| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > op2nd | GIF version | ||
| Description: Extract the second member of an ordered pair. (Contributed by NM, 5-Oct-2004.) |
| Ref | Expression |
|---|---|
| op1st.1 | ⊢ 𝐴 ∈ V |
| op1st.2 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| op2nd | ⊢ (2nd ‘〈𝐴, 𝐵〉) = 𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | op1st.1 | . . . 4 ⊢ 𝐴 ∈ V | |
| 2 | op1st.2 | . . . 4 ⊢ 𝐵 ∈ V | |
| 3 | opexg 4261 | . . . 4 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → 〈𝐴, 𝐵〉 ∈ V) | |
| 4 | 1, 2, 3 | mp2an 426 | . . 3 ⊢ 〈𝐴, 𝐵〉 ∈ V |
| 5 | 2ndvalg 6201 | . . 3 ⊢ (〈𝐴, 𝐵〉 ∈ V → (2nd ‘〈𝐴, 𝐵〉) = ∪ ran {〈𝐴, 𝐵〉}) | |
| 6 | 4, 5 | ax-mp 5 | . 2 ⊢ (2nd ‘〈𝐴, 𝐵〉) = ∪ ran {〈𝐴, 𝐵〉} |
| 7 | 1, 2 | op2nda 5154 | . 2 ⊢ ∪ ran {〈𝐴, 𝐵〉} = 𝐵 |
| 8 | 6, 7 | eqtri 2217 | 1 ⊢ (2nd ‘〈𝐴, 𝐵〉) = 𝐵 |
| Copyright terms: Public domain | W3C validator |