Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ltletrd | GIF version |
Description: Transitive law deduction for 'less than', 'less than or equal to'. (Contributed by NM, 9-Jan-2006.) |
Ref | Expression |
---|---|
ltadd2d.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
ltadd2d.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
ltadd2d.3 | ⊢ (𝜑 → 𝐶 ∈ ℝ) |
ltletrd.4 | ⊢ (𝜑 → 𝐴 < 𝐵) |
ltletrd.5 | ⊢ (𝜑 → 𝐵 ≤ 𝐶) |
Ref | Expression |
---|---|
ltletrd | ⊢ (𝜑 → 𝐴 < 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ltletrd.4 | . 2 ⊢ (𝜑 → 𝐴 < 𝐵) | |
2 | ltletrd.5 | . 2 ⊢ (𝜑 → 𝐵 ≤ 𝐶) | |
3 | ltadd2d.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
4 | ltadd2d.2 | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
5 | ltadd2d.3 | . . 3 ⊢ (𝜑 → 𝐶 ∈ ℝ) | |
6 | ltletr 7988 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 < 𝐵 ∧ 𝐵 ≤ 𝐶) → 𝐴 < 𝐶)) | |
7 | 3, 4, 5, 6 | syl3anc 1228 | . 2 ⊢ (𝜑 → ((𝐴 < 𝐵 ∧ 𝐵 ≤ 𝐶) → 𝐴 < 𝐶)) |
8 | 1, 2, 7 | mp2and 430 | 1 ⊢ (𝜑 → 𝐴 < 𝐶) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∈ wcel 2136 class class class wbr 3982 ℝcr 7752 < clt 7933 ≤ cle 7934 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-cnex 7844 ax-resscn 7845 ax-pre-ltwlin 7866 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-nel 2432 df-ral 2449 df-rex 2450 df-rab 2453 df-v 2728 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-xp 4610 df-cnv 4612 df-pnf 7935 df-mnf 7936 df-xr 7937 df-ltxr 7938 df-le 7939 |
This theorem is referenced by: lelttrdi 8324 lediv12a 8789 btwnapz 9321 rpgecl 9618 fznatpl1 10011 elfz1b 10025 exbtwnzlemstep 10183 ceiqle 10248 modqabs 10292 mulp1mod1 10300 seq3f1olemqsumk 10434 expgt1 10493 leexp2a 10508 bernneq3 10577 expnbnd 10578 nn0opthlem2d 10634 cvg1nlemres 10927 resqrexlemlo 10955 resqrexlemnmsq 10959 resqrexlemga 10965 abssubap0 11032 icodiamlt 11122 rpmaxcl 11165 reccn2ap 11254 divcnv 11438 cvgratnnlembern 11464 cvgratnnlemabsle 11468 fprodntrivap 11525 efcllemp 11599 sin01bnd 11698 cos01bnd 11699 sin01gt0 11702 cos12dec 11708 eirraplem 11717 dvdslelemd 11781 dvdsbnd 11889 isprm5 12074 1arith 12297 znnen 12331 nninfdclemp1 12383 cnopnap 13244 dedekindeulemlu 13249 suplociccreex 13252 dedekindicclemlu 13258 dedekindicc 13261 ivthinclemlopn 13264 limcimolemlt 13283 limccnp2lem 13295 coseq00topi 13406 cosordlem 13420 logdivlti 13452 |
Copyright terms: Public domain | W3C validator |