Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  mpoxopn0yelv GIF version

Theorem mpoxopn0yelv 6147
 Description: If there is an element of the value of an operation given by a maps-to rule, where the first argument is a pair and the base set of the second argument is the first component of the first argument, then the second argument is an element of the first component of the first argument. (Contributed by Alexander van der Vekens, 10-Oct-2017.)
Hypothesis
Ref Expression
mpoxopn0yelv.f 𝐹 = (𝑥 ∈ V, 𝑦 ∈ (1st𝑥) ↦ 𝐶)
Assertion
Ref Expression
mpoxopn0yelv ((𝑉𝑋𝑊𝑌) → (𝑁 ∈ (⟨𝑉, 𝑊𝐹𝐾) → 𝐾𝑉))
Distinct variable groups:   𝑥,𝑦   𝑥,𝐾   𝑥,𝑉   𝑥,𝑊
Allowed substitution hints:   𝐶(𝑥,𝑦)   𝐹(𝑥,𝑦)   𝐾(𝑦)   𝑁(𝑥,𝑦)   𝑉(𝑦)   𝑊(𝑦)   𝑋(𝑥,𝑦)   𝑌(𝑥,𝑦)

Proof of Theorem mpoxopn0yelv
StepHypRef Expression
1 mpoxopn0yelv.f . . . . 5 𝐹 = (𝑥 ∈ V, 𝑦 ∈ (1st𝑥) ↦ 𝐶)
21dmmpossx 6108 . . . 4 dom 𝐹 𝑥 ∈ V ({𝑥} × (1st𝑥))
31mpofun 5884 . . . . . . 7 Fun 𝐹
4 funrel 5151 . . . . . . 7 (Fun 𝐹 → Rel 𝐹)
53, 4ax-mp 5 . . . . . 6 Rel 𝐹
6 relelfvdm 5464 . . . . . 6 ((Rel 𝐹𝑁 ∈ (𝐹‘⟨⟨𝑉, 𝑊⟩, 𝐾⟩)) → ⟨⟨𝑉, 𝑊⟩, 𝐾⟩ ∈ dom 𝐹)
75, 6mpan 421 . . . . 5 (𝑁 ∈ (𝐹‘⟨⟨𝑉, 𝑊⟩, 𝐾⟩) → ⟨⟨𝑉, 𝑊⟩, 𝐾⟩ ∈ dom 𝐹)
8 df-ov 5788 . . . . 5 (⟨𝑉, 𝑊𝐹𝐾) = (𝐹‘⟨⟨𝑉, 𝑊⟩, 𝐾⟩)
97, 8eleq2s 2235 . . . 4 (𝑁 ∈ (⟨𝑉, 𝑊𝐹𝐾) → ⟨⟨𝑉, 𝑊⟩, 𝐾⟩ ∈ dom 𝐹)
102, 9sseldi 3101 . . 3 (𝑁 ∈ (⟨𝑉, 𝑊𝐹𝐾) → ⟨⟨𝑉, 𝑊⟩, 𝐾⟩ ∈ 𝑥 ∈ V ({𝑥} × (1st𝑥)))
11 fveq2 5432 . . . . 5 (𝑥 = ⟨𝑉, 𝑊⟩ → (1st𝑥) = (1st ‘⟨𝑉, 𝑊⟩))
1211opeliunxp2 4690 . . . 4 (⟨⟨𝑉, 𝑊⟩, 𝐾⟩ ∈ 𝑥 ∈ V ({𝑥} × (1st𝑥)) ↔ (⟨𝑉, 𝑊⟩ ∈ V ∧ 𝐾 ∈ (1st ‘⟨𝑉, 𝑊⟩)))
1312simprbi 273 . . 3 (⟨⟨𝑉, 𝑊⟩, 𝐾⟩ ∈ 𝑥 ∈ V ({𝑥} × (1st𝑥)) → 𝐾 ∈ (1st ‘⟨𝑉, 𝑊⟩))
1410, 13syl 14 . 2 (𝑁 ∈ (⟨𝑉, 𝑊𝐹𝐾) → 𝐾 ∈ (1st ‘⟨𝑉, 𝑊⟩))
15 op1stg 6059 . . 3 ((𝑉𝑋𝑊𝑌) → (1st ‘⟨𝑉, 𝑊⟩) = 𝑉)
1615eleq2d 2210 . 2 ((𝑉𝑋𝑊𝑌) → (𝐾 ∈ (1st ‘⟨𝑉, 𝑊⟩) ↔ 𝐾𝑉))
1714, 16syl5ib 153 1 ((𝑉𝑋𝑊𝑌) → (𝑁 ∈ (⟨𝑉, 𝑊𝐹𝐾) → 𝐾𝑉))
 Colors of variables: wff set class Syntax hints:   → wi 4   ∧ wa 103   = wceq 1332   ∈ wcel 1481  Vcvv 2690  {csn 3533  ⟨cop 3536  ∪ ciun 3822   × cxp 4548  dom cdm 4550  Rel wrel 4555  Fun wfun 5128  ‘cfv 5134  (class class class)co 5785   ∈ cmpo 5787  1st c1st 6047 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4055  ax-pow 4107  ax-pr 4141  ax-un 4365 This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ral 2422  df-rex 2423  df-rab 2426  df-v 2692  df-sbc 2915  df-csb 3009  df-un 3081  df-in 3083  df-ss 3090  df-pw 3518  df-sn 3539  df-pr 3540  df-op 3542  df-uni 3746  df-iun 3824  df-br 3939  df-opab 3999  df-mpt 4000  df-id 4225  df-xp 4556  df-rel 4557  df-cnv 4558  df-co 4559  df-dm 4560  df-rn 4561  df-res 4562  df-ima 4563  df-iota 5099  df-fun 5136  df-fv 5142  df-ov 5788  df-oprab 5789  df-mpo 5790  df-1st 6049  df-2nd 6050 This theorem is referenced by:  mpoxopovel  6149
 Copyright terms: Public domain W3C validator