| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mpoxopn0yelv | GIF version | ||
| Description: If there is an element of the value of an operation given by a maps-to rule, where the first argument is a pair and the base set of the second argument is the first component of the first argument, then the second argument is an element of the first component of the first argument. (Contributed by Alexander van der Vekens, 10-Oct-2017.) |
| Ref | Expression |
|---|---|
| mpoxopn0yelv.f | ⊢ 𝐹 = (𝑥 ∈ V, 𝑦 ∈ (1st ‘𝑥) ↦ 𝐶) |
| Ref | Expression |
|---|---|
| mpoxopn0yelv | ⊢ ((𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌) → (𝑁 ∈ (〈𝑉, 𝑊〉𝐹𝐾) → 𝐾 ∈ 𝑉)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpoxopn0yelv.f | . . . . 5 ⊢ 𝐹 = (𝑥 ∈ V, 𝑦 ∈ (1st ‘𝑥) ↦ 𝐶) | |
| 2 | 1 | dmmpossx 6284 | . . . 4 ⊢ dom 𝐹 ⊆ ∪ 𝑥 ∈ V ({𝑥} × (1st ‘𝑥)) |
| 3 | 1 | mpofun 6046 | . . . . . . 7 ⊢ Fun 𝐹 |
| 4 | funrel 5287 | . . . . . . 7 ⊢ (Fun 𝐹 → Rel 𝐹) | |
| 5 | 3, 4 | ax-mp 5 | . . . . . 6 ⊢ Rel 𝐹 |
| 6 | relelfvdm 5607 | . . . . . 6 ⊢ ((Rel 𝐹 ∧ 𝑁 ∈ (𝐹‘〈〈𝑉, 𝑊〉, 𝐾〉)) → 〈〈𝑉, 𝑊〉, 𝐾〉 ∈ dom 𝐹) | |
| 7 | 5, 6 | mpan 424 | . . . . 5 ⊢ (𝑁 ∈ (𝐹‘〈〈𝑉, 𝑊〉, 𝐾〉) → 〈〈𝑉, 𝑊〉, 𝐾〉 ∈ dom 𝐹) |
| 8 | df-ov 5946 | . . . . 5 ⊢ (〈𝑉, 𝑊〉𝐹𝐾) = (𝐹‘〈〈𝑉, 𝑊〉, 𝐾〉) | |
| 9 | 7, 8 | eleq2s 2299 | . . . 4 ⊢ (𝑁 ∈ (〈𝑉, 𝑊〉𝐹𝐾) → 〈〈𝑉, 𝑊〉, 𝐾〉 ∈ dom 𝐹) |
| 10 | 2, 9 | sselid 3190 | . . 3 ⊢ (𝑁 ∈ (〈𝑉, 𝑊〉𝐹𝐾) → 〈〈𝑉, 𝑊〉, 𝐾〉 ∈ ∪ 𝑥 ∈ V ({𝑥} × (1st ‘𝑥))) |
| 11 | fveq2 5575 | . . . . 5 ⊢ (𝑥 = 〈𝑉, 𝑊〉 → (1st ‘𝑥) = (1st ‘〈𝑉, 𝑊〉)) | |
| 12 | 11 | opeliunxp2 4817 | . . . 4 ⊢ (〈〈𝑉, 𝑊〉, 𝐾〉 ∈ ∪ 𝑥 ∈ V ({𝑥} × (1st ‘𝑥)) ↔ (〈𝑉, 𝑊〉 ∈ V ∧ 𝐾 ∈ (1st ‘〈𝑉, 𝑊〉))) |
| 13 | 12 | simprbi 275 | . . 3 ⊢ (〈〈𝑉, 𝑊〉, 𝐾〉 ∈ ∪ 𝑥 ∈ V ({𝑥} × (1st ‘𝑥)) → 𝐾 ∈ (1st ‘〈𝑉, 𝑊〉)) |
| 14 | 10, 13 | syl 14 | . 2 ⊢ (𝑁 ∈ (〈𝑉, 𝑊〉𝐹𝐾) → 𝐾 ∈ (1st ‘〈𝑉, 𝑊〉)) |
| 15 | op1stg 6235 | . . 3 ⊢ ((𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌) → (1st ‘〈𝑉, 𝑊〉) = 𝑉) | |
| 16 | 15 | eleq2d 2274 | . 2 ⊢ ((𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌) → (𝐾 ∈ (1st ‘〈𝑉, 𝑊〉) ↔ 𝐾 ∈ 𝑉)) |
| 17 | 14, 16 | imbitrid 154 | 1 ⊢ ((𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌) → (𝑁 ∈ (〈𝑉, 𝑊〉𝐹𝐾) → 𝐾 ∈ 𝑉)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1372 ∈ wcel 2175 Vcvv 2771 {csn 3632 〈cop 3635 ∪ ciun 3926 × cxp 4672 dom cdm 4674 Rel wrel 4679 Fun wfun 5264 ‘cfv 5270 (class class class)co 5943 ∈ cmpo 5945 1st c1st 6223 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 ax-un 4479 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ral 2488 df-rex 2489 df-rab 2492 df-v 2773 df-sbc 2998 df-csb 3093 df-un 3169 df-in 3171 df-ss 3178 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-iun 3928 df-br 4044 df-opab 4105 df-mpt 4106 df-id 4339 df-xp 4680 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-rn 4685 df-res 4686 df-ima 4687 df-iota 5231 df-fun 5272 df-fv 5278 df-ov 5946 df-oprab 5947 df-mpo 5948 df-1st 6225 df-2nd 6226 |
| This theorem is referenced by: mpoxopovel 6326 |
| Copyright terms: Public domain | W3C validator |