ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulgz GIF version

Theorem mulgz 13561
Description: A group multiple of the identity, for integer multiple. (Contributed by Mario Carneiro, 13-Dec-2014.)
Hypotheses
Ref Expression
mulgnn0z.b 𝐵 = (Base‘𝐺)
mulgnn0z.t · = (.g𝐺)
mulgnn0z.o 0 = (0g𝐺)
Assertion
Ref Expression
mulgz ((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) → (𝑁 · 0 ) = 0 )

Proof of Theorem mulgz
StepHypRef Expression
1 grpmnd 13414 . . . 4 (𝐺 ∈ Grp → 𝐺 ∈ Mnd)
21adantr 276 . . 3 ((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) → 𝐺 ∈ Mnd)
3 mulgnn0z.b . . . 4 𝐵 = (Base‘𝐺)
4 mulgnn0z.t . . . 4 · = (.g𝐺)
5 mulgnn0z.o . . . 4 0 = (0g𝐺)
63, 4, 5mulgnn0z 13560 . . 3 ((𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ0) → (𝑁 · 0 ) = 0 )
72, 6sylan 283 . 2 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝑁 ∈ ℕ0) → (𝑁 · 0 ) = 0 )
8 simpll 527 . . . 4 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ -𝑁 ∈ ℕ0) → 𝐺 ∈ Grp)
9 nn0z 9412 . . . . 5 (-𝑁 ∈ ℕ0 → -𝑁 ∈ ℤ)
109adantl 277 . . . 4 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ -𝑁 ∈ ℕ0) → -𝑁 ∈ ℤ)
113, 5grpidcl 13436 . . . . 5 (𝐺 ∈ Grp → 0𝐵)
1211ad2antrr 488 . . . 4 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ -𝑁 ∈ ℕ0) → 0𝐵)
13 eqid 2206 . . . . 5 (invg𝐺) = (invg𝐺)
143, 4, 13mulgneg 13551 . . . 4 ((𝐺 ∈ Grp ∧ -𝑁 ∈ ℤ ∧ 0𝐵) → (--𝑁 · 0 ) = ((invg𝐺)‘(-𝑁 · 0 )))
158, 10, 12, 14syl3anc 1250 . . 3 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ -𝑁 ∈ ℕ0) → (--𝑁 · 0 ) = ((invg𝐺)‘(-𝑁 · 0 )))
16 zcn 9397 . . . . . 6 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
1716ad2antlr 489 . . . . 5 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ -𝑁 ∈ ℕ0) → 𝑁 ∈ ℂ)
1817negnegd 8394 . . . 4 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ -𝑁 ∈ ℕ0) → --𝑁 = 𝑁)
1918oveq1d 5972 . . 3 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ -𝑁 ∈ ℕ0) → (--𝑁 · 0 ) = (𝑁 · 0 ))
203, 4, 5mulgnn0z 13560 . . . . . 6 ((𝐺 ∈ Mnd ∧ -𝑁 ∈ ℕ0) → (-𝑁 · 0 ) = 0 )
212, 20sylan 283 . . . . 5 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ -𝑁 ∈ ℕ0) → (-𝑁 · 0 ) = 0 )
2221fveq2d 5593 . . . 4 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ -𝑁 ∈ ℕ0) → ((invg𝐺)‘(-𝑁 · 0 )) = ((invg𝐺)‘ 0 ))
235, 13grpinvid 13467 . . . . 5 (𝐺 ∈ Grp → ((invg𝐺)‘ 0 ) = 0 )
2423ad2antrr 488 . . . 4 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ -𝑁 ∈ ℕ0) → ((invg𝐺)‘ 0 ) = 0 )
2522, 24eqtrd 2239 . . 3 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ -𝑁 ∈ ℕ0) → ((invg𝐺)‘(-𝑁 · 0 )) = 0 )
2615, 19, 253eqtr3d 2247 . 2 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ -𝑁 ∈ ℕ0) → (𝑁 · 0 ) = 0 )
27 elznn0 9407 . . . 4 (𝑁 ∈ ℤ ↔ (𝑁 ∈ ℝ ∧ (𝑁 ∈ ℕ0 ∨ -𝑁 ∈ ℕ0)))
2827simprbi 275 . . 3 (𝑁 ∈ ℤ → (𝑁 ∈ ℕ0 ∨ -𝑁 ∈ ℕ0))
2928adantl 277 . 2 ((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) → (𝑁 ∈ ℕ0 ∨ -𝑁 ∈ ℕ0))
307, 26, 29mpjaodan 800 1 ((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) → (𝑁 · 0 ) = 0 )
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wo 710   = wceq 1373  wcel 2177  cfv 5280  (class class class)co 5957  cc 7943  cr 7944  -cneg 8264  0cn0 9315  cz 9392  Basecbs 12907  0gc0g 13163  Mndcmnd 13323  Grpcgrp 13407  invgcminusg 13408  .gcmg 13530
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4167  ax-sep 4170  ax-nul 4178  ax-pow 4226  ax-pr 4261  ax-un 4488  ax-setind 4593  ax-iinf 4644  ax-cnex 8036  ax-resscn 8037  ax-1cn 8038  ax-1re 8039  ax-icn 8040  ax-addcl 8041  ax-addrcl 8042  ax-mulcl 8043  ax-addcom 8045  ax-addass 8047  ax-distr 8049  ax-i2m1 8050  ax-0lt1 8051  ax-0id 8053  ax-rnegex 8054  ax-cnre 8056  ax-pre-ltirr 8057  ax-pre-ltwlin 8058  ax-pre-lttrn 8059  ax-pre-ltadd 8061
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-if 3576  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-int 3892  df-iun 3935  df-br 4052  df-opab 4114  df-mpt 4115  df-tr 4151  df-id 4348  df-iord 4421  df-on 4423  df-ilim 4424  df-suc 4426  df-iom 4647  df-xp 4689  df-rel 4690  df-cnv 4691  df-co 4692  df-dm 4693  df-rn 4694  df-res 4695  df-ima 4696  df-iota 5241  df-fun 5282  df-fn 5283  df-f 5284  df-f1 5285  df-fo 5286  df-f1o 5287  df-fv 5288  df-riota 5912  df-ov 5960  df-oprab 5961  df-mpo 5962  df-1st 6239  df-2nd 6240  df-recs 6404  df-frec 6490  df-pnf 8129  df-mnf 8130  df-xr 8131  df-ltxr 8132  df-le 8133  df-sub 8265  df-neg 8266  df-inn 9057  df-2 9115  df-n0 9316  df-z 9393  df-uz 9669  df-fz 10151  df-fzo 10285  df-seqfrec 10615  df-ndx 12910  df-slot 12911  df-base 12913  df-plusg 12997  df-0g 13165  df-mgm 13263  df-sgrp 13309  df-mnd 13324  df-grp 13410  df-minusg 13411  df-mulg 13531
This theorem is referenced by:  mulgmodid  13572
  Copyright terms: Public domain W3C validator