| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ioorebasg | GIF version | ||
| Description: Open intervals are elements of the set of all open intervals. (Contributed by Jim Kingdon, 4-Apr-2020.) |
| Ref | Expression |
|---|---|
| ioorebasg | ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴(,)𝐵) ∈ ran (,)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ioof 10175 | . . 3 ⊢ (,):(ℝ* × ℝ*)⟶𝒫 ℝ | |
| 2 | ffn 5473 | . . 3 ⊢ ((,):(ℝ* × ℝ*)⟶𝒫 ℝ → (,) Fn (ℝ* × ℝ*)) | |
| 3 | 1, 2 | ax-mp 5 | . 2 ⊢ (,) Fn (ℝ* × ℝ*) |
| 4 | fnovrn 6159 | . 2 ⊢ (((,) Fn (ℝ* × ℝ*) ∧ 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴(,)𝐵) ∈ ran (,)) | |
| 5 | 3, 4 | mp3an1 1358 | 1 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴(,)𝐵) ∈ ran (,)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2200 𝒫 cpw 3649 × cxp 4717 ran crn 4720 Fn wfn 5313 ⟶wf 5314 (class class class)co 6007 ℝcr 8006 ℝ*cxr 8188 (,)cioo 10092 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-cnex 8098 ax-resscn 8099 ax-pre-ltirr 8119 ax-pre-ltwlin 8120 ax-pre-lttrn 8121 |
| This theorem depends on definitions: df-bi 117 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-po 4387 df-iso 4388 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-fv 5326 df-ov 6010 df-oprab 6011 df-mpo 6012 df-1st 6292 df-2nd 6293 df-pnf 8191 df-mnf 8192 df-xr 8193 df-ltxr 8194 df-le 8195 df-ioo 10096 |
| This theorem is referenced by: iooretopg 15210 blssioo 15235 tgioo 15236 |
| Copyright terms: Public domain | W3C validator |