ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  grpcl GIF version

Theorem grpcl 13212
Description: Closure of the operation of a group. (Contributed by NM, 14-Aug-2011.)
Hypotheses
Ref Expression
grpcl.b 𝐵 = (Base‘𝐺)
grpcl.p + = (+g𝐺)
Assertion
Ref Expression
grpcl ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) → (𝑋 + 𝑌) ∈ 𝐵)

Proof of Theorem grpcl
StepHypRef Expression
1 grpmnd 13211 . 2 (𝐺 ∈ Grp → 𝐺 ∈ Mnd)
2 grpcl.b . . 3 𝐵 = (Base‘𝐺)
3 grpcl.p . . 3 + = (+g𝐺)
42, 3mndcl 13127 . 2 ((𝐺 ∈ Mnd ∧ 𝑋𝐵𝑌𝐵) → (𝑋 + 𝑌) ∈ 𝐵)
51, 4syl3an1 1282 1 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) → (𝑋 + 𝑌) ∈ 𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  w3a 980   = wceq 1364  wcel 2167  cfv 5259  (class class class)co 5925  Basecbs 12705  +gcplusg 12782  Mndcmnd 13120  Grpcgrp 13204
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-cnex 7989  ax-resscn 7990  ax-1re 7992  ax-addrcl 7995
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-sbc 2990  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-iota 5220  df-fun 5261  df-fn 5262  df-fv 5267  df-ov 5928  df-inn 9010  df-2 9068  df-ndx 12708  df-slot 12709  df-base 12711  df-plusg 12795  df-mgm 13060  df-sgrp 13106  df-mnd 13121  df-grp 13207
This theorem is referenced by:  grpcld  13218  grprcan  13241  grprinv  13255  grpressid  13265  grplmulf1o  13278  grpinvadd  13282  grpsubf  13283  grpsubadd  13292  grpaddsubass  13294  grpnpcan  13296  grpsubsub4  13297  grppnpcan2  13298  grplactcnv  13306  imasgrp  13319  mulgcl  13347  mulgaddcomlem  13353  mulgdir  13362  nmzsubg  13418  nsgid  13423  eqgcpbl  13436  qusgrp  13440  qusadd  13442  ecqusaddcl  13447  ghmrn  13465  idghm  13467  ghmnsgima  13476  ghmnsgpreima  13477  ghmf1o  13483  conjghm  13484  qusghm  13490  ablsub4  13521  abladdsub4  13522  invghm  13537  rngacl  13576  rngpropd  13589  ringacl  13664  lmodacl  13933  lmodvacl  13936  rmodislmod  13985
  Copyright terms: Public domain W3C validator