Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  recgt0 GIF version

Theorem recgt0 8466
 Description: The reciprocal of a positive number is positive. Exercise 4 of [Apostol] p. 21. (Contributed by NM, 25-Aug-1999.) (Revised by Mario Carneiro, 27-May-2016.)
Assertion
Ref Expression
recgt0 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → 0 < (1 / 𝐴))

Proof of Theorem recgt0
StepHypRef Expression
1 0lt1 7760 . . . . 5 0 < 1
2 0re 7638 . . . . . 6 0 ∈ ℝ
3 1re 7637 . . . . . 6 1 ∈ ℝ
42, 3ltnsymi 7734 . . . . 5 (0 < 1 → ¬ 1 < 0)
51, 4ax-mp 7 . . . 4 ¬ 1 < 0
6 simpll 499 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (1 / 𝐴) < 0) → 𝐴 ∈ ℝ)
7 gt0ap0 8254 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → 𝐴 # 0)
87adantr 272 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (1 / 𝐴) < 0) → 𝐴 # 0)
96, 8rerecclapd 8454 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (1 / 𝐴) < 0) → (1 / 𝐴) ∈ ℝ)
109renegcld 8009 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (1 / 𝐴) < 0) → -(1 / 𝐴) ∈ ℝ)
11 simpr 109 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (1 / 𝐴) < 0) → (1 / 𝐴) < 0)
12 simpl 108 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → 𝐴 ∈ ℝ)
1312, 7rerecclapd 8454 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → (1 / 𝐴) ∈ ℝ)
1413adantr 272 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (1 / 𝐴) < 0) → (1 / 𝐴) ∈ ℝ)
1514lt0neg1d 8144 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (1 / 𝐴) < 0) → ((1 / 𝐴) < 0 ↔ 0 < -(1 / 𝐴)))
1611, 15mpbid 146 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (1 / 𝐴) < 0) → 0 < -(1 / 𝐴))
17 simplr 500 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (1 / 𝐴) < 0) → 0 < 𝐴)
1810, 6, 16, 17mulgt0d 7756 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (1 / 𝐴) < 0) → 0 < (-(1 / 𝐴) · 𝐴))
1912recnd 7666 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → 𝐴 ∈ ℂ)
2019adantr 272 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (1 / 𝐴) < 0) → 𝐴 ∈ ℂ)
21 recclap 8300 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐴 # 0) → (1 / 𝐴) ∈ ℂ)
2220, 8, 21syl2anc 406 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (1 / 𝐴) < 0) → (1 / 𝐴) ∈ ℂ)
2322, 20mulneg1d 8040 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (1 / 𝐴) < 0) → (-(1 / 𝐴) · 𝐴) = -((1 / 𝐴) · 𝐴))
24 recidap2 8308 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐴 # 0) → ((1 / 𝐴) · 𝐴) = 1)
2520, 8, 24syl2anc 406 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (1 / 𝐴) < 0) → ((1 / 𝐴) · 𝐴) = 1)
2625negeqd 7828 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (1 / 𝐴) < 0) → -((1 / 𝐴) · 𝐴) = -1)
2723, 26eqtrd 2132 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (1 / 𝐴) < 0) → (-(1 / 𝐴) · 𝐴) = -1)
2818, 27breqtrd 3899 . . . . . 6 (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (1 / 𝐴) < 0) → 0 < -1)
29 1red 7653 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (1 / 𝐴) < 0) → 1 ∈ ℝ)
3029lt0neg1d 8144 . . . . . 6 (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (1 / 𝐴) < 0) → (1 < 0 ↔ 0 < -1))
3128, 30mpbird 166 . . . . 5 (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (1 / 𝐴) < 0) → 1 < 0)
3231ex 114 . . . 4 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → ((1 / 𝐴) < 0 → 1 < 0))
335, 32mtoi 631 . . 3 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → ¬ (1 / 𝐴) < 0)
