![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > fdiagfn | GIF version |
Description: Functionality of the diagonal map. (Contributed by Stefan O'Rear, 24-Jan-2015.) |
Ref | Expression |
---|---|
fdiagfn.f | ⊢ 𝐹 = (𝑥 ∈ 𝐵 ↦ (𝐼 × {𝑥})) |
Ref | Expression |
---|---|
fdiagfn | ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) → 𝐹:𝐵⟶(𝐵 ↑𝑚 𝐼)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fconst6g 5452 | . . . 4 ⊢ (𝑥 ∈ 𝐵 → (𝐼 × {𝑥}):𝐼⟶𝐵) | |
2 | 1 | adantl 277 | . . 3 ⊢ (((𝐵 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) ∧ 𝑥 ∈ 𝐵) → (𝐼 × {𝑥}):𝐼⟶𝐵) |
3 | elmapg 6715 | . . . 4 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) → ((𝐼 × {𝑥}) ∈ (𝐵 ↑𝑚 𝐼) ↔ (𝐼 × {𝑥}):𝐼⟶𝐵)) | |
4 | 3 | adantr 276 | . . 3 ⊢ (((𝐵 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) ∧ 𝑥 ∈ 𝐵) → ((𝐼 × {𝑥}) ∈ (𝐵 ↑𝑚 𝐼) ↔ (𝐼 × {𝑥}):𝐼⟶𝐵)) |
5 | 2, 4 | mpbird 167 | . 2 ⊢ (((𝐵 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) ∧ 𝑥 ∈ 𝐵) → (𝐼 × {𝑥}) ∈ (𝐵 ↑𝑚 𝐼)) |
6 | fdiagfn.f | . 2 ⊢ 𝐹 = (𝑥 ∈ 𝐵 ↦ (𝐼 × {𝑥})) | |
7 | 5, 6 | fmptd 5712 | 1 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) → 𝐹:𝐵⟶(𝐵 ↑𝑚 𝐼)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1364 ∈ wcel 2164 {csn 3618 ↦ cmpt 4090 × cxp 4657 ⟶wf 5250 (class class class)co 5918 ↑𝑚 cmap 6702 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 ax-pr 4238 ax-un 4464 ax-setind 4569 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-ral 2477 df-rex 2478 df-rab 2481 df-v 2762 df-sbc 2986 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-br 4030 df-opab 4091 df-mpt 4092 df-id 4324 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-rn 4670 df-res 4671 df-ima 4672 df-iota 5215 df-fun 5256 df-fn 5257 df-f 5258 df-fv 5262 df-ov 5921 df-oprab 5922 df-mpo 5923 df-map 6704 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |