| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > grpidcl | GIF version | ||
| Description: The identity element of a group belongs to the group. (Contributed by NM, 27-Aug-2011.) (Revised by Mario Carneiro, 27-Dec-2014.) |
| Ref | Expression |
|---|---|
| grpidcl.b | ⊢ 𝐵 = (Base‘𝐺) |
| grpidcl.o | ⊢ 0 = (0g‘𝐺) |
| Ref | Expression |
|---|---|
| grpidcl | ⊢ (𝐺 ∈ Grp → 0 ∈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpmnd 13211 | . 2 ⊢ (𝐺 ∈ Grp → 𝐺 ∈ Mnd) | |
| 2 | grpidcl.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
| 3 | grpidcl.o | . . 3 ⊢ 0 = (0g‘𝐺) | |
| 4 | 2, 3 | mndidcl 13134 | . 2 ⊢ (𝐺 ∈ Mnd → 0 ∈ 𝐵) |
| 5 | 1, 4 | syl 14 | 1 ⊢ (𝐺 ∈ Grp → 0 ∈ 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2167 ‘cfv 5259 Basecbs 12705 0gc0g 12960 Mndcmnd 13120 Grpcgrp 13204 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-cnex 7989 ax-resscn 7990 ax-1re 7992 ax-addrcl 7995 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-iota 5220 df-fun 5261 df-fn 5262 df-fv 5267 df-riota 5880 df-ov 5928 df-inn 9010 df-2 9068 df-ndx 12708 df-slot 12709 df-base 12711 df-plusg 12795 df-0g 12962 df-mgm 13060 df-sgrp 13106 df-mnd 13121 df-grp 13207 |
| This theorem is referenced by: grpbn0 13234 grprcan 13241 grpid 13243 isgrpid2 13244 grprinv 13255 grpidinv 13263 grpinvid 13264 grpressid 13265 grpidrcan 13269 grpidlcan 13270 grpidssd 13280 grpinvval2 13287 grpsubid1 13289 dfgrp3m 13303 grpsubpropd2 13309 imasgrp 13319 mulgcl 13347 mulgz 13358 subg0 13388 subg0cl 13390 issubg2m 13397 issubg4m 13401 grpissubg 13402 subgintm 13406 0subg 13407 nmzsubg 13418 0nsg 13422 triv1nsgd 13426 eqgid 13434 eqg0el 13437 qusgrp 13440 qus0 13443 ghmid 13457 ghmrn 13465 ghmpreima 13474 f1ghm0to0 13480 kerf1ghm 13482 rng0cl 13577 rnglz 13579 rngrz 13580 ring0cl 13655 ringlz 13677 ringrz 13678 lmod0vcl 13951 lmodfopnelem1 13958 rmodislmodlem 13984 rmodislmod 13985 islss3 14013 psr0cl 14311 psr0lid 14312 |
| Copyright terms: Public domain | W3C validator |