ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  op2nd GIF version

Theorem op2nd 6299
Description: Extract the second member of an ordered pair. (Contributed by NM, 5-Oct-2004.)
Hypotheses
Ref Expression
op1st.1 𝐴 ∈ V
op1st.2 𝐵 ∈ V
Assertion
Ref Expression
op2nd (2nd ‘⟨𝐴, 𝐵⟩) = 𝐵

Proof of Theorem op2nd
StepHypRef Expression
1 op1st.1 . . . 4 𝐴 ∈ V
2 op1st.2 . . . 4 𝐵 ∈ V
3 opexg 4314 . . . 4 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → ⟨𝐴, 𝐵⟩ ∈ V)
41, 2, 3mp2an 426 . . 3 𝐴, 𝐵⟩ ∈ V
5 2ndvalg 6295 . . 3 (⟨𝐴, 𝐵⟩ ∈ V → (2nd ‘⟨𝐴, 𝐵⟩) = ran {⟨𝐴, 𝐵⟩})
64, 5ax-mp 5 . 2 (2nd ‘⟨𝐴, 𝐵⟩) = ran {⟨𝐴, 𝐵⟩}
71, 2op2nda 5213 . 2 ran {⟨𝐴, 𝐵⟩} = 𝐵
86, 7eqtri 2250 1 (2nd ‘⟨𝐴, 𝐵⟩) = 𝐵
Colors of variables: wff set class
Syntax hints:   = wceq 1395  wcel 2200  Vcvv 2799  {csn 3666  cop 3669   cuni 3888  ran crn 4720  cfv 5318  2nd c2nd 6291
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-sbc 3029  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-iota 5278  df-fun 5320  df-fv 5326  df-2nd 6293
This theorem is referenced by:  op2ndd  6301  op2ndg  6303  2ndval2  6308  fo2ndresm  6314  eloprabi  6348  fo2ndf  6379  f1o2ndf1  6380  xpmapenlem  7018  genpelvu  7708  nqprl  7746  1pru  7751  addnqprlemru  7753  addnqprlemfl  7754  addnqprlemfu  7755  mulnqprlemru  7769  mulnqprlemfl  7770  mulnqprlemfu  7771  ltnqpr  7788  ltnqpri  7789  ltexprlemelu  7794  recexprlemelu  7818  cauappcvgprlemm  7840  cauappcvgprlemopu  7843  cauappcvgprlemupu  7844  cauappcvgprlemdisj  7846  cauappcvgprlemloc  7847  cauappcvgprlemladdfu  7849  cauappcvgprlemladdru  7851  cauappcvgprlemladdrl  7852  cauappcvgprlem2  7855  caucvgprlemm  7863  caucvgprlemopu  7866  caucvgprlemupu  7867  caucvgprlemdisj  7869  caucvgprlemloc  7870  caucvgprlemladdfu  7872  caucvgprlem2  7875  caucvgprprlemelu  7881  caucvgprprlemmu  7890  caucvgprprlemexbt  7901  caucvgprprlem2  7905  suplocexprlemloc  7916  fsum2dlemstep  11953  fprod2dlemstep  12141  ctiunctlemfo  13018
  Copyright terms: Public domain W3C validator