3o 979 = wceq 1364 ∈ wcel 2167 ℂcc 7877 ℝcr 7878 0cc0 7879 -cneg 8198 ℕcn 8990 ℤcz 9326 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-setind 4573 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-addcom 7979 ax-addass 7981 ax-distr 7983 ax-i2m1 7984 ax-0id 7987 ax-rnegex 7988 ax-cnre 7990 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-br 4034 df-opab 4095 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-iota 5219 df-fun 5260 df-fv 5266 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-sub 8199 df-neg 8200 df-inn 8991 df-z 9327 |
| This theorem is referenced by: znegcl 9357 neg1z 9358 zeo 9431 btwnz 9445 expaddzaplem 10674 mulgnegnn 13262 mulgneg2 13286 |
| Copyright terms: Public domain | W3C validator |