| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > grpidcl | GIF version | ||
| Description: The identity element of a group belongs to the group. (Contributed by NM, 27-Aug-2011.) (Revised by Mario Carneiro, 27-Dec-2014.) |
| Ref | Expression |
|---|---|
| grpidcl.b | ⊢ 𝐵 = (Base‘𝐺) |
| grpidcl.o | ⊢ 0 = (0g‘𝐺) |
| Ref | Expression |
|---|---|
| grpidcl | ⊢ (𝐺 ∈ Grp → 0 ∈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpmnd 13209 | . 2 ⊢ (𝐺 ∈ Grp → 𝐺 ∈ Mnd) | |
| 2 | grpidcl.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
| 3 | grpidcl.o | . . 3 ⊢ 0 = (0g‘𝐺) | |
| 4 | 2, 3 | mndidcl 13132 | . 2 ⊢ (𝐺 ∈ Mnd → 0 ∈ 𝐵) |
| 5 | 1, 4 | syl 14 | 1 ⊢ (𝐺 ∈ Grp → 0 ∈ 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2167 ‘cfv 5259 Basecbs 12703 0gc0g 12958 Mndcmnd 13118 Grpcgrp 13202 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-cnex 7987 ax-resscn 7988 ax-1re 7990 ax-addrcl 7993 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-iota 5220 df-fun 5261 df-fn 5262 df-fv 5267 df-riota 5880 df-ov 5928 df-inn 9008 df-2 9066 df-ndx 12706 df-slot 12707 df-base 12709 df-plusg 12793 df-0g 12960 df-mgm 13058 df-sgrp 13104 df-mnd 13119 df-grp 13205 |
| This theorem is referenced by: grpbn0 13232 grprcan 13239 grpid 13241 isgrpid2 13242 grprinv 13253 grpidinv 13261 grpinvid 13262 grpressid 13263 grpidrcan 13267 grpidlcan 13268 grpidssd 13278 grpinvval2 13285 grpsubid1 13287 dfgrp3m 13301 grpsubpropd2 13307 imasgrp 13317 mulgcl 13345 mulgz 13356 subg0 13386 subg0cl 13388 issubg2m 13395 issubg4m 13399 grpissubg 13400 subgintm 13404 0subg 13405 nmzsubg 13416 0nsg 13420 triv1nsgd 13424 eqgid 13432 eqg0el 13435 qusgrp 13438 qus0 13441 ghmid 13455 ghmrn 13463 ghmpreima 13472 f1ghm0to0 13478 kerf1ghm 13480 rng0cl 13575 rnglz 13577 rngrz 13578 ring0cl 13653 ringlz 13675 ringrz 13676 lmod0vcl 13949 lmodfopnelem1 13956 rmodislmodlem 13982 rmodislmod 13983 islss3 14011 psr0cl 14309 psr0lid 14310 |
| Copyright terms: Public domain | W3C validator |