| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ltletrd | GIF version | ||
| Description: Transitive law deduction for 'less than', 'less than or equal to'. (Contributed by NM, 9-Jan-2006.) |
| Ref | Expression |
|---|---|
| ltadd2d.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| ltadd2d.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
| ltadd2d.3 | ⊢ (𝜑 → 𝐶 ∈ ℝ) |
| ltletrd.4 | ⊢ (𝜑 → 𝐴 < 𝐵) |
| ltletrd.5 | ⊢ (𝜑 → 𝐵 ≤ 𝐶) |
| Ref | Expression |
|---|---|
| ltletrd | ⊢ (𝜑 → 𝐴 < 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ltletrd.4 | . 2 ⊢ (𝜑 → 𝐴 < 𝐵) | |
| 2 | ltletrd.5 | . 2 ⊢ (𝜑 → 𝐵 ≤ 𝐶) | |
| 3 | ltadd2d.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
| 4 | ltadd2d.2 | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
| 5 | ltadd2d.3 | . . 3 ⊢ (𝜑 → 𝐶 ∈ ℝ) | |
| 6 | ltletr 8116 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 < 𝐵 ∧ 𝐵 ≤ 𝐶) → 𝐴 < 𝐶)) | |
| 7 | 3, 4, 5, 6 | syl3anc 1249 | . 2 ⊢ (𝜑 → ((𝐴 < 𝐵 ∧ 𝐵 ≤ 𝐶) → 𝐴 < 𝐶)) |
| 8 | 1, 2, 7 | mp2and 433 | 1 ⊢ (𝜑 → 𝐴 < 𝐶) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2167 class class class wbr 4033 ℝcr 7878 < clt 8061 ≤ cle 8062 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-cnex 7970 ax-resscn 7971 ax-pre-ltwlin 7992 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-opab 4095 df-xp 4669 df-cnv 4671 df-pnf 8063 df-mnf 8064 df-xr 8065 df-ltxr 8066 df-le 8067 |
| This theorem is referenced by: lelttrdi 8453 lediv12a 8921 btwnapz 9456 rpgecl 9757 fznatpl1 10151 elfz1b 10165 exbtwnzlemstep 10337 ceiqle 10405 modqabs 10449 mulp1mod1 10457 seq3f1olemqsumk 10604 seqf1oglem1 10611 expgt1 10669 leexp2a 10684 bernneq3 10754 expnbnd 10755 nn0opthlem2d 10813 cvg1nlemres 11150 resqrexlemlo 11178 resqrexlemnmsq 11182 resqrexlemga 11188 abssubap0 11255 icodiamlt 11345 rpmaxcl 11388 reccn2ap 11478 divcnv 11662 cvgratnnlembern 11688 cvgratnnlemabsle 11692 fprodntrivap 11749 efcllemp 11823 sin01bnd 11922 cos01bnd 11923 sin01gt0 11927 cos12dec 11933 eirraplem 11942 dvdslelemd 12008 dvdsbnd 12123 isprm5 12310 1arith 12536 2expltfac 12608 znnen 12615 nninfdclemp1 12667 cnopnap 14847 dedekindeulemlu 14857 suplociccreex 14860 dedekindicclemlu 14866 dedekindicc 14869 ivthinclemlopn 14872 hoverb 14884 limcimolemlt 14900 limccnp2lem 14912 coseq00topi 15071 cosordlem 15085 logdivlti 15117 gausslemma2dlem0c 15292 lgsquadlem1 15318 |
| Copyright terms: Public domain | W3C validator |