ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulgz GIF version

Theorem mulgz 13682
Description: A group multiple of the identity, for integer multiple. (Contributed by Mario Carneiro, 13-Dec-2014.)
Hypotheses
Ref Expression
mulgnn0z.b 𝐵 = (Base‘𝐺)
mulgnn0z.t · = (.g𝐺)
mulgnn0z.o 0 = (0g𝐺)
Assertion
Ref Expression
mulgz ((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) → (𝑁 · 0 ) = 0 )

Proof of Theorem mulgz
StepHypRef Expression
1 grpmnd 13535 . . . 4 (𝐺 ∈ Grp → 𝐺 ∈ Mnd)
21adantr 276 . . 3 ((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) → 𝐺 ∈ Mnd)
3 mulgnn0z.b . . . 4 𝐵 = (Base‘𝐺)
4 mulgnn0z.t . . . 4 · = (.g𝐺)
5 mulgnn0z.o . . . 4 0 = (0g𝐺)
63, 4, 5mulgnn0z 13681 . . 3 ((𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ0) → (𝑁 · 0 ) = 0 )
72, 6sylan 283 . 2 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝑁 ∈ ℕ0) → (𝑁 · 0 ) = 0 )
8 simpll 527 . . . 4 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ -𝑁 ∈ ℕ0) → 𝐺 ∈ Grp)
9 nn0z 9462 . . . . 5 (-𝑁 ∈ ℕ0 → -𝑁 ∈ ℤ)
109adantl 277 . . . 4 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ -𝑁 ∈ ℕ0) → -𝑁 ∈ ℤ)
113, 5grpidcl 13557 . . . . 5 (𝐺 ∈ Grp → 0𝐵)
1211ad2antrr 488 . . . 4 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ -𝑁 ∈ ℕ0) → 0𝐵)
13 eqid 2229 . . . . 5 (invg𝐺) = (invg𝐺)
143, 4, 13mulgneg 13672 . . . 4 ((𝐺 ∈ Grp ∧ -𝑁 ∈ ℤ ∧ 0𝐵) → (--𝑁 · 0 ) = ((invg𝐺)‘(-𝑁 · 0 )))
158, 10, 12, 14syl3anc 1271 . . 3 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ -𝑁 ∈ ℕ0) → (--𝑁 · 0 ) = ((invg𝐺)‘(-𝑁 · 0 )))
16 zcn 9447 . . . . . 6 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
1716ad2antlr 489 . . . . 5 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ -𝑁 ∈ ℕ0) → 𝑁 ∈ ℂ)
1817negnegd 8444 . . . 4 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ -𝑁 ∈ ℕ0) → --𝑁 = 𝑁)
1918oveq1d 6015 . . 3 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ -𝑁 ∈ ℕ0) → (--𝑁 · 0 ) = (𝑁 · 0 ))
203, 4, 5mulgnn0z 13681 . . . . . 6 ((𝐺 ∈ Mnd ∧ -𝑁 ∈ ℕ0) → (-𝑁 · 0 ) = 0 )
212, 20sylan 283 . . . . 5 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ -𝑁 ∈ ℕ0) → (-𝑁 · 0 ) = 0 )
2221fveq2d 5630 . . . 4 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ -𝑁 ∈ ℕ0) → ((invg𝐺)‘(-𝑁 · 0 )) = ((invg𝐺)‘ 0 ))
235, 13grpinvid 13588 . . . . 5 (𝐺 ∈ Grp → ((invg𝐺)‘ 0 ) = 0 )
2423ad2antrr 488 . . . 4 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ -𝑁 ∈ ℕ0) → ((invg𝐺)‘ 0 ) = 0 )
2522, 24eqtrd 2262 . . 3 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ -𝑁 ∈ ℕ0) → ((invg𝐺)‘(-𝑁 · 0 )) = 0 )
2615, 19, 253eqtr3d 2270 . 2 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ -𝑁 ∈ ℕ0) → (𝑁 · 0 ) = 0 )
27 elznn0 9457 . . . 4 (𝑁 ∈ ℤ ↔ (𝑁 ∈ ℝ ∧ (𝑁 ∈ ℕ0 ∨ -𝑁 ∈ ℕ0)))
2827simprbi 275 . . 3 (𝑁 ∈ ℤ → (𝑁 ∈ ℕ0 ∨ -𝑁 ∈ ℕ0))
2928adantl 277 . 2 ((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) → (𝑁 ∈ ℕ0 ∨ -𝑁 ∈ ℕ0))
307, 26, 29mpjaodan 803 1 ((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) → (𝑁 · 0 ) = 0 )
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wo 713   = wceq 1395  wcel 2200  cfv 5317  (class class class)co 6000  cc 7993  cr 7994  -cneg 8314  0cn0 9365  cz 9442  Basecbs 13027  0gc0g 13284  Mndcmnd 13444  Grpcgrp 13528  invgcminusg 13529  .gcmg 13651
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-iinf 4679  ax-cnex 8086  ax-resscn 8087  ax-1cn 8088  ax-1re 8089  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-addcom 8095  ax-addass 8097  ax-distr 8099  ax-i2m1 8100  ax-0lt1 8101  ax-0id 8103  ax-rnegex 8104  ax-cnre 8106  ax-pre-ltirr 8107  ax-pre-ltwlin 8108  ax-pre-lttrn 8109  ax-pre-ltadd 8111
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-id 4383  df-iord 4456  df-on 4458  df-ilim 4459  df-suc 4461  df-iom 4682  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-riota 5953  df-ov 6003  df-oprab 6004  df-mpo 6005  df-1st 6284  df-2nd 6285  df-recs 6449  df-frec 6535  df-pnf 8179  df-mnf 8180  df-xr 8181  df-ltxr 8182  df-le 8183  df-sub 8315  df-neg 8316  df-inn 9107  df-2 9165  df-n0 9366  df-z 9443  df-uz 9719  df-fz 10201  df-fzo 10335  df-seqfrec 10665  df-ndx 13030  df-slot 13031  df-base 13033  df-plusg 13118  df-0g 13286  df-mgm 13384  df-sgrp 13430  df-mnd 13445  df-grp 13531  df-minusg 13532  df-mulg 13652
This theorem is referenced by:  mulgmodid  13693
  Copyright terms: Public domain W3C validator