ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  recgt0 GIF version

Theorem recgt0 8726
Description: The reciprocal of a positive number is positive. Exercise 4 of [Apostol] p. 21. (Contributed by NM, 25-Aug-1999.) (Revised by Mario Carneiro, 27-May-2016.)
Assertion
Ref Expression
recgt0 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → 0 < (1 / 𝐴))

Proof of Theorem recgt0
StepHypRef Expression
1 0lt1 8006 . . . . 5 0 < 1
2 0re 7880 . . . . . 6 0 ∈ ℝ
3 1re 7879 . . . . . 6 1 ∈ ℝ
42, 3ltnsymi 7979 . . . . 5 (0 < 1 → ¬ 1 < 0)
51, 4ax-mp 5 . . . 4 ¬ 1 < 0
6 simpll 519 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (1 / 𝐴) < 0) → 𝐴 ∈ ℝ)
7 gt0ap0 8505 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → 𝐴 # 0)
87adantr 274 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (1 / 𝐴) < 0) → 𝐴 # 0)
96, 8rerecclapd 8711 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (1 / 𝐴) < 0) → (1 / 𝐴) ∈ ℝ)
109renegcld 8259 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (1 / 𝐴) < 0) → -(1 / 𝐴) ∈ ℝ)
11 simpr 109 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (1 / 𝐴) < 0) → (1 / 𝐴) < 0)
12 simpl 108 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → 𝐴 ∈ ℝ)
1312, 7rerecclapd 8711 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → (1 / 𝐴) ∈ ℝ)
1413adantr 274 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (1 / 𝐴) < 0) → (1 / 𝐴) ∈ ℝ)
1514lt0neg1d 8394 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (1 / 𝐴) < 0) → ((1 / 𝐴) < 0 ↔ 0 < -(1 / 𝐴)))
1611, 15mpbid 146 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (1 / 𝐴) < 0) → 0 < -(1 / 𝐴))
17 simplr 520 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (1 / 𝐴) < 0) → 0 < 𝐴)
1810, 6, 16, 17mulgt0d 8002 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (1 / 𝐴) < 0) → 0 < (-(1 / 𝐴) · 𝐴))
1912recnd 7908 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → 𝐴 ∈ ℂ)
2019adantr 274 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (1 / 𝐴) < 0) → 𝐴 ∈ ℂ)
21 recclap 8556 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐴 # 0) → (1 / 𝐴) ∈ ℂ)
2220, 8, 21syl2anc 409 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (1 / 𝐴) < 0) → (1 / 𝐴) ∈ ℂ)
2322, 20mulneg1d 8290 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (1 / 𝐴) < 0) → (-(1 / 𝐴) · 𝐴) = -((1 / 𝐴) · 𝐴))
24 recidap2 8564 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐴 # 0) → ((1 / 𝐴) · 𝐴) = 1)
2520, 8, 24syl2anc 409 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (1 / 𝐴) < 0) → ((1 / 𝐴) · 𝐴) = 1)
2625negeqd 8074 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (1 / 𝐴) < 0) → -((1 / 𝐴) · 𝐴) = -1)
2723, 26eqtrd 2190 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (1 / 𝐴) < 0) → (-(1 / 𝐴) · 𝐴) = -1)
2818, 27breqtrd 3992 . . . . . 6 (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (1 / 𝐴) < 0) → 0 < -1)
29 1red 7895 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (1 / 𝐴) < 0) → 1 ∈ ℝ)
3029lt0neg1d 8394 . . . . . 6 (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (1 / 𝐴) < 0) → (1 < 0 ↔ 0 < -1))
3128, 30mpbird 166 . . . . 5 (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (1 / 𝐴) < 0) → 1 < 0)
