ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulgneg2 GIF version

Theorem mulgneg2 13688
Description: Group multiple (exponentiation) operation at a negative integer. (Contributed by Mario Carneiro, 13-Dec-2014.)
Hypotheses
Ref Expression
mulgneg2.b 𝐵 = (Base‘𝐺)
mulgneg2.m · = (.g𝐺)
mulgneg2.i 𝐼 = (invg𝐺)
Assertion
Ref Expression
mulgneg2 ((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) → (-𝑁 · 𝑋) = (𝑁 · (𝐼𝑋)))

Proof of Theorem mulgneg2
Dummy variables 𝑥 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 negeq 8335 . . . . . . 7 (𝑥 = 0 → -𝑥 = -0)
2 neg0 8388 . . . . . . 7 -0 = 0
31, 2eqtrdi 2278 . . . . . 6 (𝑥 = 0 → -𝑥 = 0)
43oveq1d 6015 . . . . 5 (𝑥 = 0 → (-𝑥 · 𝑋) = (0 · 𝑋))
5 oveq1 6007 . . . . 5 (𝑥 = 0 → (𝑥 · (𝐼𝑋)) = (0 · (𝐼𝑋)))
64, 5eqeq12d 2244 . . . 4 (𝑥 = 0 → ((-𝑥 · 𝑋) = (𝑥 · (𝐼𝑋)) ↔ (0 · 𝑋) = (0 · (𝐼𝑋))))
7 negeq 8335 . . . . . 6 (𝑥 = 𝑛 → -𝑥 = -𝑛)
87oveq1d 6015 . . . . 5 (𝑥 = 𝑛 → (-𝑥 · 𝑋) = (-𝑛 · 𝑋))
9 oveq1 6007 . . . . 5 (𝑥 = 𝑛 → (𝑥 · (𝐼𝑋)) = (𝑛 · (𝐼𝑋)))
108, 9eqeq12d 2244 . . . 4 (𝑥 = 𝑛 → ((-𝑥 · 𝑋) = (𝑥 · (𝐼𝑋)) ↔ (-𝑛 · 𝑋) = (𝑛 · (𝐼𝑋))))
11 negeq 8335 . . . . . 6 (𝑥 = (𝑛 + 1) → -𝑥 = -(𝑛 + 1))
1211oveq1d 6015 . . . . 5 (𝑥 = (𝑛 + 1) → (-𝑥 · 𝑋) = (-(𝑛 + 1) · 𝑋))
13 oveq1 6007 . . . . 5 (𝑥 = (𝑛 + 1) → (𝑥 · (𝐼𝑋)) = ((𝑛 + 1) · (𝐼𝑋)))
1412, 13eqeq12d 2244 . . . 4 (𝑥 = (𝑛 + 1) → ((-𝑥 · 𝑋) = (𝑥 · (𝐼𝑋)) ↔ (-(𝑛 + 1) · 𝑋) = ((𝑛 + 1) · (𝐼𝑋))))
15 negeq 8335 . . . . . 6 (𝑥 = -𝑛 → -𝑥 = --𝑛)
1615oveq1d 6015 . . . . 5 (𝑥 = -𝑛 → (-𝑥 · 𝑋) = (--𝑛 · 𝑋))
17 oveq1 6007 . . . . 5 (𝑥 = -𝑛 → (𝑥 · (𝐼𝑋)) = (-𝑛 · (𝐼𝑋)))
1816, 17eqeq12d 2244 . . . 4 (𝑥 = -𝑛 → ((-𝑥 · 𝑋) = (𝑥 · (𝐼𝑋)) ↔ (--𝑛 · 𝑋) = (-𝑛 · (𝐼𝑋))))
19 negeq 8335 . . . . . 6 (𝑥 = 𝑁 → -𝑥 = -𝑁)
2019oveq1d 6015 . . . . 5 (𝑥 = 𝑁 → (-𝑥 · 𝑋) = (-𝑁 · 𝑋))
21 oveq1 6007 . . . . 5 (𝑥 = 𝑁 → (𝑥 · (𝐼𝑋)) = (𝑁 · (𝐼𝑋)))
2220, 21eqeq12d 2244 . . . 4 (𝑥 = 𝑁 → ((-𝑥 · 𝑋) = (𝑥 · (𝐼𝑋)) ↔ (-𝑁 · 𝑋) = (𝑁 · (𝐼𝑋))))
23 mulgneg2.b . . . . . . 7 𝐵 = (Base‘𝐺)
24 eqid 2229 . . . . . . 7 (0g𝐺) = (0g𝐺)
25 mulgneg2.m . . . . . . 7 · = (.g𝐺)
2623, 24, 25mulg0 13657 . . . . . 6 (𝑋𝐵 → (0 · 𝑋) = (0g𝐺))
2726adantl 277 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (0 · 𝑋) = (0g𝐺))
28 mulgneg2.i . . . . . . 7 𝐼 = (invg𝐺)
2923, 28grpinvcl 13576 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (𝐼𝑋) ∈ 𝐵)
3023, 24, 25mulg0 13657 . . . . . 6 ((𝐼𝑋) ∈ 𝐵 → (0 · (𝐼𝑋)) = (0g𝐺))
3129, 30syl 14 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (0 · (𝐼𝑋)) = (0g𝐺))
3227, 31eqtr4d 2265 . . . 4 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (0 · 𝑋) = (0 · (𝐼𝑋)))
33 oveq1 6007 . . . . . 6 ((-𝑛 · 𝑋) = (𝑛 · (𝐼𝑋)) → ((-𝑛 · 𝑋)(+g𝐺)(𝐼𝑋)) = ((𝑛 · (𝐼𝑋))(+g𝐺)(𝐼𝑋)))
34 nn0cn 9375 . . . . . . . . . . 11 (𝑛 ∈ ℕ0𝑛 ∈ ℂ)
3534adantl 277 . . . . . . . . . 10 (((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ 𝑛 ∈ ℕ0) → 𝑛 ∈ ℂ)
36 ax-1cn 8088 . . . . . . . . . 10 1 ∈ ℂ
37 negdi 8399 . . . . . . . . . 10 ((𝑛 ∈ ℂ ∧ 1 ∈ ℂ) → -(𝑛 + 1) = (-𝑛 + -1))
3835, 36, 37sylancl 413 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ 𝑛 ∈ ℕ0) → -(𝑛 + 1) = (-𝑛 + -1))
3938oveq1d 6015 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ 𝑛 ∈ ℕ0) → (-(𝑛 + 1) · 𝑋) = ((-𝑛 + -1) · 𝑋))
40 simpll 527 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ 𝑛 ∈ ℕ0) → 𝐺 ∈ Grp)
41 nn0negz 9476 . . . . . . . . . 10 (𝑛 ∈ ℕ0 → -𝑛 ∈ ℤ)
4241adantl 277 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ 𝑛 ∈ ℕ0) → -𝑛 ∈ ℤ)
43 1z 9468 . . . . . . . . . 10 1 ∈ ℤ
44 znegcl 9473 . . . . . . . . . 10 (1 ∈ ℤ → -1 ∈ ℤ)
4543, 44mp1i 10 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ 𝑛 ∈ ℕ0) → -1 ∈ ℤ)
46 simplr 528 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ 𝑛 ∈ ℕ0) → 𝑋𝐵)
47 eqid 2229 . . . . . . . . . 10 (+g𝐺) = (+g𝐺)
4823, 25, 47mulgdir 13686 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ (-𝑛 ∈ ℤ ∧ -1 ∈ ℤ ∧ 𝑋𝐵)) → ((-𝑛 + -1) · 𝑋) = ((-𝑛 · 𝑋)(+g𝐺)(-1 · 𝑋)))
4940, 42, 45, 46, 48syl13anc 1273 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ 𝑛 ∈ ℕ0) → ((-𝑛 + -1) · 𝑋) = ((-𝑛 · 𝑋)(+g𝐺)(-1 · 𝑋)))
5023, 25, 28mulgm1 13674 . . . . . . . . . 10 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (-1 · 𝑋) = (𝐼𝑋))
5150adantr 276 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ 𝑛 ∈ ℕ0) → (-1 · 𝑋) = (𝐼𝑋))
5251oveq2d 6016 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ 𝑛 ∈ ℕ0) → ((-𝑛 · 𝑋)(+g𝐺)(-1 · 𝑋)) = ((-𝑛 · 𝑋)(+g𝐺)(𝐼𝑋)))
