Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > mulgz | GIF version |
Description: A group multiple of the identity, for integer multiple. (Contributed by Mario Carneiro, 13-Dec-2014.) |
Ref | Expression |
---|---|
mulgnn0z.b | ⊢ 𝐵 = (Base‘𝐺) |
mulgnn0z.t | ⊢ · = (.g‘𝐺) |
mulgnn0z.o | ⊢ 0 = (0g‘𝐺) |
Ref | Expression |
---|---|
mulgz | ⊢ ((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) → (𝑁 · 0 ) = 0 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | grpmnd 12745 | . . . 4 ⊢ (𝐺 ∈ Grp → 𝐺 ∈ Mnd) | |
2 | 1 | adantr 276 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) → 𝐺 ∈ Mnd) |
3 | mulgnn0z.b | . . . 4 ⊢ 𝐵 = (Base‘𝐺) | |
4 | mulgnn0z.t | . . . 4 ⊢ · = (.g‘𝐺) | |
5 | mulgnn0z.o | . . . 4 ⊢ 0 = (0g‘𝐺) | |
6 | 3, 4, 5 | mulgnn0z 12868 | . . 3 ⊢ ((𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ0) → (𝑁 · 0 ) = 0 ) |
7 | 2, 6 | sylan 283 | . 2 ⊢ (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝑁 ∈ ℕ0) → (𝑁 · 0 ) = 0 ) |
8 | simpll 527 | . . . 4 ⊢ (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ -𝑁 ∈ ℕ0) → 𝐺 ∈ Grp) | |
9 | nn0z 9244 | . . . . 5 ⊢ (-𝑁 ∈ ℕ0 → -𝑁 ∈ ℤ) | |
10 | 9 | adantl 277 | . . . 4 ⊢ (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ -𝑁 ∈ ℕ0) → -𝑁 ∈ ℤ) |
11 | 3, 5 | grpidcl 12764 | . . . . 5 ⊢ (𝐺 ∈ Grp → 0 ∈ 𝐵) |
12 | 11 | ad2antrr 488 | . . . 4 ⊢ (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ -𝑁 ∈ ℕ0) → 0 ∈ 𝐵) |
13 | eqid 2175 | . . . . 5 ⊢ (invg‘𝐺) = (invg‘𝐺) | |
14 | 3, 4, 13 | mulgneg 12860 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ -𝑁 ∈ ℤ ∧ 0 ∈ 𝐵) → (--𝑁 · 0 ) = ((invg‘𝐺)‘(-𝑁 · 0 ))) |
15 | 8, 10, 12, 14 | syl3anc 1238 | . . 3 ⊢ (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ -𝑁 ∈ ℕ0) → (--𝑁 · 0 ) = ((invg‘𝐺)‘(-𝑁 · 0 ))) |
16 | zcn 9229 | . . . . . 6 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℂ) | |
17 | 16 | ad2antlr 489 | . . . . 5 ⊢ (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ -𝑁 ∈ ℕ0) → 𝑁 ∈ ℂ) |
18 | 17 | negnegd 8233 | . . . 4 ⊢ (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ -𝑁 ∈ ℕ0) → --𝑁 = 𝑁) |
19 | 18 | oveq1d 5880 | . . 3 ⊢ (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ -𝑁 ∈ ℕ0) → (--𝑁 · 0 ) = (𝑁 · 0 )) |
20 | 3, 4, 5 | mulgnn0z 12868 | . . . . . 6 ⊢ ((𝐺 ∈ Mnd ∧ -𝑁 ∈ ℕ0) → (-𝑁 · 0 ) = 0 ) |
21 | 2, 20 | sylan 283 | . . . . 5 ⊢ (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ -𝑁 ∈ ℕ0) → (-𝑁 · 0 ) = 0 ) |
22 | 21 | fveq2d 5511 | . . . 4 ⊢ (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ -𝑁 ∈ ℕ0) → ((invg‘𝐺)‘(-𝑁 · 0 )) = ((invg‘𝐺)‘ 0 )) |
23 | 5, 13 | grpinvid 12790 | . . . . 5 ⊢ (𝐺 ∈ Grp → ((invg‘𝐺)‘ 0 ) = 0 ) |
24 | 23 | ad2antrr 488 | . . . 4 ⊢ (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ -𝑁 ∈ ℕ0) → ((invg‘𝐺)‘ 0 ) = 0 ) |
