Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > rsqrmo | GIF version |
Description: Uniqueness for the square root function. (Contributed by Jim Kingdon, 10-Aug-2021.) |
Ref | Expression |
---|---|
rsqrmo | ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → ∃*𝑥 ∈ ℝ ((𝑥↑2) = 𝐴 ∧ 0 ≤ 𝑥)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simplrl 525 | . . . . 5 ⊢ ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ (((𝑥↑2) = 𝐴 ∧ 0 ≤ 𝑥) ∧ ((𝑦↑2) = 𝐴 ∧ 0 ≤ 𝑦))) → 𝑥 ∈ ℝ) | |
2 | simplrr 526 | . . . . 5 ⊢ ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ (((𝑥↑2) = 𝐴 ∧ 0 ≤ 𝑥) ∧ ((𝑦↑2) = 𝐴 ∧ 0 ≤ 𝑦))) → 𝑦 ∈ ℝ) | |
3 | simprlr 528 | . . . . 5 ⊢ ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ (((𝑥↑2) = 𝐴 ∧ 0 ≤ 𝑥) ∧ ((𝑦↑2) = 𝐴 ∧ 0 ≤ 𝑦))) → 0 ≤ 𝑥) | |
4 | simprrr 530 | . . . . 5 ⊢ ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ (((𝑥↑2) = 𝐴 ∧ 0 ≤ 𝑥) ∧ ((𝑦↑2) = 𝐴 ∧ 0 ≤ 𝑦))) → 0 ≤ 𝑦) | |
5 | simprll 527 | . . . . . 6 ⊢ ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ (((𝑥↑2) = 𝐴 ∧ 0 ≤ 𝑥) ∧ ((𝑦↑2) = 𝐴 ∧ 0 ≤ 𝑦))) → (𝑥↑2) = 𝐴) | |
6 | simprrl 529 | . . . . . 6 ⊢ ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ (((𝑥↑2) = 𝐴 ∧ 0 ≤ 𝑥) ∧ ((𝑦↑2) = 𝐴 ∧ 0 ≤ 𝑦))) → (𝑦↑2) = 𝐴) | |
7 | 5, 6 | eqtr4d 2201 | . . . . 5 ⊢ ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ (((𝑥↑2) = 𝐴 ∧ 0 ≤ 𝑥) ∧ ((𝑦↑2) = 𝐴 ∧ 0 ≤ 𝑦))) → (𝑥↑2) = (𝑦↑2)) |
8 | 1, 2, 3, 4, 7 | sq11d 10621 | . . . 4 ⊢ ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ (((𝑥↑2) = 𝐴 ∧ 0 ≤ 𝑥) ∧ ((𝑦↑2) = 𝐴 ∧ 0 ≤ 𝑦))) → 𝑥 = 𝑦) |
9 | 8 | ex 114 | . . 3 ⊢ (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → ((((𝑥↑2) = 𝐴 ∧ 0 ≤ 𝑥) ∧ ((𝑦↑2) = 𝐴 ∧ 0 ≤ 𝑦)) → 𝑥 = 𝑦)) |
10 | 9 | ralrimivva 2548 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ ((((𝑥↑2) = 𝐴 ∧ 0 ≤ 𝑥) ∧ ((𝑦↑2) = 𝐴 ∧ 0 ≤ 𝑦)) → 𝑥 = 𝑦)) |
11 | oveq1 5849 | . . . . 5 ⊢ (𝑥 = 𝑦 → (𝑥↑2) = (𝑦↑2)) | |
12 | 11 | eqeq1d 2174 | . . . 4 ⊢ (𝑥 = 𝑦 → ((𝑥↑2) = 𝐴 ↔ (𝑦↑2) = 𝐴)) |
13 | breq2 3986 | . . . 4 ⊢ (𝑥 = 𝑦 → (0 ≤ 𝑥 ↔ 0 ≤ 𝑦)) | |
14 | 12, 13 | anbi12d 465 | . . 3 ⊢ (𝑥 = 𝑦 → (((𝑥↑2) = 𝐴 ∧ 0 ≤ 𝑥) ↔ ((𝑦↑2) = 𝐴 ∧ 0 ≤ 𝑦))) |
15 | 14 | rmo4 2919 | . 2 ⊢ (∃*𝑥 ∈ ℝ ((𝑥↑2) = 𝐴 ∧ 0 ≤ 𝑥) ↔ ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ ((((𝑥↑2) = 𝐴 ∧ 0 ≤ 𝑥) ∧ ((𝑦↑2) = 𝐴 ∧ 0 ≤ 𝑦)) → 𝑥 = 𝑦)) |
16 | 10, 15 | sylibr 133 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → ∃*𝑥 ∈ ℝ ((𝑥↑2) = 𝐴 ∧ 0 ≤ 𝑥)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 = wceq 1343 ∈ wcel 2136 ∀wral 2444 ∃*wrmo 2447 class class class wbr 3982 (class class class)co 5842 ℝcr 7752 0cc0 7753 ≤ cle 7934 2c2 8908 ↑cexp 10454 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-coll 4097 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-iinf 4565 ax-cnex 7844 ax-resscn 7845 ax-1cn 7846 ax-1re 7847 ax-icn 7848 ax-addcl 7849 ax-addrcl 7850 ax-mulcl 7851 ax-mulrcl 7852 ax-addcom 7853 ax-mulcom 7854 ax-addass 7855 ax-mulass 7856 ax-distr 7857 ax-i2m1 7858 ax-0lt1 7859 ax-1rid 7860 ax-0id 7861 ax-rnegex 7862 ax-precex 7863 ax-cnre 7864 ax-pre-ltirr 7865 ax-pre-ltwlin 7866 ax-pre-lttrn 7867 ax-pre-apti 7868 ax-pre-ltadd 7869 ax-pre-mulgt0 7870 ax-pre-mulext 7871 |
This theorem depends on definitions: df-bi 116 df-dc 825 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-nel 2432 df-ral 2449 df-rex 2450 df-reu 2451 df-rmo 2452 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-if 3521 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-tr 4081 df-id 4271 df-po 4274 df-iso 4275 df-iord 4344 df-on 4346 df-ilim 4347 df-suc 4349 df-iom 4568 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-riota 5798 df-ov 5845 df-oprab 5846 df-mpo 5847 df-1st 6108 df-2nd 6109 df-recs 6273 df-frec 6359 df-pnf 7935 df-mnf 7936 df-xr 7937 df-ltxr 7938 df-le 7939 df-sub 8071 df-neg 8072 df-reap 8473 df-ap 8480 df-div 8569 df-inn 8858 df-2 8916 df-n0 9115 df-z 9192 df-uz 9467 df-seqfrec 10381 df-exp 10455 |
This theorem is referenced by: rersqreu 10970 |
Copyright terms: Public domain | W3C validator |