ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  grpidcl GIF version

Theorem grpidcl 13231
Description: The identity element of a group belongs to the group. (Contributed by NM, 27-Aug-2011.) (Revised by Mario Carneiro, 27-Dec-2014.)
Hypotheses
Ref Expression
grpidcl.b 𝐵 = (Base‘𝐺)
grpidcl.o 0 = (0g𝐺)
Assertion
Ref Expression
grpidcl (𝐺 ∈ Grp → 0𝐵)

Proof of Theorem grpidcl
StepHypRef Expression
1 grpmnd 13209 . 2 (𝐺 ∈ Grp → 𝐺 ∈ Mnd)
2 grpidcl.b . . 3 𝐵 = (Base‘𝐺)
3 grpidcl.o . . 3 0 = (0g𝐺)
42, 3mndidcl 13132 . 2 (𝐺 ∈ Mnd → 0𝐵)
51, 4syl 14 1 (𝐺 ∈ Grp → 0𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1364  wcel 2167  cfv 5259  Basecbs 12703  0gc0g 12958  Mndcmnd 13118  Grpcgrp 13202
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-cnex 7987  ax-resscn 7988  ax-1re 7990  ax-addrcl 7993
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-iota 5220  df-fun 5261  df-fn 5262  df-fv 5267  df-riota 5880  df-ov 5928  df-inn 9008  df-2 9066  df-ndx 12706  df-slot 12707  df-base 12709  df-plusg 12793  df-0g 12960  df-mgm 13058  df-sgrp 13104  df-mnd 13119  df-grp 13205
This theorem is referenced by:  grpbn0  13232  grprcan  13239  grpid  13241  isgrpid2  13242  grprinv  13253  grpidinv  13261  grpinvid  13262  grpressid  13263  grpidrcan  13267  grpidlcan  13268  grpidssd  13278  grpinvval2  13285  grpsubid1  13287  dfgrp3m  13301  grpsubpropd2  13307  imasgrp  13317  mulgcl  13345  mulgz  13356  subg0  13386  subg0cl  13388  issubg2m  13395  issubg4m  13399  grpissubg  13400  subgintm  13404  0subg  13405  nmzsubg  13416  0nsg  13420  triv1nsgd  13424  eqgid  13432  eqg0el  13435  qusgrp  13438  qus0  13441  ghmid  13455  ghmrn  13463  ghmpreima  13472  f1ghm0to0  13478  kerf1ghm  13480  rng0cl  13575  rnglz  13577  rngrz  13578  ring0cl  13653  ringlz  13675  ringrz  13676  lmod0vcl  13949  lmodfopnelem1  13956  rmodislmodlem  13982  rmodislmod  13983  islss3  14011  psr0cl  14309  psr0lid  14310
  Copyright terms: Public domain W3C validator