ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltletrd GIF version

Theorem ltletrd 8342
Description: Transitive law deduction for 'less than', 'less than or equal to'. (Contributed by NM, 9-Jan-2006.)
Hypotheses
Ref Expression
ltadd2d.1 (𝜑𝐴 ∈ ℝ)
ltadd2d.2 (𝜑𝐵 ∈ ℝ)
ltadd2d.3 (𝜑𝐶 ∈ ℝ)
ltletrd.4 (𝜑𝐴 < 𝐵)
ltletrd.5 (𝜑𝐵𝐶)
Assertion
Ref Expression
ltletrd (𝜑𝐴 < 𝐶)

Proof of Theorem ltletrd
StepHypRef Expression
1 ltletrd.4 . 2 (𝜑𝐴 < 𝐵)
2 ltletrd.5 . 2 (𝜑𝐵𝐶)
3 ltadd2d.1 . . 3 (𝜑𝐴 ∈ ℝ)
4 ltadd2d.2 . . 3 (𝜑𝐵 ∈ ℝ)
5 ltadd2d.3 . . 3 (𝜑𝐶 ∈ ℝ)
6 ltletr 8009 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 < 𝐵𝐵𝐶) → 𝐴 < 𝐶))
73, 4, 5, 6syl3anc 1233 . 2 (𝜑 → ((𝐴 < 𝐵𝐵𝐶) → 𝐴 < 𝐶))
81, 2, 7mp2and 431 1 (𝜑𝐴 < 𝐶)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wcel 2141   class class class wbr 3989  cr 7773   < clt 7954  cle 7955
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-cnex 7865  ax-resscn 7866  ax-pre-ltwlin 7887
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-rab 2457  df-v 2732  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-br 3990  df-opab 4051  df-xp 4617  df-cnv 4619  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960
This theorem is referenced by:  lelttrdi  8345  lediv12a  8810  btwnapz  9342  rpgecl  9639  fznatpl1  10032  elfz1b  10046  exbtwnzlemstep  10204  ceiqle  10269  modqabs  10313  mulp1mod1  10321  seq3f1olemqsumk  10455  expgt1  10514  leexp2a  10529  bernneq3  10598  expnbnd  10599  nn0opthlem2d  10655  cvg1nlemres  10949  resqrexlemlo  10977  resqrexlemnmsq  10981  resqrexlemga  10987  abssubap0  11054  icodiamlt  11144  rpmaxcl  11187  reccn2ap  11276  divcnv  11460  cvgratnnlembern  11486  cvgratnnlemabsle  11490  fprodntrivap  11547  efcllemp  11621  sin01bnd  11720  cos01bnd  11721  sin01gt0  11724  cos12dec  11730  eirraplem  11739  dvdslelemd  11803  dvdsbnd  11911  isprm5  12096  1arith  12319  znnen  12353  nninfdclemp1  12405  cnopnap  13388  dedekindeulemlu  13393  suplociccreex  13396  dedekindicclemlu  13402  dedekindicc  13405  ivthinclemlopn  13408  limcimolemlt  13427  limccnp2lem  13439  coseq00topi  13550  cosordlem  13564  logdivlti  13596
  Copyright terms: Public domain W3C validator