ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  recgt0 GIF version

Theorem recgt0 8896
Description: The reciprocal of a positive number is positive. Exercise 4 of [Apostol] p. 21. (Contributed by NM, 25-Aug-1999.) (Revised by Mario Carneiro, 27-May-2016.)
Assertion
Ref Expression
recgt0 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → 0 < (1 / 𝐴))

Proof of Theorem recgt0
StepHypRef Expression
1 0lt1 8172 . . . . 5 0 < 1
2 0re 8045 . . . . . 6 0 ∈ ℝ
3 1re 8044 . . . . . 6 1 ∈ ℝ
42, 3ltnsymi 8145 . . . . 5 (0 < 1 → ¬ 1 < 0)
51, 4ax-mp 5 . . . 4 ¬ 1 < 0
6 simpll 527 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (1 / 𝐴) < 0) → 𝐴 ∈ ℝ)
7 gt0ap0 8672 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → 𝐴 # 0)
87adantr 276 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (1 / 𝐴) < 0) → 𝐴 # 0)
96, 8rerecclapd 8880 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (1 / 𝐴) < 0) → (1 / 𝐴) ∈ ℝ)
109renegcld 8425 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (1 / 𝐴) < 0) → -(1 / 𝐴) ∈ ℝ)
11 simpr 110 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (1 / 𝐴) < 0) → (1 / 𝐴) < 0)
12 simpl 109 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → 𝐴 ∈ ℝ)
1312, 7rerecclapd 8880 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → (1 / 𝐴) ∈ ℝ)
1413adantr 276 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (1 / 𝐴) < 0) → (1 / 𝐴) ∈ ℝ)
1514lt0neg1d 8561 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (1 / 𝐴) < 0) → ((1 / 𝐴) < 0 ↔ 0 < -(1 / 𝐴)))
1611, 15mpbid 147 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (1 / 𝐴) < 0) → 0 < -(1 / 𝐴))
17 simplr 528 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (1 / 𝐴) < 0) → 0 < 𝐴)
1810, 6, 16, 17mulgt0d 8168 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (1 / 𝐴) < 0) → 0 < (-(1 / 𝐴) · 𝐴))
1912recnd 8074 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → 𝐴 ∈ ℂ)
2019adantr 276 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (1 / 𝐴) < 0) → 𝐴 ∈ ℂ)
21 recclap 8725 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐴 # 0) → (1 / 𝐴) ∈ ℂ)
2220, 8, 21syl2anc 411 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (1 / 𝐴) < 0) → (1 / 𝐴) ∈ ℂ)
2322, 20mulneg1d 8456 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (1 / 𝐴) < 0) → (-(1 / 𝐴) · 𝐴) = -((1 / 𝐴) · 𝐴))
24 recidap2 8733 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐴 # 0) → ((1 / 𝐴) · 𝐴) = 1)
2520, 8, 24syl2anc 411 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (1 / 𝐴) < 0) → ((1 / 𝐴) · 𝐴) = 1)
2625negeqd 8240 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (1 / 𝐴) < 0) → -((1 / 𝐴) · 𝐴) = -1)
2723, 26eqtrd 2229 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (1 / 𝐴) < 0) → (-(1 / 𝐴) · 𝐴) = -1)
2818, 27breqtrd 4060 . . . . . 6 (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (1 / 𝐴) < 0) → 0 < -1)
29 1red 8060 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (1 / 𝐴) < 0) → 1 ∈ ℝ)
3029lt0neg1d 8561 . . . . . 6 (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (1 / 𝐴) < 0) → (1 < 0 ↔ 0 < -1))
3128, 30mpbird 167 . . . . 5 (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (1 / 𝐴) < 0) → 1 < 0)
3231ex 115 . . . 4 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → ((1 / 𝐴) < 0 → 1 < 0))
335, 32mtoi 665 . . 3 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → ¬ (1 / 𝐴) < 0)
34 lenlt 8121 . . . 4 ((0 ∈ ℝ ∧ (1 / 𝐴) ∈ ℝ) → (0 ≤ (1 / 𝐴) ↔ ¬ (1 / 𝐴) < 0))
352, 13, 34sylancr 414 . . 3 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → (0 ≤ (1 / 𝐴) ↔ ¬ (1 / 𝐴) < 0))
3633, 35mpbird 167 . 2 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → 0 ≤ (1 / 𝐴))
37 recap0 8731 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐴 # 0) → (1 / 𝐴) # 0)
3819, 7, 37syl2anc 411 . . 3 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → (1 / 𝐴) # 0)
3919, 7, 21syl2anc 411 . . . 4 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → (1 / 𝐴) ∈ ℂ)
40 0cn 8037 . . . 4 0 ∈ ℂ
41 apsym 8652 . . . 4 (((1 / 𝐴) ∈ ℂ ∧ 0 ∈ ℂ) → ((1 / 𝐴) # 0 ↔ 0 # (1 / 𝐴)))
4239, 40, 41sylancl 413 . . 3 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → ((1 / 𝐴) # 0 ↔ 0 # (1 / 𝐴)))
4338, 42mpbid 147 . 2 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → 0 # (1 / 𝐴))
44 ltleap 8678 . . 3 ((0 ∈ ℝ ∧ (1 / 𝐴) ∈ ℝ) → (0 < (1 / 𝐴) ↔ (0 ≤ (1 / 𝐴) ∧ 0 # (1 / 𝐴))))
452, 13, 44sylancr 414 . 2 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → (0 < (1 / 𝐴) ↔ (0 ≤ (1 / 𝐴) ∧ 0 # (1 / 𝐴))))
4636, 43, 45mpbir2and 946 1 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → 0 < (1 / 𝐴))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105   = wceq 1364  wcel 2167   class class class wbr 4034  (class class class)co 5925  cc 7896  cr 7897  0cc0 7898  1c1 7899   · cmul 7903   < clt 8080  cle 8081  -cneg 8217   # cap 8627   / cdiv 8718
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7989  ax-resscn 7990  ax-1cn 7991  ax-1re 7992  ax-icn 7993  ax-addcl 7994  ax-addrcl 7995  ax-mulcl 7996  ax-mulrcl 7997  ax-addcom 7998  ax-mulcom 7999  ax-addass 8000  ax-mulass 8001  ax-distr 8002  ax-i2m1 8003  ax-0lt1 8004  ax-1rid 8005  ax-0id 8006  ax-rnegex 8007  ax-precex 8008  ax-cnre 8009  ax-pre-ltirr 8010  ax-pre-ltwlin 8011  ax-pre-lttrn 8012  ax-pre-apti 8013  ax-pre-ltadd 8014  ax-pre-mulgt0 8015  ax-pre-mulext 8016
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-br 4035  df-opab 4096  df-id 4329  df-po 4332  df-iso 4333  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-iota 5220  df-fun 5261  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-pnf 8082  df-mnf 8083  df-xr 8084  df-ltxr 8085  df-le 8086  df-sub 8218  df-neg 8219  df-reap 8621  df-ap 8628  df-div 8719
This theorem is referenced by:  prodgt0gt0  8897  ltdiv1  8914  ltrec1  8934  lerec2  8935  lediv12a  8940  recgt1i  8944  recreclt  8946  recgt0i  8952  recgt0ii  8953  recgt0d  8980  nnrecgt0  9047  nnrecl  9266
  Copyright terms: Public domain W3C validator