![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ioorebasg | GIF version |
Description: Open intervals are elements of the set of all open intervals. (Contributed by Jim Kingdon, 4-Apr-2020.) |
Ref | Expression |
---|---|
ioorebasg | β’ ((π΄ β β* β§ π΅ β β*) β (π΄(,)π΅) β ran (,)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ioof 9974 | . . 3 β’ (,):(β* Γ β*)βΆπ« β | |
2 | ffn 5367 | . . 3 β’ ((,):(β* Γ β*)βΆπ« β β (,) Fn (β* Γ β*)) | |
3 | 1, 2 | ax-mp 5 | . 2 β’ (,) Fn (β* Γ β*) |
4 | fnovrn 6025 | . 2 β’ (((,) Fn (β* Γ β*) β§ π΄ β β* β§ π΅ β β*) β (π΄(,)π΅) β ran (,)) | |
5 | 3, 4 | mp3an1 1324 | 1 β’ ((π΄ β β* β§ π΅ β β*) β (π΄(,)π΅) β ran (,)) |
Colors of variables: wff set class |
Syntax hints: β wi 4 β§ wa 104 β wcel 2148 π« cpw 3577 Γ cxp 4626 ran crn 4629 Fn wfn 5213 βΆwf 5214 (class class class)co 5878 βcr 7813 β*cxr 7994 (,)cioo 9891 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-sep 4123 ax-pow 4176 ax-pr 4211 ax-un 4435 ax-setind 4538 ax-cnex 7905 ax-resscn 7906 ax-pre-ltirr 7926 ax-pre-ltwlin 7927 ax-pre-lttrn 7928 |
This theorem depends on definitions: df-bi 117 df-3or 979 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-nel 2443 df-ral 2460 df-rex 2461 df-rab 2464 df-v 2741 df-sbc 2965 df-csb 3060 df-dif 3133 df-un 3135 df-in 3137 df-ss 3144 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-iun 3890 df-br 4006 df-opab 4067 df-mpt 4068 df-id 4295 df-po 4298 df-iso 4299 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-rn 4639 df-res 4640 df-ima 4641 df-iota 5180 df-fun 5220 df-fn 5221 df-f 5222 df-fv 5226 df-ov 5881 df-oprab 5882 df-mpo 5883 df-1st 6144 df-2nd 6145 df-pnf 7997 df-mnf 7998 df-xr 7999 df-ltxr 8000 df-le 8001 df-ioo 9895 |
This theorem is referenced by: iooretopg 14168 blssioo 14185 tgioo 14186 |
Copyright terms: Public domain | W3C validator |