| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > grpplusf | GIF version | ||
| Description: The group addition operation is a function. (Contributed by Mario Carneiro, 14-Aug-2015.) |
| Ref | Expression |
|---|---|
| grpplusf.1 | ⊢ 𝐵 = (Base‘𝐺) |
| grpplusf.2 | ⊢ 𝐹 = (+𝑓‘𝐺) |
| Ref | Expression |
|---|---|
| grpplusf | ⊢ (𝐺 ∈ Grp → 𝐹:(𝐵 × 𝐵)⟶𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpmnd 13409 | . 2 ⊢ (𝐺 ∈ Grp → 𝐺 ∈ Mnd) | |
| 2 | grpplusf.1 | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
| 3 | grpplusf.2 | . . 3 ⊢ 𝐹 = (+𝑓‘𝐺) | |
| 4 | 2, 3 | mndplusf 13335 | . 2 ⊢ (𝐺 ∈ Mnd → 𝐹:(𝐵 × 𝐵)⟶𝐵) |
| 5 | 1, 4 | syl 14 | 1 ⊢ (𝐺 ∈ Grp → 𝐹:(𝐵 × 𝐵)⟶𝐵) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1373 ∈ wcel 2177 × cxp 4680 ⟶wf 5275 ‘cfv 5279 Basecbs 12902 +𝑓cplusf 13255 Mndcmnd 13318 Grpcgrp 13402 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4166 ax-sep 4169 ax-pow 4225 ax-pr 4260 ax-un 4487 ax-cnex 8031 ax-resscn 8032 ax-1re 8034 ax-addrcl 8037 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-reu 2492 df-rab 2494 df-v 2775 df-sbc 3003 df-csb 3098 df-un 3174 df-in 3176 df-ss 3183 df-pw 3622 df-sn 3643 df-pr 3644 df-op 3646 df-uni 3856 df-int 3891 df-iun 3934 df-br 4051 df-opab 4113 df-mpt 4114 df-id 4347 df-xp 4688 df-rel 4689 df-cnv 4690 df-co 4691 df-dm 4692 df-rn 4693 df-res 4694 df-ima 4695 df-iota 5240 df-fun 5281 df-fn 5282 df-f 5283 df-f1 5284 df-fo 5285 df-f1o 5286 df-fv 5287 df-ov 5959 df-oprab 5960 df-mpo 5961 df-1st 6238 df-2nd 6239 df-inn 9052 df-2 9110 df-ndx 12905 df-slot 12906 df-base 12908 df-plusg 12992 df-plusf 13257 df-mgm 13258 df-sgrp 13304 df-mnd 13319 df-grp 13405 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |