ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  grpidcl GIF version

Theorem grpidcl 13528
Description: The identity element of a group belongs to the group. (Contributed by NM, 27-Aug-2011.) (Revised by Mario Carneiro, 27-Dec-2014.)
Hypotheses
Ref Expression
grpidcl.b 𝐵 = (Base‘𝐺)
grpidcl.o 0 = (0g𝐺)
Assertion
Ref Expression
grpidcl (𝐺 ∈ Grp → 0𝐵)

Proof of Theorem grpidcl
StepHypRef Expression
1 grpmnd 13506 . 2 (𝐺 ∈ Grp → 𝐺 ∈ Mnd)
2 grpidcl.b . . 3 𝐵 = (Base‘𝐺)
3 grpidcl.o . . 3 0 = (0g𝐺)
42, 3mndidcl 13429 . 2 (𝐺 ∈ Mnd → 0𝐵)
51, 4syl 14 1 (𝐺 ∈ Grp → 0𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1375  wcel 2180  cfv 5294  Basecbs 12998  0gc0g 13255  Mndcmnd 13415  Grpcgrp 13499
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-13 2182  ax-14 2183  ax-ext 2191  ax-sep 4181  ax-pow 4237  ax-pr 4272  ax-un 4501  ax-cnex 8058  ax-resscn 8059  ax-1re 8061  ax-addrcl 8064
This theorem depends on definitions:  df-bi 117  df-3an 985  df-tru 1378  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ral 2493  df-rex 2494  df-reu 2495  df-rmo 2496  df-rab 2497  df-v 2781  df-sbc 3009  df-csb 3105  df-un 3181  df-in 3183  df-ss 3190  df-pw 3631  df-sn 3652  df-pr 3653  df-op 3655  df-uni 3868  df-int 3903  df-br 4063  df-opab 4125  df-mpt 4126  df-id 4361  df-xp 4702  df-rel 4703  df-cnv 4704  df-co 4705  df-dm 4706  df-rn 4707  df-res 4708  df-iota 5254  df-fun 5296  df-fn 5297  df-fv 5302  df-riota 5927  df-ov 5977  df-inn 9079  df-2 9137  df-ndx 13001  df-slot 13002  df-base 13004  df-plusg 13089  df-0g 13257  df-mgm 13355  df-sgrp 13401  df-mnd 13416  df-grp 13502
This theorem is referenced by:  grpbn0  13529  grprcan  13536  grpid  13538  isgrpid2  13539  grprinv  13550  grpidinv  13558  grpinvid  13559  grpressid  13560  grpidrcan  13564  grpidlcan  13565  grpidssd  13575  grpinvval2  13582  grpsubid1  13584  dfgrp3m  13598  grpsubpropd2  13604  imasgrp  13614  mulgcl  13642  mulgz  13653  subg0  13683  subg0cl  13685  issubg2m  13692  issubg4m  13696  grpissubg  13697  subgintm  13701  0subg  13702  nmzsubg  13713  0nsg  13717  triv1nsgd  13721  eqgid  13729  eqg0el  13732  qusgrp  13735  qus0  13738  ghmid  13752  ghmrn  13760  ghmpreima  13769  f1ghm0to0  13775  kerf1ghm  13777  rng0cl  13872  rnglz  13874  rngrz  13875  ring0cl  13950  ringlz  13972  ringrz  13973  lmod0vcl  14246  lmodfopnelem1  14253  rmodislmodlem  14279  rmodislmod  14280  islss3  14308  psr0cl  14610  psr0lid  14611  mplsubgfilemm  14627
  Copyright terms: Public domain W3C validator