5339, 49, 523eqtrd 2266 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ 𝑛 ∈ ℕ0) → (-(𝑛 + 1) · 𝑋) = ((-𝑛 · 𝑋)(+g𝐺)(𝐼𝑋)))
54 grpmnd 13535 . . . . . . . . 9 (𝐺 ∈ Grp → 𝐺 ∈ Mnd)
5554ad2antrr 488 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ 𝑛 ∈ ℕ0) → 𝐺 ∈ Mnd)
56 simpr 110 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ 𝑛 ∈ ℕ0) → 𝑛 ∈ ℕ0)
5729adantr 276 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ 𝑛 ∈ ℕ0) → (𝐼𝑋) ∈ 𝐵)
5823, 25, 47mulgnn0p1 13665 . . . . . . . 8 ((𝐺 ∈ Mnd ∧ 𝑛 ∈ ℕ0 ∧ (𝐼𝑋) ∈ 𝐵) → ((𝑛 + 1) · (𝐼𝑋)) = ((𝑛 · (𝐼𝑋))(+g𝐺)(𝐼𝑋)))
5955, 56, 57, 58syl3anc 1271 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ 𝑛 ∈ ℕ0) → ((𝑛 + 1) · (𝐼𝑋)) = ((𝑛 · (𝐼𝑋))(+g𝐺)(𝐼𝑋)))
6053, 59eqeq12d 2244 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ 𝑛 ∈ ℕ0) → ((-(𝑛 + 1) · 𝑋) = ((𝑛 + 1) · (𝐼𝑋)) ↔ ((-𝑛 · 𝑋)(+g𝐺)(𝐼𝑋)) = ((𝑛 · (𝐼𝑋))(+g𝐺)(𝐼𝑋))))
6133, 60imbitrrid 156 . . . . 5 (((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ 𝑛 ∈ ℕ0) → ((-𝑛 · 𝑋) = (𝑛 · (𝐼𝑋)) → (-(𝑛 + 1) · 𝑋) = ((𝑛 + 1) · (𝐼𝑋))))
6261ex 115 . . . 4 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (𝑛 ∈ ℕ0 → ((-𝑛 · 𝑋) = (𝑛 · (𝐼𝑋)) → (-(𝑛 + 1) · 𝑋) = ((𝑛 + 1) · (𝐼𝑋)))))
63 fveq2 5626 . . . . . 6 ((-𝑛 · 𝑋) = (𝑛 · (𝐼𝑋)) → (𝐼‘(-𝑛 · 𝑋)) = (𝐼‘(𝑛 · (𝐼𝑋))))
64 simpll 527 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ 𝑛 ∈ ℕ) → 𝐺 ∈ Grp)
65 nnnegz 9445 . . . . . . . . 9 (𝑛 ∈ ℕ → -𝑛 ∈ ℤ)
6665adantl 277 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ 𝑛 ∈ ℕ) → -𝑛 ∈ ℤ)
67 simplr 528 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ 𝑛 ∈ ℕ) → 𝑋𝐵)
6823, 25, 28mulgneg 13672 . . . . . . . 8 ((𝐺 ∈ Grp ∧ -𝑛 ∈ ℤ ∧ 𝑋𝐵) → (--𝑛 · 𝑋) = (𝐼‘(-𝑛 · 𝑋)))
6964, 66, 67, 68syl3anc 1271 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ 𝑛 ∈ ℕ) → (--𝑛 · 𝑋) = (𝐼‘(-𝑛 · 𝑋)))
70 id 19 . . . . . . . 8 (𝑛 ∈ ℕ → 𝑛 ∈ ℕ)
7123, 25, 28mulgnegnn 13664 . . . . . . . 8 ((𝑛 ∈ ℕ ∧ (𝐼𝑋) ∈ 𝐵) → (-𝑛 · (𝐼𝑋)) = (𝐼‘(𝑛 · (𝐼𝑋))))
7270, 29, 71syl2anr 290 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ 𝑛 ∈ ℕ) → (-𝑛 · (𝐼𝑋)) = (𝐼‘(𝑛 · (𝐼𝑋))))
