ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulgz GIF version

Theorem mulgz 13220
Description: A group multiple of the identity, for integer multiple. (Contributed by Mario Carneiro, 13-Dec-2014.)
Hypotheses
Ref Expression
mulgnn0z.b 𝐵 = (Base‘𝐺)
mulgnn0z.t · = (.g𝐺)
mulgnn0z.o 0 = (0g𝐺)
Assertion
Ref Expression
mulgz ((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) → (𝑁 · 0 ) = 0 )

Proof of Theorem mulgz
StepHypRef Expression
1 grpmnd 13079 . . . 4 (𝐺 ∈ Grp → 𝐺 ∈ Mnd)
21adantr 276 . . 3 ((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) → 𝐺 ∈ Mnd)
3 mulgnn0z.b . . . 4 𝐵 = (Base‘𝐺)
4 mulgnn0z.t . . . 4 · = (.g𝐺)
5 mulgnn0z.o . . . 4 0 = (0g𝐺)
63, 4, 5mulgnn0z 13219 . . 3 ((𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ0) → (𝑁 · 0 ) = 0 )
72, 6sylan 283 . 2 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝑁 ∈ ℕ0) → (𝑁 · 0 ) = 0 )
8 simpll 527 . . . 4 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ -𝑁 ∈ ℕ0) → 𝐺 ∈ Grp)
9 nn0z 9337 . . . . 5 (-𝑁 ∈ ℕ0 → -𝑁 ∈ ℤ)
109adantl 277 . . . 4 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ -𝑁 ∈ ℕ0) → -𝑁 ∈ ℤ)
113, 5grpidcl 13101 . . . . 5 (𝐺 ∈ Grp → 0𝐵)
1211ad2antrr 488 . . . 4 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ -𝑁 ∈ ℕ0) → 0𝐵)
13 eqid 2193 . . . . 5 (invg𝐺) = (invg𝐺)
143, 4, 13mulgneg 13210 . . . 4 ((𝐺 ∈ Grp ∧ -𝑁 ∈ ℤ ∧ 0𝐵) → (--𝑁 · 0 ) = ((invg𝐺)‘(-𝑁 · 0 )))
158, 10, 12, 14syl3anc 1249 . . 3 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ -𝑁 ∈ ℕ0) → (--𝑁 · 0 ) = ((invg𝐺)‘(-𝑁 · 0 )))
16 zcn 9322 . . . . . 6 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
1716ad2antlr 489 . . . . 5 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ -𝑁 ∈ ℕ0) → 𝑁 ∈ ℂ)
1817negnegd 8321 . . . 4 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ -𝑁 ∈ ℕ0) → --𝑁 = 𝑁)
1918oveq1d 5933 . . 3 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ -𝑁 ∈ ℕ0) → (--𝑁 · 0 ) = (𝑁 · 0 ))
203, 4, 5mulgnn0z 13219 . . . . . 6 ((𝐺 ∈ Mnd ∧ -𝑁 ∈ ℕ0) → (-𝑁 · 0 ) = 0 )
212, 20sylan 283 . . . . 5 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ -𝑁 ∈ ℕ0) → (-𝑁 · 0 ) = 0 )
2221fveq2d 5558 . . . 4 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ -𝑁 ∈ ℕ0) → ((invg𝐺)‘(-𝑁 · 0 )) = ((invg𝐺)‘ 0 ))
235, 13grpinvid 13132 . . . . 5 (𝐺 ∈ Grp → ((invg𝐺)‘ 0 ) = 0 )
2423ad2antrr 488 . . . 4 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ -𝑁 ∈ ℕ0) → ((invg𝐺)‘ 0 ) = 0 )
2522, 24eqtrd 2226 . . 3 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ -𝑁 ∈ ℕ0) → ((invg𝐺)‘(-𝑁 · 0 )) = 0 )
2615, 19, 253eqtr3d 2234 . 2 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ -𝑁 ∈ ℕ0) → (𝑁 · 0 ) = 0 )
27 elznn0 9332 . . . 4 (𝑁 ∈ ℤ ↔ (𝑁 ∈ ℝ ∧ (𝑁 ∈ ℕ0 ∨ -𝑁 ∈ ℕ0)))
2827simprbi 275 . . 3 (𝑁 ∈ ℤ → (𝑁 ∈ ℕ0 ∨ -𝑁 ∈ ℕ0))
2928adantl 277 . 2 ((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) → (𝑁 ∈ ℕ0 ∨ -𝑁 ∈ ℕ0))
307, 26, 29mpjaodan 799 1 ((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) → (𝑁 · 0 ) = 0 )
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wo 709   = wceq 1364  wcel 2164  cfv 5254  (class class class)co 5918  cc 7870  cr 7871  -cneg 8191  0cn0 9240  cz 9317  Basecbs 12618  0gc0g 12867  Mndcmnd 12997  Grpcgrp 13072  invgcminusg 13073  .gcmg 13189
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-addcom 7972  ax-addass 7974  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-0id 7980  ax-rnegex 7981  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-ltadd 7988
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-if 3558  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4324  df-iord 4397  df-on 4399  df-ilim 4400  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-recs 6358  df-frec 6444  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-inn 8983  df-2 9041  df-n0 9241  df-z 9318  df-uz 9593  df-fz 10075  df-fzo 10209  df-seqfrec 10519  df-ndx 12621  df-slot 12622  df-base 12624  df-plusg 12708  df-0g 12869  df-mgm 12939  df-sgrp 12985  df-mnd 12998  df-grp 13075  df-minusg 13076  df-mulg 13190
This theorem is referenced by:  mulgmodid  13231
  Copyright terms: Public domain W3C validator