ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  grpcl GIF version

Theorem grpcl 13549
Description: Closure of the operation of a group. (Contributed by NM, 14-Aug-2011.)
Hypotheses
Ref Expression
grpcl.b 𝐵 = (Base‘𝐺)
grpcl.p + = (+g𝐺)
Assertion
Ref Expression
grpcl ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) → (𝑋 + 𝑌) ∈ 𝐵)

Proof of Theorem grpcl
StepHypRef Expression
1 grpmnd 13548 . 2 (𝐺 ∈ Grp → 𝐺 ∈ Mnd)
2 grpcl.b . . 3 𝐵 = (Base‘𝐺)
3 grpcl.p . . 3 + = (+g𝐺)
42, 3mndcl 13464 . 2 ((𝐺 ∈ Mnd ∧ 𝑋𝐵𝑌𝐵) → (𝑋 + 𝑌) ∈ 𝐵)
51, 4syl3an1 1304 1 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) → (𝑋 + 𝑌) ∈ 𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  w3a 1002   = wceq 1395  wcel 2200  cfv 5318  (class class class)co 6007  Basecbs 13040  +gcplusg 13118  Mndcmnd 13457  Grpcgrp 13541
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-cnex 8098  ax-resscn 8099  ax-1re 8101  ax-addrcl 8104
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-sbc 3029  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-iota 5278  df-fun 5320  df-fn 5321  df-fv 5326  df-ov 6010  df-inn 9119  df-2 9177  df-ndx 13043  df-slot 13044  df-base 13046  df-plusg 13131  df-mgm 13397  df-sgrp 13443  df-mnd 13458  df-grp 13544
This theorem is referenced by:  grpcld  13555  grprcan  13578  grprinv  13592  grpressid  13602  grplmulf1o  13615  grpinvadd  13619  grpsubf  13620  grpsubadd  13629  grpaddsubass  13631  grpnpcan  13633  grpsubsub4  13634  grppnpcan2  13635  grplactcnv  13643  imasgrp  13656  mulgcl  13684  mulgaddcomlem  13690  mulgdir  13699  nmzsubg  13755  nsgid  13760  eqgcpbl  13773  qusgrp  13777  qusadd  13779  ecqusaddcl  13784  ghmrn  13802  idghm  13804  ghmnsgima  13813  ghmnsgpreima  13814  ghmf1o  13820  conjghm  13821  qusghm  13827  ablsub4  13858  abladdsub4  13859  invghm  13874  rngacl  13913  rngpropd  13926  ringacl  14001  lmodacl  14271  lmodvacl  14274  rmodislmod  14323
  Copyright terms: Public domain W3C validator