3231ex 114 . . . 4 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → ((1 / 𝐴) < 0 → 1 < 0))
335, 32mtoi 654 . . 3 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → ¬ (1 / 𝐴) < 0)
34 lenlt 7955 . . . 4 ((0 ∈ ℝ ∧ (1 / 𝐴) ∈ ℝ) → (0 ≤ (1 / 𝐴) ↔ ¬ (1 / 𝐴) < 0))
352, 13, 34sylancr 411 . . 3 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → (0 ≤ (1 / 𝐴) ↔ ¬ (1 / 𝐴) < 0))
3633, 35mpbird 166 . 2 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → 0 ≤ (1 / 𝐴))
37 recap0 8562 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐴 # 0) → (1 / 𝐴) # 0)
3819, 7, 37syl2anc 409 . . 3 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → (1 / 𝐴) # 0)
3919, 7, 21syl2anc 409 . . . 4 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → (1 / 𝐴) ∈ ℂ)
40 0cn 7872 . . . 4 0 ∈ ℂ
41 apsym 8485 . . . 4 (((1 / 𝐴) ∈ ℂ ∧ 0 ∈ ℂ) → ((1 / 𝐴) # 0 ↔ 0 # (1 / 𝐴)))
4239, 40, 41sylancl 410 . . 3 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → ((1 / 𝐴) # 0 ↔ 0 # (1 / 𝐴)))
4338, 42mpbid 146 . 2 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → 0 # (1 / 𝐴))
44 ltleap 8511 . . 3 ((0 ∈ ℝ ∧ (1 / 𝐴) ∈ ℝ) → (0 < (1 / 𝐴) ↔ (0 ≤ (1 / 𝐴) ∧ 0 # (1 / 𝐴))))
452, 13, 44sylancr 411 . 2 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → (0 < (1 / 𝐴) ↔ (0 ≤ (1 / 𝐴) ∧ 0 # (1 / 𝐴))))
4636, 43, 45mpbir2and 929 1 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → 0 < (1 / 𝐴))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104   = wceq 1335  wcel 2128   class class class wbr 3967  (class class class)co 5826  cc 7732  cr 7733  0cc0 7734  1c1 7735   · cmul 7739   < clt 7914  cle 7915  -cneg 8051   # cap 8460   / cdiv 8549
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-sep 4084  ax-pow 4137  ax-pr 4171  ax-un 4395  ax-setind 4498  ax-cnex 7825  ax-resscn 7826  ax-1cn 7827  ax-1re 7828  ax-icn 7829  ax-addcl 7830  ax-addrcl 7831  ax-mulcl 7832  ax-mulrcl 7833  ax-addcom 7834  ax-mulcom 7835  ax-addass 7836  ax-mulass 7837  ax-distr 7838  ax-i2m1 7839  ax-0lt1 7840  ax-1rid 7841  ax-0id 7842  ax-rnegex 7843  ax-precex 7844  ax-cnre 7845  ax-pre-ltirr 7846  ax-pre-ltwlin 7847  ax-pre-lttrn 7848  ax-pre-apti 7849  ax-pre-ltadd 7850  ax-pre-mulgt0 7851  ax-pre-mulext 7852
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1338  df-fal 1341  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ne 2328  df-nel 2423  df-ral 2440  df-rex 2441  df-reu 2442  df-rmo 2443  df-rab 2444  df-v 2714  df-sbc 2938  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-pw 3546  df-sn 3567  df-pr 3568  df-op 3570  df-uni 3775  df-br 3968  df-opab 4028  df-id 4255  df-po 4258  df-iso 4259  df-xp 4594  df-rel 4595  df-cnv 4596  df-co 4597  df-dm 4598  df-iota 5137  df-fun 5174  df-fv 5180  df-riota 5782  df-ov 5829  df-oprab 5830  df-mpo 5831  df-pnf 7916  df-mnf 7917  df-xr 7918  df-ltxr 7919  df-le 7920  df-sub 8052  df-neg 8053  df-reap 8454  df-ap 8461  df-div 8550
This theorem is referenced by:  prodgt0gt0  8727  ltdiv1  8744  ltrec1  8764  lerec2  8765  lediv12a  8770  recgt1i  8774  recreclt  8776  recgt0i  8782  recgt0ii  8783  recgt0d  8810  nnrecgt0  8876  nnrecl  9093
  Copyright terms: Public domain W3C validator