Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ltletrd | GIF version |
Description: Transitive law deduction for 'less than', 'less than or equal to'. (Contributed by NM, 9-Jan-2006.) |
Ref | Expression |
---|---|
ltadd2d.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
ltadd2d.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
ltadd2d.3 | ⊢ (𝜑 → 𝐶 ∈ ℝ) |
ltletrd.4 | ⊢ (𝜑 → 𝐴 < 𝐵) |
ltletrd.5 | ⊢ (𝜑 → 𝐵 ≤ 𝐶) |
Ref | Expression |
---|---|
ltletrd | ⊢ (𝜑 → 𝐴 < 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ltletrd.4 | . 2 ⊢ (𝜑 → 𝐴 < 𝐵) | |
2 | ltletrd.5 | . 2 ⊢ (𝜑 → 𝐵 ≤ 𝐶) | |
3 | ltadd2d.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
4 | ltadd2d.2 | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
5 | ltadd2d.3 | . . 3 ⊢ (𝜑 → 𝐶 ∈ ℝ) | |
6 | ltletr 8009 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 < 𝐵 ∧ 𝐵 ≤ 𝐶) → 𝐴 < 𝐶)) | |
7 | 3, 4, 5, 6 | syl3anc 1233 | . 2 ⊢ (𝜑 → ((𝐴 < 𝐵 ∧ 𝐵 ≤ 𝐶) → 𝐴 < 𝐶)) |
8 | 1, 2, 7 | mp2and 431 | 1 ⊢ (𝜑 → 𝐴 < 𝐶) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∈ wcel 2141 class class class wbr 3989 ℝcr 7773 < clt 7954 ≤ cle 7955 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-cnex 7865 ax-resscn 7866 ax-pre-ltwlin 7887 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-rab 2457 df-v 2732 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-opab 4051 df-xp 4617 df-cnv 4619 df-pnf 7956 df-mnf 7957 df-xr 7958 df-ltxr 7959 df-le 7960 |
This theorem is referenced by: lelttrdi 8345 lediv12a 8810 btwnapz 9342 rpgecl 9639 fznatpl1 10032 elfz1b 10046 exbtwnzlemstep 10204 ceiqle 10269 modqabs 10313 mulp1mod1 10321 seq3f1olemqsumk 10455 expgt1 10514 leexp2a 10529 bernneq3 10598 expnbnd 10599 nn0opthlem2d 10655 cvg1nlemres 10949 resqrexlemlo 10977 resqrexlemnmsq 10981 resqrexlemga 10987 abssubap0 11054 icodiamlt 11144 rpmaxcl 11187 reccn2ap 11276 divcnv 11460 cvgratnnlembern 11486 cvgratnnlemabsle 11490 fprodntrivap 11547 efcllemp 11621 sin01bnd 11720 cos01bnd 11721 sin01gt0 11724 cos12dec 11730 eirraplem 11739 dvdslelemd 11803 dvdsbnd 11911 isprm5 12096 1arith 12319 znnen 12353 nninfdclemp1 12405 cnopnap 13388 dedekindeulemlu 13393 suplociccreex 13396 dedekindicclemlu 13402 dedekindicc 13405 ivthinclemlopn 13408 limcimolemlt 13427 limccnp2lem 13439 coseq00topi 13550 cosordlem 13564 logdivlti 13596 |
Copyright terms: Public domain | W3C validator |