| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > entr3i | GIF version | ||
| Description: A chained equinumerosity inference. (Contributed by NM, 25-Sep-2004.) |
| Ref | Expression |
|---|---|
| entr3i.1 | ⊢ 𝐴 ≈ 𝐵 |
| entr3i.2 | ⊢ 𝐴 ≈ 𝐶 |
| Ref | Expression |
|---|---|
| entr3i | ⊢ 𝐵 ≈ 𝐶 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | entr3i.1 | . . 3 ⊢ 𝐴 ≈ 𝐵 | |
| 2 | 1 | ensymi 6859 | . 2 ⊢ 𝐵 ≈ 𝐴 |
| 3 | entr3i.2 | . 2 ⊢ 𝐴 ≈ 𝐶 | |
| 4 | 2, 3 | entri 6863 | 1 ⊢ 𝐵 ≈ 𝐶 |
| Colors of variables: wff set class |
| Syntax hints: class class class wbr 4043 ≈ cen 6815 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 ax-un 4478 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ral 2488 df-rex 2489 df-v 2773 df-un 3169 df-in 3171 df-ss 3178 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-br 4044 df-opab 4105 df-id 4338 df-xp 4679 df-rel 4680 df-cnv 4681 df-co 4682 df-dm 4683 df-rn 4684 df-res 4685 df-ima 4686 df-fun 5270 df-fn 5271 df-f 5272 df-f1 5273 df-fo 5274 df-f1o 5275 df-er 6610 df-en 6818 |
| This theorem is referenced by: xpomen 12685 sbthom 15829 |
| Copyright terms: Public domain | W3C validator |