ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltletrd GIF version

Theorem ltletrd 8442
Description: Transitive law deduction for 'less than', 'less than or equal to'. (Contributed by NM, 9-Jan-2006.)
Hypotheses
Ref Expression
ltadd2d.1 (𝜑𝐴 ∈ ℝ)
ltadd2d.2 (𝜑𝐵 ∈ ℝ)
ltadd2d.3 (𝜑𝐶 ∈ ℝ)
ltletrd.4 (𝜑𝐴 < 𝐵)
ltletrd.5 (𝜑𝐵𝐶)
Assertion
Ref Expression
ltletrd (𝜑𝐴 < 𝐶)

Proof of Theorem ltletrd
StepHypRef Expression
1 ltletrd.4 . 2 (𝜑𝐴 < 𝐵)
2 ltletrd.5 . 2 (𝜑𝐵𝐶)
3 ltadd2d.1 . . 3 (𝜑𝐴 ∈ ℝ)
4 ltadd2d.2 . . 3 (𝜑𝐵 ∈ ℝ)
5 ltadd2d.3 . . 3 (𝜑𝐶 ∈ ℝ)
6 ltletr 8109 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 < 𝐵𝐵𝐶) → 𝐴 < 𝐶))
73, 4, 5, 6syl3anc 1249 . 2 (𝜑 → ((𝐴 < 𝐵𝐵𝐶) → 𝐴 < 𝐶))
81, 2, 7mp2and 433 1 (𝜑𝐴 < 𝐶)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wcel 2164   class class class wbr 4029  cr 7871   < clt 8054  cle 8055
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-cnex 7963  ax-resscn 7964  ax-pre-ltwlin 7985
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-br 4030  df-opab 4091  df-xp 4665  df-cnv 4667  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060
This theorem is referenced by:  lelttrdi  8445  lediv12a  8913  btwnapz  9447  rpgecl  9748  fznatpl1  10142  elfz1b  10156  exbtwnzlemstep  10316  ceiqle  10384  modqabs  10428  mulp1mod1  10436  seq3f1olemqsumk  10583  seqf1oglem1  10590  expgt1  10648  leexp2a  10663  bernneq3  10733  expnbnd  10734  nn0opthlem2d  10792  cvg1nlemres  11129  resqrexlemlo  11157  resqrexlemnmsq  11161  resqrexlemga  11167  abssubap0  11234  icodiamlt  11324  rpmaxcl  11367  reccn2ap  11456  divcnv  11640  cvgratnnlembern  11666  cvgratnnlemabsle  11670  fprodntrivap  11727  efcllemp  11801  sin01bnd  11900  cos01bnd  11901  sin01gt0  11905  cos12dec  11911  eirraplem  11920  dvdslelemd  11985  dvdsbnd  12093  isprm5  12280  1arith  12505  znnen  12555  nninfdclemp1  12607  cnopnap  14765  dedekindeulemlu  14775  suplociccreex  14778  dedekindicclemlu  14784  dedekindicc  14787  ivthinclemlopn  14790  hoverb  14802  limcimolemlt  14818  limccnp2lem  14830  coseq00topi  14970  cosordlem  14984  logdivlti  15016  gausslemma2dlem0c  15167  lgsquadlem1  15191
  Copyright terms: Public domain W3C validator