Proof of Theorem recgt0
| Step | Hyp | Ref
| Expression |
| 1 | | 0lt1 8170 |
. . . . 5
⊢ 0 <
1 |
| 2 | | 0re 8043 |
. . . . . 6
⊢ 0 ∈
ℝ |
| 3 | | 1re 8042 |
. . . . . 6
⊢ 1 ∈
ℝ |
| 4 | 2, 3 | ltnsymi 8143 |
. . . . 5
⊢ (0 < 1
→ ¬ 1 < 0) |
| 5 | 1, 4 | ax-mp 5 |
. . . 4
⊢ ¬ 1
< 0 |
| 6 | | simpll 527 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℝ ∧ 0 <
𝐴) ∧ (1 / 𝐴) < 0) → 𝐴 ∈
ℝ) |
| 7 | | gt0ap0 8670 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℝ ∧ 0 <
𝐴) → 𝐴 # 0) |
| 8 | 7 | adantr 276 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℝ ∧ 0 <
𝐴) ∧ (1 / 𝐴) < 0) → 𝐴 # 0) |
| 9 | 6, 8 | rerecclapd 8878 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℝ ∧ 0 <
𝐴) ∧ (1 / 𝐴) < 0) → (1 / 𝐴) ∈
ℝ) |
| 10 | 9 | renegcld 8423 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℝ ∧ 0 <
𝐴) ∧ (1 / 𝐴) < 0) → -(1 / 𝐴) ∈
ℝ) |
| 11 | | simpr 110 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℝ ∧ 0 <
𝐴) ∧ (1 / 𝐴) < 0) → (1 / 𝐴) < 0) |
| 12 | | simpl 109 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ ℝ ∧ 0 <
𝐴) → 𝐴 ∈ ℝ) |
| 13 | 12, 7 | rerecclapd 8878 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℝ ∧ 0 <
𝐴) → (1 / 𝐴) ∈
ℝ) |
| 14 | 13 | adantr 276 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℝ ∧ 0 <
𝐴) ∧ (1 / 𝐴) < 0) → (1 / 𝐴) ∈
ℝ) |
| 15 | 14 | lt0neg1d 8559 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℝ ∧ 0 <
𝐴) ∧ (1 / 𝐴) < 0) → ((1 / 𝐴) < 0 ↔ 0 < -(1 /
𝐴))) |
| 16 | 11, 15 | mpbid 147 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℝ ∧ 0 <
𝐴) ∧ (1 / 𝐴) < 0) → 0 < -(1 /
𝐴)) |
| 17 | | simplr 528 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℝ ∧ 0 <
𝐴) ∧ (1 / 𝐴) < 0) → 0 < 𝐴) |
| 18 | 10, 6, 16, 17 | mulgt0d 8166 |
. . . . . . 7
⊢ (((𝐴 ∈ ℝ ∧ 0 <
𝐴) ∧ (1 / 𝐴) < 0) → 0 < (-(1 /
𝐴) · 𝐴)) |
| 19 | 12 | recnd 8072 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℝ ∧ 0 <
𝐴) → 𝐴 ∈ ℂ) |
| 20 | 19 | adantr 276 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℝ ∧ 0 <
𝐴) ∧ (1 / 𝐴) < 0) → 𝐴 ∈
ℂ) |
| 21 | | recclap 8723 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 # 0) → (1 / 𝐴) ∈
ℂ) |
| 22 | 20, 8, 21 | syl2anc 411 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℝ ∧ 0 <
𝐴) ∧ (1 / 𝐴) < 0) → (1 / 𝐴) ∈