7369, 72eqeq12d 2244 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ 𝑛 ∈ ℕ) → ((--𝑛 · 𝑋) = (-𝑛 · (𝐼𝑋)) ↔ (𝐼‘(-𝑛 · 𝑋)) = (𝐼‘(𝑛 · (𝐼𝑋)))))
7463, 73imbitrrid 156 . . . . 5 (((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ 𝑛 ∈ ℕ) → ((-𝑛 · 𝑋) = (𝑛 · (𝐼𝑋)) → (--𝑛 · 𝑋) = (-𝑛 · (𝐼𝑋))))
7574ex 115 . . . 4 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (𝑛 ∈ ℕ → ((-𝑛 · 𝑋) = (𝑛 · (𝐼𝑋)) → (--𝑛 · 𝑋) = (-𝑛 · (𝐼𝑋)))))
766, 10, 14, 18, 22, 32, 62, 75zindd 9561 . . 3 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (𝑁 ∈ ℤ → (-𝑁 · 𝑋) = (𝑁 · (𝐼𝑋))))
77763impia 1224 . 2 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑁 ∈ ℤ) → (-𝑁 · 𝑋) = (𝑁 · (𝐼𝑋)))
78773com23 1233 1 ((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) → (-𝑁 · 𝑋) = (𝑁 · (𝐼𝑋)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 1002   = wceq 1395  wcel 2200  cfv 5317  (class class class)co 6000  cc 7993  0cc0 7995  1c1 7996   + caddc 7998  -cneg 8314  cn 9106  0cn0 9365  cz 9442  Basecbs 13027  +gcplusg 13105  0gc0g 13284  Mndcmnd 13444  Grpcgrp 13528  invgcminusg 13529  .gcmg 13651
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-iinf 4679  ax-cnex 8086  ax-resscn 8087  ax-1cn 8088  ax-1re 8089  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-addcom 8095  ax-addass 8097  ax-distr 8099  ax-i2m1 8100  ax-0lt1 8101  ax-0id 8103  ax-rnegex 8104  ax-cnre 8106  ax-pre-ltirr 8107  ax-pre-ltwlin 8108  ax-pre-lttrn 8109  ax-pre-ltadd 8111
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-id 4383  df-iord 4456  df-on 4458  df-ilim 4459  df-suc 4461  df-iom 4682  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-riota 5953  df-ov 6003  df-oprab 6004  df-mpo 6005  df-1st 6284  df-2nd 6285  df-recs 6449  df-frec 6535  df-pnf 8179  df-mnf 8180  df-xr 8181  df-ltxr 8182  df-le 8183  df-sub 8315  df-neg 8316  df-inn 9107  df-2 9165  df-n0 9366  df-z 9443  df-uz 9719  df-fz 10201  df-seqfrec 10665  df-ndx 13030  df-slot 13031  df-base 13033  df-plusg 13118  df-0g 13286  df-mgm 13384  df-sgrp 13430  df-mnd 13445  df-grp 13531  df-minusg 13532  df-mulg 13652
This theorem is referenced by:  mulgass  13691
  Copyright terms: Public domain W3C validator