![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > mulgz | GIF version |
Description: A group multiple of the identity, for integer multiple. (Contributed by Mario Carneiro, 13-Dec-2014.) |
Ref | Expression |
---|---|
mulgnn0z.b | โข ๐ต = (Baseโ๐บ) |
mulgnn0z.t | โข ยท = (.gโ๐บ) |
mulgnn0z.o | โข 0 = (0gโ๐บ) |
Ref | Expression |
---|---|
mulgz | โข ((๐บ โ Grp โง ๐ โ โค) โ (๐ ยท 0 ) = 0 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | grpmnd 12883 | . . . 4 โข (๐บ โ Grp โ ๐บ โ Mnd) | |
2 | 1 | adantr 276 | . . 3 โข ((๐บ โ Grp โง ๐ โ โค) โ ๐บ โ Mnd) |
3 | mulgnn0z.b | . . . 4 โข ๐ต = (Baseโ๐บ) | |
4 | mulgnn0z.t | . . . 4 โข ยท = (.gโ๐บ) | |
5 | mulgnn0z.o | . . . 4 โข 0 = (0gโ๐บ) | |
6 | 3, 4, 5 | mulgnn0z 13008 | . . 3 โข ((๐บ โ Mnd โง ๐ โ โ0) โ (๐ ยท 0 ) = 0 ) |
7 | 2, 6 | sylan 283 | . 2 โข (((๐บ โ Grp โง ๐ โ โค) โง ๐ โ โ0) โ (๐ ยท 0 ) = 0 ) |
8 | simpll 527 | . . . 4 โข (((๐บ โ Grp โง ๐ โ โค) โง -๐ โ โ0) โ ๐บ โ Grp) | |
9 | nn0z 9272 | . . . . 5 โข (-๐ โ โ0 โ -๐ โ โค) | |
10 | 9 | adantl 277 | . . . 4 โข (((๐บ โ Grp โง ๐ โ โค) โง -๐ โ โ0) โ -๐ โ โค) |
11 | 3, 5 | grpidcl 12903 | . . . . 5 โข (๐บ โ Grp โ 0 โ ๐ต) |
12 | 11 | ad2antrr 488 | . . . 4 โข (((๐บ โ Grp โง ๐ โ โค) โง -๐ โ โ0) โ 0 โ ๐ต) |
13 | eqid 2177 | . . . . 5 โข (invgโ๐บ) = (invgโ๐บ) | |
14 | 3, 4, 13 | mulgneg 13000 | . . . 4 โข ((๐บ โ Grp โง -๐ โ โค โง 0 โ ๐ต) โ (--๐ ยท 0 ) = ((invgโ๐บ)โ(-๐ ยท 0 ))) |
15 | 8, 10, 12, 14 | syl3anc 1238 | . . 3 โข (((๐บ โ Grp โง ๐ โ โค) โง -๐ โ โ0) โ (--๐ ยท 0 ) = ((invgโ๐บ)โ(-๐ ยท 0 ))) |
16 | zcn 9257 | . . . . . 6 โข (๐ โ โค โ ๐ โ โ) | |
17 | 16 | ad2antlr 489 | . . . . 5 โข (((๐บ โ Grp โง ๐ โ โค) โง -๐ โ โ0) โ ๐ โ โ) |
18 | 17 | negnegd 8258 | . . . 4 โข (((๐บ โ Grp โง ๐ โ โค) โง -๐ โ โ0) โ --๐ = ๐) |
19 | 18 | oveq1d 5889 | . . 3 โข (((๐บ โ Grp โง ๐ โ โค) โง -๐ โ โ0) โ (--๐ ยท 0 ) = (๐ ยท 0 )) |
20 | 3, 4, 5 | mulgnn0z 13008 | . . . . . 6 โข ((๐บ โ Mnd โง -๐ โ โ0) โ (-๐ ยท 0 ) = 0 ) |
21 | 2, 20 | sylan 283 | . . . . 5 โข (((๐บ โ Grp โง ๐ โ โค) โง -๐ โ โ0) โ (-๐ ยท 0 ) = 0 ) |
22 | 21 | fveq2d 5519 | . . . 4 โข (((๐บ โ Grp โง ๐ โ โค) โง -๐ โ โ0) โ ((invgโ๐บ)โ(-๐ ยท 0 )) = ((invgโ๐บ)โ 0 )) |
23 | 5, 13 | grpinvid 12929 | . . . . 5 โข (๐บ โ Grp โ ((invgโ๐บ)โ 0 ) = 0 ) |
24 | 23 | ad2antrr 488 | . . . 4 โข (((๐บ โ Grp โง ๐ โ โค) โง -๐ โ โ0) โ ((invgโ๐บ)โ 0 ) = 0 ) |
