![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > mpoxopn0yelv | GIF version |
Description: If there is an element of the value of an operation given by a maps-to rule, where the first argument is a pair and the base set of the second argument is the first component of the first argument, then the second argument is an element of the first component of the first argument. (Contributed by Alexander van der Vekens, 10-Oct-2017.) |
Ref | Expression |
---|---|
mpoxopn0yelv.f | ⊢ 𝐹 = (𝑥 ∈ V, 𝑦 ∈ (1st ‘𝑥) ↦ 𝐶) |
Ref | Expression |
---|---|
mpoxopn0yelv | ⊢ ((𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌) → (𝑁 ∈ (〈𝑉, 𝑊〉𝐹𝐾) → 𝐾 ∈ 𝑉)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpoxopn0yelv.f | . . . . 5 ⊢ 𝐹 = (𝑥 ∈ V, 𝑦 ∈ (1st ‘𝑥) ↦ 𝐶) | |
2 | 1 | dmmpossx 6051 | . . . 4 ⊢ dom 𝐹 ⊆ ∪ 𝑥 ∈ V ({𝑥} × (1st ‘𝑥)) |
3 | 1 | mpofun 5827 | . . . . . . 7 ⊢ Fun 𝐹 |
4 | funrel 5098 | . . . . . . 7 ⊢ (Fun 𝐹 → Rel 𝐹) | |
5 | 3, 4 | ax-mp 7 | . . . . . 6 ⊢ Rel 𝐹 |
6 | relelfvdm 5407 | . . . . . 6 ⊢ ((Rel 𝐹 ∧ 𝑁 ∈ (𝐹‘〈〈𝑉, 𝑊〉, 𝐾〉)) → 〈〈𝑉, 𝑊〉, 𝐾〉 ∈ dom 𝐹) | |
7 | 5, 6 | mpan 418 | . . . . 5 ⊢ (𝑁 ∈ (𝐹‘〈〈𝑉, 𝑊〉, 𝐾〉) → 〈〈𝑉, 𝑊〉, 𝐾〉 ∈ dom 𝐹) |
8 | df-ov 5731 | . . . . 5 ⊢ (〈𝑉, 𝑊〉𝐹𝐾) = (𝐹‘〈〈𝑉, 𝑊〉, 𝐾〉) | |
9 | 7, 8 | eleq2s 2209 | . . . 4 ⊢ (𝑁 ∈ (〈𝑉, 𝑊〉𝐹𝐾) → 〈〈𝑉, 𝑊〉, 𝐾〉 ∈ dom 𝐹) |
10 | 2, 9 | sseldi 3061 | . . 3 ⊢ (𝑁 ∈ (〈𝑉, 𝑊〉𝐹𝐾) → 〈〈𝑉, 𝑊〉, 𝐾〉 ∈ ∪ 𝑥 ∈ V ({𝑥} × (1st ‘𝑥))) |
11 | fveq2 5375 | . . . . 5 ⊢ (𝑥 = 〈𝑉, 𝑊〉 → (1st ‘𝑥) = (1st ‘〈𝑉, 𝑊〉)) | |
12 | 11 | opeliunxp2 4639 | . . . 4 ⊢ (〈〈𝑉, 𝑊〉, 𝐾〉 ∈ ∪ 𝑥 ∈ V ({𝑥} × (1st ‘𝑥)) ↔ (〈𝑉, 𝑊〉 ∈ V ∧ 𝐾 ∈ (1st ‘〈𝑉, 𝑊〉))) |
13 | 12 | simprbi 271 | . . 3 ⊢ (〈〈𝑉, 𝑊〉, 𝐾〉 ∈ ∪ 𝑥 ∈ V ({𝑥} × (1st ‘𝑥)) → 𝐾 ∈ (1st ‘〈𝑉, 𝑊〉)) |
14 | 10, 13 | syl 14 | . 2 ⊢ (𝑁 ∈ (〈𝑉, 𝑊〉𝐹𝐾) → 𝐾 ∈ (1st ‘〈𝑉, 𝑊〉)) |
15 | op1stg 6002 | . . 3 ⊢ ((𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌) → (1st ‘〈𝑉, 𝑊〉) = 𝑉) | |
16 | 15 | eleq2d 2184 | . 2 ⊢ ((𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌) → (𝐾 ∈ (1st ‘〈𝑉, 𝑊〉) ↔ 𝐾 ∈ 𝑉)) |
17 | 14, 16 | syl5ib 153 | 1 ⊢ ((𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌) → (𝑁 ∈ (〈𝑉, 𝑊〉𝐹𝐾) → 𝐾 ∈ 𝑉)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 = wceq 1314 ∈ wcel 1463 Vcvv 2657 {csn 3493 〈cop 3496 ∪ ciun 3779 × cxp 4497 dom cdm 4499 Rel wrel 4504 Fun wfun 5075 ‘cfv 5081 (class class class)co 5728 ∈ cmpo 5730 1st c1st 5990 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 681 ax-5 1406 ax-7 1407 ax-gen 1408 ax-ie1 1452 ax-ie2 1453 ax-8 1465 ax-10 1466 ax-11 1467 ax-i12 1468 ax-bndl 1469 ax-4 1470 ax-13 1474 ax-14 1475 ax-17 1489 ax-i9 1493 ax-ial 1497 ax-i5r 1498 ax-ext 2097 ax-sep 4006 ax-pow 4058 ax-pr 4091 ax-un 4315 |
This theorem depends on definitions: df-bi 116 df-3an 947 df-tru 1317 df-nf 1420 df-sb 1719 df-eu 1978 df-mo 1979 df-clab 2102 df-cleq 2108 df-clel 2111 df-nfc 2244 df-ral 2395 df-rex 2396 df-rab 2399 df-v 2659 df-sbc 2879 df-csb 2972 df-un 3041 df-in 3043 df-ss 3050 df-pw 3478 df-sn 3499 df-pr 3500 df-op 3502 df-uni 3703 df-iun 3781 df-br 3896 df-opab 3950 df-mpt 3951 df-id 4175 df-xp 4505 df-rel 4506 df-cnv 4507 df-co 4508 df-dm 4509 df-rn 4510 df-res 4511 df-ima 4512 df-iota 5046 df-fun 5083 df-fv 5089 df-ov 5731 df-oprab 5732 df-mpo 5733 df-1st 5992 df-2nd 5993 |
This theorem is referenced by: mpoxopovel 6092 |
Copyright terms: Public domain | W3C validator |