ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  op2nd GIF version

Theorem op2nd 6263
Description: Extract the second member of an ordered pair. (Contributed by NM, 5-Oct-2004.)
Hypotheses
Ref Expression
op1st.1 𝐴 ∈ V
op1st.2 𝐵 ∈ V
Assertion
Ref Expression
op2nd (2nd ‘⟨𝐴, 𝐵⟩) = 𝐵

Proof of Theorem op2nd
StepHypRef Expression
1 op1st.1 . . . 4 𝐴 ∈ V
2 op1st.2 . . . 4 𝐵 ∈ V
3 opexg 4293 . . . 4 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → ⟨𝐴, 𝐵⟩ ∈ V)
41, 2, 3mp2an 426 . . 3 𝐴, 𝐵⟩ ∈ V
5 2ndvalg 6259 . . 3 (⟨𝐴, 𝐵⟩ ∈ V → (2nd ‘⟨𝐴, 𝐵⟩) = ran {⟨𝐴, 𝐵⟩})
64, 5ax-mp 5 . 2 (2nd ‘⟨𝐴, 𝐵⟩) = ran {⟨𝐴, 𝐵⟩}
71, 2op2nda 5189 . 2 ran {⟨𝐴, 𝐵⟩} = 𝐵
86, 7eqtri 2230 1 (2nd ‘⟨𝐴, 𝐵⟩) = 𝐵
Colors of variables: wff set class
Syntax hints:   = wceq 1375  wcel 2180  Vcvv 2779  {csn 3646  cop 3649   cuni 3867  ran crn 4697  cfv 5294  2nd c2nd 6255
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-13 2182  ax-14 2183  ax-ext 2191  ax-sep 4181  ax-pow 4237  ax-pr 4272  ax-un 4501
This theorem depends on definitions:  df-bi 117  df-3an 985  df-tru 1378  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ral 2493  df-rex 2494  df-v 2781  df-sbc 3009  df-un 3181  df-in 3183  df-ss 3190  df-pw 3631  df-sn 3652  df-pr 3653  df-op 3655  df-uni 3868  df-br 4063  df-opab 4125  df-mpt 4126  df-id 4361  df-xp 4702  df-rel 4703  df-cnv 4704  df-co 4705  df-dm 4706  df-rn 4707  df-iota 5254  df-fun 5296  df-fv 5302  df-2nd 6257
This theorem is referenced by:  op2ndd  6265  op2ndg  6267  2ndval2  6272  fo2ndresm  6278  eloprabi  6312  fo2ndf  6343  f1o2ndf1  6344  xpmapenlem  6978  genpelvu  7668  nqprl  7706  1pru  7711  addnqprlemru  7713  addnqprlemfl  7714  addnqprlemfu  7715  mulnqprlemru  7729  mulnqprlemfl  7730  mulnqprlemfu  7731  ltnqpr  7748  ltnqpri  7749  ltexprlemelu  7754  recexprlemelu  7778  cauappcvgprlemm  7800  cauappcvgprlemopu  7803  cauappcvgprlemupu  7804  cauappcvgprlemdisj  7806  cauappcvgprlemloc  7807  cauappcvgprlemladdfu  7809  cauappcvgprlemladdru  7811  cauappcvgprlemladdrl  7812  cauappcvgprlem2  7815  caucvgprlemm  7823  caucvgprlemopu  7826  caucvgprlemupu  7827  caucvgprlemdisj  7829  caucvgprlemloc  7830  caucvgprlemladdfu  7832  caucvgprlem2  7835  caucvgprprlemelu  7841  caucvgprprlemmu  7850  caucvgprprlemexbt  7861  caucvgprprlem2  7865  suplocexprlemloc  7876  fsum2dlemstep  11911  fprod2dlemstep  12099  ctiunctlemfo  12976
  Copyright terms: Public domain W3C validator