25 | 22, 24 | eqtrd 2210 | . . 3 โข (((๐บ โ Grp โง ๐ โ โค) โง -๐ โ โ0) โ ((invgโ๐บ)โ(-๐ ยท 0 )) = 0 ) |
26 | 15, 19, 25 | 3eqtr3d 2218 | . 2 โข (((๐บ โ Grp โง ๐ โ โค) โง -๐ โ โ0) โ (๐ ยท 0 ) = 0 ) |
27 | elznn0 9267 | . . . 4 โข (๐ โ โค โ (๐ โ โ โง (๐ โ โ0 โจ -๐ โ โ0))) | |
28 | 27 | simprbi 275 | . . 3 โข (๐ โ โค โ (๐ โ โ0 โจ -๐ โ โ0)) |
29 | 28 | adantl 277 | . 2 โข ((๐บ โ Grp โง ๐ โ โค) โ (๐ โ โ0 โจ -๐ โ โ0)) |
30 | 7, 26, 29 | mpjaodan 798 | 1 โข ((๐บ โ Grp โง ๐ โ โค) โ (๐ ยท 0 ) = 0 ) |
Colors of variables: wff set class |
Syntax hints: โ wi 4 โง wa 104 โจ wo 708 = wceq 1353 โ wcel 2148 โcfv 5216 (class class class)co 5874 โcc 7808 โcr 7809 -cneg 8128 โ0cn0 9175 โคcz 9252 Basecbs 12461 0gc0g 12704 Mndcmnd 12816 Grpcgrp 12876 invgcminusg 12877 .gcmg 12982 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-coll 4118 ax-sep 4121 ax-nul 4129 ax-pow 4174 ax-pr 4209 ax-un 4433 ax-setind 4536 ax-iinf 4587 ax-cnex 7901 ax-resscn 7902 ax-1cn 7903 ax-1re 7904 ax-icn 7905 ax-addcl 7906 ax-addrcl 7907 ax-mulcl 7908 ax-addcom 7910 ax-addass 7912 ax-distr 7914 ax-i2m1 7915 ax-0lt1 7916 ax-0id 7918 ax-rnegex 7919 ax-cnre 7921 ax-pre-ltirr 7922 ax-pre-ltwlin 7923 ax-pre-lttrn 7924 ax-pre-ltadd 7926 |
This theorem depends on definitions: df-bi 117 df-dc 835 df-3or 979 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-nel 2443 df-ral 2460 df-rex 2461 df-reu 2462 df-rmo 2463 df-rab 2464 df-v 2739 df-sbc 2963 df-csb 3058 df-dif 3131 df-un 3133 df-in 3135 df-ss 3142 df-nul 3423 df-if 3535 df-pw 3577 df-sn 3598 df-pr 3599 df-op 3601 df-uni 3810 df-int 3845 df-iun 3888 df-br 4004 df-opab 4065 df-mpt 4066 df-tr 4102 df-id 4293 df-iord 4366 df-on 4368 df-ilim 4369 df-suc 4371 df-iom 4590 df-xp 4632 df-rel 4633 df-cnv 4634 df-co 4635 df-dm 4636 df-rn 4637 df-res 4638 df-ima 4639 df-iota 5178 df-fun 5218 df-fn 5219 df-f 5220 df-f1 5221 df-fo 5222 df-f1o 5223 df-fv 5224 df-riota 5830 df-ov 5877 df-oprab 5878 df-mpo 5879 df-1st 6140 df-2nd 6141 df-recs 6305 df-frec 6391 df-pnf 7993 df-mnf 7994 df-xr 7995 df-ltxr 7996 df-le 7997 df-sub 8129 df-neg 8130 df-inn 8919 df-2 8977 df-n0 9176 df-z 9253 df-uz 9528 df-fz 10008 df-fzo 10142 df-seqfrec 10445 df-ndx 12464 df-slot 12465 df-base 12467 df-plusg 12548 df-0g 12706 df-mgm 12774 df-sgrp 12807 df-mnd 12817 df-grp 12879 df-minusg 12880 df-mulg 12983 |
This theorem is referenced by: mulgmodid 13020 |
Copyright terms: Public domain | W3C validator |