ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  entr3i GIF version

Theorem entr3i 6865
Description: A chained equinumerosity inference. (Contributed by NM, 25-Sep-2004.)
Hypotheses
Ref Expression
entr3i.1 𝐴𝐵
entr3i.2 𝐴𝐶
Assertion
Ref Expression
entr3i 𝐵𝐶

Proof of Theorem entr3i
StepHypRef Expression
1 entr3i.1 . . 3 𝐴𝐵
21ensymi 6859 . 2 𝐵𝐴
3 entr3i.2 . 2 𝐴𝐶
42, 3entri 6863 1 𝐵𝐶
Colors of variables: wff set class
Syntax hints:   class class class wbr 4043  cen 6815
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252  ax-un 4478
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ral 2488  df-rex 2489  df-v 2773  df-un 3169  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-br 4044  df-opab 4105  df-id 4338  df-xp 4679  df-rel 4680  df-cnv 4681  df-co 4682  df-dm 4683  df-rn 4684  df-res 4685  df-ima 4686  df-fun 5270  df-fn 5271  df-f 5272  df-f1 5273  df-fo 5274  df-f1o 5275  df-er 6610  df-en 6818
This theorem is referenced by:  xpomen  12685  sbthom  15829
  Copyright terms: Public domain W3C validator