ℂ) |
| 23 | 22, 20 | mulneg1d 8454 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℝ ∧ 0 <
𝐴) ∧ (1 / 𝐴) < 0) → (-(1 / 𝐴) · 𝐴) = -((1 / 𝐴) · 𝐴)) |
| 24 | | recidap2 8731 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 # 0) → ((1 / 𝐴) · 𝐴) = 1) |
| 25 | 20, 8, 24 | syl2anc 411 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℝ ∧ 0 <
𝐴) ∧ (1 / 𝐴) < 0) → ((1 / 𝐴) · 𝐴) = 1) |
| 26 | 25 | negeqd 8238 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℝ ∧ 0 <
𝐴) ∧ (1 / 𝐴) < 0) → -((1 / 𝐴) · 𝐴) = -1) |
| 27 | 23, 26 | eqtrd 2229 |
. . . . . . 7
⊢ (((𝐴 ∈ ℝ ∧ 0 <
𝐴) ∧ (1 / 𝐴) < 0) → (-(1 / 𝐴) · 𝐴) = -1) |
| 28 | 18, 27 | breqtrd 4060 |
. . . . . 6
⊢ (((𝐴 ∈ ℝ ∧ 0 <
𝐴) ∧ (1 / 𝐴) < 0) → 0 <
-1) |
| 29 | | 1red 8058 |
. . . . . . 7
⊢ (((𝐴 ∈ ℝ ∧ 0 <
𝐴) ∧ (1 / 𝐴) < 0) → 1 ∈
ℝ) |
| 30 | 29 | lt0neg1d 8559 |
. . . . . 6
⊢ (((𝐴 ∈ ℝ ∧ 0 <
𝐴) ∧ (1 / 𝐴) < 0) → (1 < 0
↔ 0 < -1)) |
| 31 | 28, 30 | mpbird 167 |
. . . . 5
⊢ (((𝐴 ∈ ℝ ∧ 0 <
𝐴) ∧ (1 / 𝐴) < 0) → 1 <
0) |
| 32 | 31 | ex 115 |
. . . 4
⊢ ((𝐴 ∈ ℝ ∧ 0 <
𝐴) → ((1 / 𝐴) < 0 → 1 <
0)) |
| 33 | 5, 32 | mtoi 665 |
. . 3
⊢ ((𝐴 ∈ ℝ ∧ 0 <
𝐴) → ¬ (1 / 𝐴) < 0) |
| 34 | | lenlt 8119 |
. . . 4
⊢ ((0
∈ ℝ ∧ (1 / 𝐴) ∈ ℝ) → (0 ≤ (1 / 𝐴) ↔ ¬ (1 / 𝐴) < 0)) |
| 35 | 2, 13, 34 | sylancr 414 |
. . 3
⊢ ((𝐴 ∈ ℝ ∧ 0 <
𝐴) → (0 ≤ (1 /
𝐴) ↔ ¬ (1 / 𝐴) < 0)) |
| 36 | 33, 35 | mpbird 167 |
. 2
⊢ ((𝐴 ∈ ℝ ∧ 0 <
𝐴) → 0 ≤ (1 / 𝐴)) |
| 37 | | recap0 8729 |
. . . 4
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 # 0) → (1 / 𝐴) # 0) |
| 38 | 19, 7, 37 | syl2anc 411 |
. . 3
⊢ ((𝐴 ∈ ℝ ∧ 0 <
𝐴) → (1 / 𝐴) # 0) |
| 39 | 19, 7, 21 | syl2anc 411 |
. . . 4
⊢ ((𝐴 ∈ ℝ ∧ 0 <
𝐴) → (1 / 𝐴) ∈
ℂ) |
| 40 | | 0cn 8035 |
. . . 4
⊢ 0 ∈
ℂ |
| 41 | | apsym 8650 |
. . . 4
⊢ (((1 /
𝐴) ∈ ℂ ∧ 0
∈ ℂ) → ((1 / 𝐴) # 0 ↔ 0 # (1 / 𝐴))) |
| 42 | 39, 40, 41 | sylancl 413 |
. . 3
⊢ ((𝐴 ∈ ℝ ∧ 0 <
𝐴) → ((1 / 𝐴) # 0 ↔ 0 # (1 / 𝐴))) |
| 43 | 38, 42 | mpbid 147 |
. 2
⊢ ((𝐴 ∈ ℝ ∧ 0 <
𝐴) → 0 # (1 / 𝐴)) |
| 44 | | ltleap 8676 |
. . 3
⊢ ((0
∈ ℝ ∧ (1 / 𝐴) ∈ ℝ) → (0 < (1 / 𝐴) ↔ (0 ≤ (1 / 𝐴) ∧ 0 # (1 / 𝐴)))) |
| 45 | 2, 13, 44 | sylancr 414 |
. 2
⊢ ((𝐴 ∈ ℝ ∧ 0 <
𝐴) → (0 < (1 /
𝐴) ↔ (0 ≤ (1 /
𝐴) ∧ 0 # (1 / 𝐴)))) |
| 46 | 36, 43, 45 | mpbir2and 946 |
1
⊢ ((𝐴 ∈ ℝ ∧ 0 <
𝐴) → 0 < (1 / 𝐴)) |