25 | 22, 24 | eqtrd 2208 | . . 3 ⊢ (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ -𝑁 ∈ ℕ0) → ((invg‘𝐺)‘(-𝑁 · 0 )) = 0 ) |
26 | 15, 19, 25 | 3eqtr3d 2216 | . 2 ⊢ (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ -𝑁 ∈ ℕ0) → (𝑁 · 0 ) = 0 ) |
27 | elznn0 9239 | . . . 4 ⊢ (𝑁 ∈ ℤ ↔ (𝑁 ∈ ℝ ∧ (𝑁 ∈ ℕ0 ∨ -𝑁 ∈ ℕ0))) | |
28 | 27 | simprbi 275 | . . 3 ⊢ (𝑁 ∈ ℤ → (𝑁 ∈ ℕ0 ∨ -𝑁 ∈ ℕ0)) |
29 | 28 | adantl 277 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) → (𝑁 ∈ ℕ0 ∨ -𝑁 ∈ ℕ0)) |
30 | 7, 26, 29 | mpjaodan 798 | 1 ⊢ ((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) → (𝑁 · 0 ) = 0 ) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∨ wo 708 = wceq 1353 ∈ wcel 2146 ‘cfv 5208 (class class class)co 5865 ℂcc 7784 ℝcr 7785 -cneg 8103 ℕ0cn0 9147 ℤcz 9224 Basecbs 12428 0gc0g 12626 Mndcmnd 12682 Grpcgrp 12738 invgcminusg 12739 .gcmg 12842 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-13 2148 ax-14 2149 ax-ext 2157 ax-coll 4113 ax-sep 4116 ax-nul 4124 ax-pow 4169 ax-pr 4203 ax-un 4427 ax-setind 4530 ax-iinf 4581 ax-cnex 7877 ax-resscn 7878 ax-1cn 7879 ax-1re 7880 ax-icn 7881 ax-addcl 7882 ax-addrcl 7883 ax-mulcl 7884 ax-addcom 7886 ax-addass 7888 ax-distr 7890 ax-i2m1 7891 ax-0lt1 7892 ax-0id 7894 ax-rnegex 7895 ax-cnre 7897 ax-pre-ltirr 7898 ax-pre-ltwlin 7899 ax-pre-lttrn 7900 ax-pre-ltadd 7902 |
This theorem depends on definitions: df-bi 117 df-dc 835 df-3or 979 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1459 df-sb 1761 df-eu 2027 df-mo 2028 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ne 2346 df-nel 2441 df-ral 2458 df-rex 2459 df-reu 2460 df-rmo 2461 df-rab 2462 df-v 2737 df-sbc 2961 df-csb 3056 df-dif 3129 df-un 3131 df-in 3133 df-ss 3140 df-nul 3421 df-if 3533 df-pw 3574 df-sn 3595 df-pr 3596 df-op 3598 df-uni 3806 df-int 3841 df-iun 3884 df-br 3999 df-opab 4060 df-mpt 4061 df-tr 4097 df-id 4287 df-iord 4360 df-on 4362 df-ilim 4363 df-suc 4365 df-iom 4584 df-xp 4626 df-rel 4627 df-cnv 4628 df-co 4629 df-dm 4630 df-rn 4631 df-res 4632 df-ima 4633 df-iota 5170 df-fun 5210 df-fn 5211 df-f 5212 df-f1 5213 df-fo 5214 df-f1o 5215 df-fv 5216 df-riota 5821 df-ov 5868 df-oprab 5869 df-mpo 5870 df-1st 6131 df-2nd 6132 df-recs 6296 df-frec 6382 df-pnf 7968 df-mnf 7969 df-xr 7970 df-ltxr 7971 df-le 7972 df-sub 8104 df-neg 8105 df-inn 8891 df-2 8949 df-n0 9148 df-z 9225 df-uz 9500 df-fz 9978 df-fzo 10111 df-seqfrec 10414 df-ndx 12431 df-slot 12432 df-base 12434 df-plusg 12505 df-0g 12628 df-mgm 12640 df-sgrp 12673 df-mnd 12683 df-grp 12741 df-minusg 12742 df-mulg 12843 |
This theorem is referenced by: mulgmodid 12880 |
Copyright terms: Public domain | W3C validator |