ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  op2nd GIF version

Theorem op2nd 6200
Description: Extract the second member of an ordered pair. (Contributed by NM, 5-Oct-2004.)
Hypotheses
Ref Expression
op1st.1 𝐴 ∈ V
op1st.2 𝐵 ∈ V
Assertion
Ref Expression
op2nd (2nd ‘⟨𝐴, 𝐵⟩) = 𝐵

Proof of Theorem op2nd
StepHypRef Expression
1 op1st.1 . . . 4 𝐴 ∈ V
2 op1st.2 . . . 4 𝐵 ∈ V
3 opexg 4257 . . . 4 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → ⟨𝐴, 𝐵⟩ ∈ V)
41, 2, 3mp2an 426 . . 3 𝐴, 𝐵⟩ ∈ V
5 2ndvalg 6196 . . 3 (⟨𝐴, 𝐵⟩ ∈ V → (2nd ‘⟨𝐴, 𝐵⟩) = ran {⟨𝐴, 𝐵⟩})
64, 5ax-mp 5 . 2 (2nd ‘⟨𝐴, 𝐵⟩) = ran {⟨𝐴, 𝐵⟩}
71, 2op2nda 5150 . 2 ran {⟨𝐴, 𝐵⟩} = 𝐵
86, 7eqtri 2214 1 (2nd ‘⟨𝐴, 𝐵⟩) = 𝐵
Colors of variables: wff set class
Syntax hints:   = wceq 1364  wcel 2164  Vcvv 2760  {csn 3618  cop 3621   cuni 3835  ran crn 4660  cfv 5254  2nd c2nd 6192
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-sbc 2986  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-iota 5215  df-fun 5256  df-fv 5262  df-2nd 6194
This theorem is referenced by:  op2ndd  6202  op2ndg  6204  2ndval2  6209  fo2ndresm  6215  eloprabi  6249  fo2ndf  6280  f1o2ndf1  6281  xpmapenlem  6905  genpelvu  7573  nqprl  7611  1pru  7616  addnqprlemru  7618  addnqprlemfl  7619  addnqprlemfu  7620  mulnqprlemru  7634  mulnqprlemfl  7635  mulnqprlemfu  7636  ltnqpr  7653  ltnqpri  7654  ltexprlemelu  7659  recexprlemelu  7683  cauappcvgprlemm  7705  cauappcvgprlemopu  7708  cauappcvgprlemupu  7709  cauappcvgprlemdisj  7711  cauappcvgprlemloc  7712  cauappcvgprlemladdfu  7714  cauappcvgprlemladdru  7716  cauappcvgprlemladdrl  7717  cauappcvgprlem2  7720  caucvgprlemm  7728  caucvgprlemopu  7731  caucvgprlemupu  7732  caucvgprlemdisj  7734  caucvgprlemloc  7735  caucvgprlemladdfu  7737  caucvgprlem2  7740  caucvgprprlemelu  7746  caucvgprprlemmu  7755  caucvgprprlemexbt  7766  caucvgprprlem2  7770  suplocexprlemloc  7781  fsum2dlemstep  11577  fprod2dlemstep  11765  ctiunctlemfo  12596
  Copyright terms: Public domain W3C validator