34 lenlt 7711 . . . 4 ((0 ∈ ℝ ∧ (1 / 𝐴) ∈ ℝ) → (0 ≤ (1 / 𝐴) ↔ ¬ (1 / 𝐴) < 0))
352, 13, 34sylancr 408 . . 3 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → (0 ≤ (1 / 𝐴) ↔ ¬ (1 / 𝐴) < 0))
3633, 35mpbird 166 . 2 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → 0 ≤ (1 / 𝐴))
37 recap0 8306 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐴 # 0) → (1 / 𝐴) # 0)
3819, 7, 37syl2anc 406 . . 3 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → (1 / 𝐴) # 0)
3919, 7, 21syl2anc 406 . . . 4 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → (1 / 𝐴) ∈ ℂ)
40 0cn 7630 . . . 4 0 ∈ ℂ
41 apsym 8234 . . . 4 (((1 / 𝐴) ∈ ℂ ∧ 0 ∈ ℂ) → ((1 / 𝐴) # 0 ↔ 0 # (1 / 𝐴)))
4239, 40, 41sylancl 407 . . 3 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → ((1 / 𝐴) # 0 ↔ 0 # (1 / 𝐴)))
4338, 42mpbid 146 . 2 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → 0 # (1 / 𝐴))
44 ltleap 8259 . . 3 ((0 ∈ ℝ ∧ (1 / 𝐴) ∈ ℝ) → (0 < (1 / 𝐴) ↔ (0 ≤ (1 / 𝐴) ∧ 0 # (1 / 𝐴))))
452, 13, 44sylancr 408 . 2 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → (0 < (1 / 𝐴) ↔ (0 ≤ (1 / 𝐴) ∧ 0 # (1 / 𝐴))))
4636, 43, 45mpbir2and 896 1 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → 0 < (1 / 𝐴))
 Colors of variables: wff set class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 103   ↔ wb 104   = wceq 1299   ∈ wcel 1448   class class class wbr 3875  (class class class)co 5706  ℂcc 7498  ℝcr 7499  0cc0 7500  1c1 7501   · cmul 7505   < clt 7672   ≤ cle 7673  -cneg 7805   # cap 8209   / cdiv 8293 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 584  ax-in2 585  ax-io 671  ax-5 1391  ax-7 1392  ax-gen 1393  ax-ie1 1437  ax-ie2 1438  ax-8 1450  ax-10 1451  ax-11 1452  ax-i12 1453  ax-bndl 1454  ax-4 1455  ax-13 1459  ax-14 1460  ax-17 1474  ax-i9 1478  ax-ial 1482  ax-i5r 1483  ax-ext 2082  ax-sep 3986  ax-pow 4038  ax-pr 4069  ax-un 4293  ax-setind 4390  ax-cnex 7586  ax-resscn 7587  ax-1cn 7588  ax-1re 7589  ax-icn 7590  ax-addcl 7591  ax-addrcl 7592  ax-mulcl 7593  ax-mulrcl 7594  ax-addcom 7595  ax-mulcom 7596  ax-addass 7597  ax-mulass 7598  ax-distr 7599  ax-i2m1 7600  ax-0lt1 7601  ax-1rid 7602  ax-0id 7603  ax-rnegex 7604  ax-precex 7605  ax-cnre 7606  ax-pre-ltirr 7607  ax-pre-ltwlin 7608  ax-pre-lttrn 7609  ax-pre-apti 7610  ax-pre-ltadd 7611  ax-pre-mulgt0 7612  ax-pre-mulext 7613 This theorem depends on definitions:  df-bi 116  df-3an 932  df-tru 1302  df-fal 1305  df-nf 1405  df-sb 1704  df-eu 1963  df-mo 1964  df-clab 2087  df-cleq 2093  df-clel 2096  df-nfc 2229  df-ne 2268  df-nel 2363  df-ral 2380  df-rex 2381  df-reu 2382  df-rmo 2383  df-rab 2384  df-v 2643  df-sbc 2863  df-dif 3023  df-un 3025  df-in 3027  df-ss 3034  df-pw 3459  df-sn 3480  df-pr 3481  df-op 3483  df-uni 3684  df-br 3876  df-opab 3930  df-id 4153  df-po 4156  df-iso 4157  df-xp 4483  df-rel 4484  df-cnv 4485  df-co 4486  df-dm 4487  df-iota 5024  df-fun 5061  df-fv 5067  df-riota 5662  df-ov 5709  df-oprab 5710  df-mpo 5711  df-pnf 7674  df-mnf 7675  df-xr 7676  df-ltxr 7677  df-le 7678  df-sub 7806  df-neg 7807  df-reap 8203  df-ap 8210  df-div 8294 This theorem is referenced by:  prodgt0gt0  8467  ltdiv1  8484  ltrec1  8504  lerec2  8505  lediv12a  8510  recgt1i  8514  recreclt  8516  recgt0i  8522  recgt0ii  8523  recgt0d  8550  nnrecgt0  8616  nnrecl  8827
 Copyright terms: Public domain W3C validator