![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ltletrd | GIF version |
Description: Transitive law deduction for 'less than', 'less than or equal to'. (Contributed by NM, 9-Jan-2006.) |
Ref | Expression |
---|---|
ltadd2d.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
ltadd2d.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
ltadd2d.3 | ⊢ (𝜑 → 𝐶 ∈ ℝ) |
ltletrd.4 | ⊢ (𝜑 → 𝐴 < 𝐵) |
ltletrd.5 | ⊢ (𝜑 → 𝐵 ≤ 𝐶) |
Ref | Expression |
---|---|
ltletrd | ⊢ (𝜑 → 𝐴 < 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ltletrd.4 | . 2 ⊢ (𝜑 → 𝐴 < 𝐵) | |
2 | ltletrd.5 | . 2 ⊢ (𝜑 → 𝐵 ≤ 𝐶) | |
3 | ltadd2d.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
4 | ltadd2d.2 | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
5 | ltadd2d.3 | . . 3 ⊢ (𝜑 → 𝐶 ∈ ℝ) | |
6 | ltletr 8109 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 < 𝐵 ∧ 𝐵 ≤ 𝐶) → 𝐴 < 𝐶)) | |
7 | 3, 4, 5, 6 | syl3anc 1249 | . 2 ⊢ (𝜑 → ((𝐴 < 𝐵 ∧ 𝐵 ≤ 𝐶) → 𝐴 < 𝐶)) |
8 | 1, 2, 7 | mp2and 433 | 1 ⊢ (𝜑 → 𝐴 < 𝐶) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2164 class class class wbr 4029 ℝcr 7871 < clt 8054 ≤ cle 8055 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 ax-pr 4238 ax-un 4464 ax-setind 4569 ax-cnex 7963 ax-resscn 7964 ax-pre-ltwlin 7985 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-rab 2481 df-v 2762 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-br 4030 df-opab 4091 df-xp 4665 df-cnv 4667 df-pnf 8056 df-mnf 8057 df-xr 8058 df-ltxr 8059 df-le 8060 |
This theorem is referenced by: lelttrdi 8445 lediv12a 8913 btwnapz 9447 rpgecl 9748 fznatpl1 10142 elfz1b 10156 exbtwnzlemstep 10316 ceiqle 10384 modqabs 10428 mulp1mod1 10436 seq3f1olemqsumk 10583 seqf1oglem1 10590 expgt1 10648 leexp2a 10663 bernneq3 10733 expnbnd 10734 nn0opthlem2d 10792 cvg1nlemres 11129 resqrexlemlo 11157 resqrexlemnmsq 11161 resqrexlemga 11167 abssubap0 11234 icodiamlt 11324 rpmaxcl 11367 reccn2ap 11456 divcnv 11640 cvgratnnlembern 11666 cvgratnnlemabsle 11670 fprodntrivap 11727 efcllemp 11801 sin01bnd 11900 cos01bnd 11901 sin01gt0 11905 cos12dec 11911 eirraplem 11920 dvdslelemd 11985 dvdsbnd 12093 isprm5 12280 1arith 12505 znnen 12555 nninfdclemp1 12607 cnopnap 14765 dedekindeulemlu 14775 suplociccreex 14778 dedekindicclemlu 14784 dedekindicc 14787 ivthinclemlopn 14790 hoverb 14802 limcimolemlt 14818 limccnp2lem 14830 coseq00topi 14970 cosordlem 14984 logdivlti 15016 gausslemma2dlem0c 15167 lgsquadlem1 15191 |
Copyright terms: Public domain | W3C validator |