ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  reldvdsr GIF version

Theorem reldvdsr 14055
Description: The divides relation is a relation. (Contributed by Mario Carneiro, 1-Dec-2014.)
Hypothesis
Ref Expression
reldvdsr.1 = (∥r𝑅)
Assertion
Ref Expression
reldvdsr Rel

Proof of Theorem reldvdsr
Dummy variables 𝑥 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-dvdsr 14052 . . 3 r = (𝑤 ∈ V ↦ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (Base‘𝑤) ∧ ∃𝑧 ∈ (Base‘𝑤)(𝑧(.r𝑤)𝑥) = 𝑦)})
21relmptopab 6207 . 2 Rel (∥r𝑅)
3 reldvdsr.1 . . 3 = (∥r𝑅)
43releqi 4802 . 2 (Rel ↔ Rel (∥r𝑅))
52, 4mpbir 146 1 Rel
Colors of variables: wff set class
Syntax hints:  wa 104   = wceq 1395  wcel 2200  wrex 2509  Vcvv 2799  Rel wrel 4724  cfv 5318  (class class class)co 6001  Basecbs 13032  .rcmulr 13111  rcdsr 14049
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fv 5326  df-dvdsr 14052
This theorem is referenced by:  reldvdsrsrg  14056
  Copyright terms: Public domain W3C validator