| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ltletrd | GIF version | ||
| Description: Transitive law deduction for 'less than', 'less than or equal to'. (Contributed by NM, 9-Jan-2006.) |
| Ref | Expression |
|---|---|
| ltadd2d.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| ltadd2d.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
| ltadd2d.3 | ⊢ (𝜑 → 𝐶 ∈ ℝ) |
| ltletrd.4 | ⊢ (𝜑 → 𝐴 < 𝐵) |
| ltletrd.5 | ⊢ (𝜑 → 𝐵 ≤ 𝐶) |
| Ref | Expression |
|---|---|
| ltletrd | ⊢ (𝜑 → 𝐴 < 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ltletrd.4 | . 2 ⊢ (𝜑 → 𝐴 < 𝐵) | |
| 2 | ltletrd.5 | . 2 ⊢ (𝜑 → 𝐵 ≤ 𝐶) | |
| 3 | ltadd2d.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
| 4 | ltadd2d.2 | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
| 5 | ltadd2d.3 | . . 3 ⊢ (𝜑 → 𝐶 ∈ ℝ) | |
| 6 | ltletr 8232 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 < 𝐵 ∧ 𝐵 ≤ 𝐶) → 𝐴 < 𝐶)) | |
| 7 | 3, 4, 5, 6 | syl3anc 1271 | . 2 ⊢ (𝜑 → ((𝐴 < 𝐵 ∧ 𝐵 ≤ 𝐶) → 𝐴 < 𝐶)) |
| 8 | 1, 2, 7 | mp2and 433 | 1 ⊢ (𝜑 → 𝐴 < 𝐶) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2200 class class class wbr 4082 ℝcr 7994 < clt 8177 ≤ cle 8178 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 ax-cnex 8086 ax-resscn 8087 ax-pre-ltwlin 8108 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-br 4083 df-opab 4145 df-xp 4724 df-cnv 4726 df-pnf 8179 df-mnf 8180 df-xr 8181 df-ltxr 8182 df-le 8183 |
| This theorem is referenced by: lelttrdi 8569 lediv12a 9037 btwnapz 9573 rpgecl 9874 fznatpl1 10268 elfz1b 10282 exbtwnzlemstep 10462 ceiqle 10530 modqabs 10574 mulp1mod1 10582 seq3f1olemqsumk 10729 seqf1oglem1 10736 expgt1 10794 leexp2a 10809 bernneq3 10879 expnbnd 10880 nn0opthlem2d 10938 cvg1nlemres 11491 resqrexlemlo 11519 resqrexlemnmsq 11523 resqrexlemga 11529 abssubap0 11596 icodiamlt 11686 rpmaxcl 11729 reccn2ap 11819 divcnv 12003 cvgratnnlembern 12029 cvgratnnlemabsle 12033 fprodntrivap 12090 efcllemp 12164 sin01bnd 12263 cos01bnd 12264 sin01gt0 12268 cos12dec 12274 eirraplem 12283 dvdslelemd 12349 bitsmod 12462 bitsinv1lem 12467 dvdsbnd 12472 isprm5 12659 1arith 12885 2expltfac 12957 znnen 12964 nninfdclemp1 13016 cnopnap 15279 dedekindeulemlu 15289 suplociccreex 15292 dedekindicclemlu 15298 dedekindicc 15301 ivthinclemlopn 15304 hoverb 15316 limcimolemlt 15332 limccnp2lem 15344 coseq00topi 15503 cosordlem 15517 logdivlti 15549 gausslemma2dlem0c 15724 lgsquadlem1 15750 |
| Copyright terms: Public domain | W3C validator |