ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  op2nd GIF version

Theorem op2nd 6240
Description: Extract the second member of an ordered pair. (Contributed by NM, 5-Oct-2004.)
Hypotheses
Ref Expression
op1st.1 𝐴 ∈ V
op1st.2 𝐵 ∈ V
Assertion
Ref Expression
op2nd (2nd ‘⟨𝐴, 𝐵⟩) = 𝐵

Proof of Theorem op2nd
StepHypRef Expression
1 op1st.1 . . . 4 𝐴 ∈ V
2 op1st.2 . . . 4 𝐵 ∈ V
3 opexg 4276 . . . 4 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → ⟨𝐴, 𝐵⟩ ∈ V)
41, 2, 3mp2an 426 . . 3 𝐴, 𝐵⟩ ∈ V
5 2ndvalg 6236 . . 3 (⟨𝐴, 𝐵⟩ ∈ V → (2nd ‘⟨𝐴, 𝐵⟩) = ran {⟨𝐴, 𝐵⟩})
64, 5ax-mp 5 . 2 (2nd ‘⟨𝐴, 𝐵⟩) = ran {⟨𝐴, 𝐵⟩}
71, 2op2nda 5172 . 2 ran {⟨𝐴, 𝐵⟩} = 𝐵
86, 7eqtri 2227 1 (2nd ‘⟨𝐴, 𝐵⟩) = 𝐵
Colors of variables: wff set class
Syntax hints:   = wceq 1373  wcel 2177  Vcvv 2773  {csn 3634  cop 3637   cuni 3852  ran crn 4680  cfv 5276  2nd c2nd 6232
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4166  ax-pow 4222  ax-pr 4257  ax-un 4484
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-v 2775  df-sbc 3000  df-un 3171  df-in 3173  df-ss 3180  df-pw 3619  df-sn 3640  df-pr 3641  df-op 3643  df-uni 3853  df-br 4048  df-opab 4110  df-mpt 4111  df-id 4344  df-xp 4685  df-rel 4686  df-cnv 4687  df-co 4688  df-dm 4689  df-rn 4690  df-iota 5237  df-fun 5278  df-fv 5284  df-2nd 6234
This theorem is referenced by:  op2ndd  6242  op2ndg  6244  2ndval2  6249  fo2ndresm  6255  eloprabi  6289  fo2ndf  6320  f1o2ndf1  6321  xpmapenlem  6953  genpelvu  7633  nqprl  7671  1pru  7676  addnqprlemru  7678  addnqprlemfl  7679  addnqprlemfu  7680  mulnqprlemru  7694  mulnqprlemfl  7695  mulnqprlemfu  7696  ltnqpr  7713  ltnqpri  7714  ltexprlemelu  7719  recexprlemelu  7743  cauappcvgprlemm  7765  cauappcvgprlemopu  7768  cauappcvgprlemupu  7769  cauappcvgprlemdisj  7771  cauappcvgprlemloc  7772  cauappcvgprlemladdfu  7774  cauappcvgprlemladdru  7776  cauappcvgprlemladdrl  7777  cauappcvgprlem2  7780  caucvgprlemm  7788  caucvgprlemopu  7791  caucvgprlemupu  7792  caucvgprlemdisj  7794  caucvgprlemloc  7795  caucvgprlemladdfu  7797  caucvgprlem2  7800  caucvgprprlemelu  7806  caucvgprprlemmu  7815  caucvgprprlemexbt  7826  caucvgprprlem2  7830  suplocexprlemloc  7841  fsum2dlemstep  11789  fprod2dlemstep  11977  ctiunctlemfo  12854
  Copyright terms: Public domain W3C validator