![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > fdiagfn | GIF version |
Description: Functionality of the diagonal map. (Contributed by Stefan O'Rear, 24-Jan-2015.) |
Ref | Expression |
---|---|
fdiagfn.f | ⊢ 𝐹 = (𝑥 ∈ 𝐵 ↦ (𝐼 × {𝑥})) |
Ref | Expression |
---|---|
fdiagfn | ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) → 𝐹:𝐵⟶(𝐵 ↑𝑚 𝐼)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fconst6g 5416 | . . . 4 ⊢ (𝑥 ∈ 𝐵 → (𝐼 × {𝑥}):𝐼⟶𝐵) | |
2 | 1 | adantl 277 | . . 3 ⊢ (((𝐵 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) ∧ 𝑥 ∈ 𝐵) → (𝐼 × {𝑥}):𝐼⟶𝐵) |
3 | elmapg 6664 | . . . 4 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) → ((𝐼 × {𝑥}) ∈ (𝐵 ↑𝑚 𝐼) ↔ (𝐼 × {𝑥}):𝐼⟶𝐵)) | |
4 | 3 | adantr 276 | . . 3 ⊢ (((𝐵 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) ∧ 𝑥 ∈ 𝐵) → ((𝐼 × {𝑥}) ∈ (𝐵 ↑𝑚 𝐼) ↔ (𝐼 × {𝑥}):𝐼⟶𝐵)) |
5 | 2, 4 | mpbird 167 | . 2 ⊢ (((𝐵 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) ∧ 𝑥 ∈ 𝐵) → (𝐼 × {𝑥}) ∈ (𝐵 ↑𝑚 𝐼)) |
6 | fdiagfn.f | . 2 ⊢ 𝐹 = (𝑥 ∈ 𝐵 ↦ (𝐼 × {𝑥})) | |
7 | 5, 6 | fmptd 5673 | 1 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) → 𝐹:𝐵⟶(𝐵 ↑𝑚 𝐼)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1353 ∈ wcel 2148 {csn 3594 ↦ cmpt 4066 × cxp 4626 ⟶wf 5214 (class class class)co 5878 ↑𝑚 cmap 6651 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-sep 4123 ax-pow 4176 ax-pr 4211 ax-un 4435 ax-setind 4538 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-ral 2460 df-rex 2461 df-rab 2464 df-v 2741 df-sbc 2965 df-dif 3133 df-un 3135 df-in 3137 df-ss 3144 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-br 4006 df-opab 4067 df-mpt 4068 df-id 4295 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-rn 4639 df-res 4640 df-ima 4641 df-iota 5180 df-fun 5220 df-fn 5221 df-f 5222 df-fv 5226 df-ov 5881 df-oprab 5882 df-mpo 5883 df-map 6653 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |