| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ltletrd | GIF version | ||
| Description: Transitive law deduction for 'less than', 'less than or equal to'. (Contributed by NM, 9-Jan-2006.) |
| Ref | Expression |
|---|---|
| ltadd2d.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| ltadd2d.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
| ltadd2d.3 | ⊢ (𝜑 → 𝐶 ∈ ℝ) |
| ltletrd.4 | ⊢ (𝜑 → 𝐴 < 𝐵) |
| ltletrd.5 | ⊢ (𝜑 → 𝐵 ≤ 𝐶) |
| Ref | Expression |
|---|---|
| ltletrd | ⊢ (𝜑 → 𝐴 < 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ltletrd.4 | . 2 ⊢ (𝜑 → 𝐴 < 𝐵) | |
| 2 | ltletrd.5 | . 2 ⊢ (𝜑 → 𝐵 ≤ 𝐶) | |
| 3 | ltadd2d.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
| 4 | ltadd2d.2 | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
| 5 | ltadd2d.3 | . . 3 ⊢ (𝜑 → 𝐶 ∈ ℝ) | |
| 6 | ltletr 8182 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 < 𝐵 ∧ 𝐵 ≤ 𝐶) → 𝐴 < 𝐶)) | |
| 7 | 3, 4, 5, 6 | syl3anc 1250 | . 2 ⊢ (𝜑 → ((𝐴 < 𝐵 ∧ 𝐵 ≤ 𝐶) → 𝐴 < 𝐶)) |
| 8 | 1, 2, 7 | mp2and 433 | 1 ⊢ (𝜑 → 𝐴 < 𝐶) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2177 class class class wbr 4051 ℝcr 7944 < clt 8127 ≤ cle 8128 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4170 ax-pow 4226 ax-pr 4261 ax-un 4488 ax-setind 4593 ax-cnex 8036 ax-resscn 8037 ax-pre-ltwlin 8058 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-rab 2494 df-v 2775 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3857 df-br 4052 df-opab 4114 df-xp 4689 df-cnv 4691 df-pnf 8129 df-mnf 8130 df-xr 8131 df-ltxr 8132 df-le 8133 |
| This theorem is referenced by: lelttrdi 8519 lediv12a 8987 btwnapz 9523 rpgecl 9824 fznatpl1 10218 elfz1b 10232 exbtwnzlemstep 10412 ceiqle 10480 modqabs 10524 mulp1mod1 10532 seq3f1olemqsumk 10679 seqf1oglem1 10686 expgt1 10744 leexp2a 10759 bernneq3 10829 expnbnd 10830 nn0opthlem2d 10888 cvg1nlemres 11371 resqrexlemlo 11399 resqrexlemnmsq 11403 resqrexlemga 11409 abssubap0 11476 icodiamlt 11566 rpmaxcl 11609 reccn2ap 11699 divcnv 11883 cvgratnnlembern 11909 cvgratnnlemabsle 11913 fprodntrivap 11970 efcllemp 12044 sin01bnd 12143 cos01bnd 12144 sin01gt0 12148 cos12dec 12154 eirraplem 12163 dvdslelemd 12229 bitsmod 12342 bitsinv1lem 12347 dvdsbnd 12352 isprm5 12539 1arith 12765 2expltfac 12837 znnen 12844 nninfdclemp1 12896 cnopnap 15158 dedekindeulemlu 15168 suplociccreex 15171 dedekindicclemlu 15177 dedekindicc 15180 ivthinclemlopn 15183 hoverb 15195 limcimolemlt 15211 limccnp2lem 15223 coseq00topi 15382 cosordlem 15396 logdivlti 15428 gausslemma2dlem0c 15603 lgsquadlem1 15629 |
| Copyright terms: Public domain | W3C validator |