ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  grpidcl GIF version

Theorem grpidcl 13104
Description: The identity element of a group belongs to the group. (Contributed by NM, 27-Aug-2011.) (Revised by Mario Carneiro, 27-Dec-2014.)
Hypotheses
Ref Expression
grpidcl.b 𝐵 = (Base‘𝐺)
grpidcl.o 0 = (0g𝐺)
Assertion
Ref Expression
grpidcl (𝐺 ∈ Grp → 0𝐵)

Proof of Theorem grpidcl
StepHypRef Expression
1 grpmnd 13082 . 2 (𝐺 ∈ Grp → 𝐺 ∈ Mnd)
2 grpidcl.b . . 3 𝐵 = (Base‘𝐺)
3 grpidcl.o . . 3 0 = (0g𝐺)
42, 3mndidcl 13014 . 2 (𝐺 ∈ Mnd → 0𝐵)
51, 4syl 14 1 (𝐺 ∈ Grp → 0𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1364  wcel 2164  cfv 5255  Basecbs 12621  0gc0g 12870  Mndcmnd 13000  Grpcgrp 13075
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-cnex 7965  ax-resscn 7966  ax-1re 7968  ax-addrcl 7971
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-iota 5216  df-fun 5257  df-fn 5258  df-fv 5263  df-riota 5874  df-ov 5922  df-inn 8985  df-2 9043  df-ndx 12624  df-slot 12625  df-base 12627  df-plusg 12711  df-0g 12872  df-mgm 12942  df-sgrp 12988  df-mnd 13001  df-grp 13078
This theorem is referenced by:  grpbn0  13105  grprcan  13112  grpid  13114  isgrpid2  13115  grprinv  13126  grpidinv  13134  grpinvid  13135  grpressid  13136  grpidrcan  13140  grpidlcan  13141  grpidssd  13151  grpinvval2  13158  grpsubid1  13160  dfgrp3m  13174  grpsubpropd2  13180  imasgrp  13184  mulgcl  13212  mulgz  13223  subg0  13253  subg0cl  13255  issubg2m  13262  issubg4m  13266  grpissubg  13267  subgintm  13271  0subg  13272  nmzsubg  13283  0nsg  13287  triv1nsgd  13291  eqgid  13299  eqg0el  13302  qusgrp  13305  qus0  13308  ghmid  13322  ghmrn  13330  ghmpreima  13339  f1ghm0to0  13345  kerf1ghm  13347  rng0cl  13442  rnglz  13444  rngrz  13445  ring0cl  13520  ringlz  13542  ringrz  13543  lmod0vcl  13816  lmodfopnelem1  13823  rmodislmodlem  13849  rmodislmod  13850  islss3  13878
  Copyright terms: Public domain W3C validator