ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fdiagfn GIF version

Theorem fdiagfn 6792
Description: Functionality of the diagonal map. (Contributed by Stefan O'Rear, 24-Jan-2015.)
Hypothesis
Ref Expression
fdiagfn.f 𝐹 = (𝑥𝐵 ↦ (𝐼 × {𝑥}))
Assertion
Ref Expression
fdiagfn ((𝐵𝑉𝐼𝑊) → 𝐹:𝐵⟶(𝐵𝑚 𝐼))
Distinct variable groups:   𝑥,𝐵   𝑥,𝐼   𝑥,𝑉   𝑥,𝑊
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem fdiagfn
StepHypRef Expression
1 fconst6g 5486 . . . 4 (𝑥𝐵 → (𝐼 × {𝑥}):𝐼𝐵)
21adantl 277 . . 3 (((𝐵𝑉𝐼𝑊) ∧ 𝑥𝐵) → (𝐼 × {𝑥}):𝐼𝐵)
3 elmapg 6761 . . . 4 ((𝐵𝑉𝐼𝑊) → ((𝐼 × {𝑥}) ∈ (𝐵𝑚 𝐼) ↔ (𝐼 × {𝑥}):𝐼𝐵))
43adantr 276 . . 3 (((𝐵𝑉𝐼𝑊) ∧ 𝑥𝐵) → ((𝐼 × {𝑥}) ∈ (𝐵𝑚 𝐼) ↔ (𝐼 × {𝑥}):𝐼𝐵))
52, 4mpbird 167 . 2 (((𝐵𝑉𝐼𝑊) ∧ 𝑥𝐵) → (𝐼 × {𝑥}) ∈ (𝐵𝑚 𝐼))
6 fdiagfn.f . 2 𝐹 = (𝑥𝐵 ↦ (𝐼 × {𝑥}))
75, 6fmptd 5747 1 ((𝐵𝑉𝐼𝑊) → 𝐹:𝐵⟶(𝐵𝑚 𝐼))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1373  wcel 2177  {csn 3638  cmpt 4113   × cxp 4681  wf 5276  (class class class)co 5957  𝑚 cmap 6748
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4170  ax-pow 4226  ax-pr 4261  ax-un 4488  ax-setind 4593
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-ral 2490  df-rex 2491  df-rab 2494  df-v 2775  df-sbc 3003  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-br 4052  df-opab 4114  df-mpt 4115  df-id 4348  df-xp 4689  df-rel 4690  df-cnv 4691  df-co 4692  df-dm 4693  df-rn 4694  df-res 4695  df-ima 4696  df-iota 5241  df-fun 5282  df-fn 5283  df-f 5284  df-fv 5288  df-ov 5960  df-oprab 5961  df-mpo 5962  df-map 6750
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator