ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltletrd GIF version

Theorem ltletrd 8566
Description: Transitive law deduction for 'less than', 'less than or equal to'. (Contributed by NM, 9-Jan-2006.)
Hypotheses
Ref Expression
ltadd2d.1 (𝜑𝐴 ∈ ℝ)
ltadd2d.2 (𝜑𝐵 ∈ ℝ)
ltadd2d.3 (𝜑𝐶 ∈ ℝ)
ltletrd.4 (𝜑𝐴 < 𝐵)
ltletrd.5 (𝜑𝐵𝐶)
Assertion
Ref Expression
ltletrd (𝜑𝐴 < 𝐶)

Proof of Theorem ltletrd
StepHypRef Expression
1 ltletrd.4 . 2 (𝜑𝐴 < 𝐵)
2 ltletrd.5 . 2 (𝜑𝐵𝐶)
3 ltadd2d.1 . . 3 (𝜑𝐴 ∈ ℝ)
4 ltadd2d.2 . . 3 (𝜑𝐵 ∈ ℝ)
5 ltadd2d.3 . . 3 (𝜑𝐶 ∈ ℝ)
6 ltletr 8232 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 < 𝐵𝐵𝐶) → 𝐴 < 𝐶))
73, 4, 5, 6syl3anc 1271 . 2 (𝜑 → ((𝐴 < 𝐵𝐵𝐶) → 𝐴 < 𝐶))
81, 2, 7mp2and 433 1 (𝜑𝐴 < 𝐶)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wcel 2200   class class class wbr 4082  cr 7994   < clt 8177  cle 8178
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-cnex 8086  ax-resscn 8087  ax-pre-ltwlin 8108
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-br 4083  df-opab 4145  df-xp 4724  df-cnv 4726  df-pnf 8179  df-mnf 8180  df-xr 8181  df-ltxr 8182  df-le 8183
This theorem is referenced by:  lelttrdi  8569  lediv12a  9037  btwnapz  9573  rpgecl  9874  fznatpl1  10268  elfz1b  10282  exbtwnzlemstep  10462  ceiqle  10530  modqabs  10574  mulp1mod1  10582  seq3f1olemqsumk  10729  seqf1oglem1  10736  expgt1  10794  leexp2a  10809  bernneq3  10879  expnbnd  10880  nn0opthlem2d  10938  cvg1nlemres  11491  resqrexlemlo  11519  resqrexlemnmsq  11523  resqrexlemga  11529  abssubap0  11596  icodiamlt  11686  rpmaxcl  11729  reccn2ap  11819  divcnv  12003  cvgratnnlembern  12029  cvgratnnlemabsle  12033  fprodntrivap  12090  efcllemp  12164  sin01bnd  12263  cos01bnd  12264  sin01gt0  12268  cos12dec  12274  eirraplem  12283  dvdslelemd  12349  bitsmod  12462  bitsinv1lem  12467  dvdsbnd  12472  isprm5  12659  1arith  12885  2expltfac  12957  znnen  12964  nninfdclemp1  13016  cnopnap  15279  dedekindeulemlu  15289  suplociccreex  15292  dedekindicclemlu  15298  dedekindicc  15301  ivthinclemlopn  15304  hoverb  15316  limcimolemlt  15332  limccnp2lem  15344  coseq00topi  15503  cosordlem  15517  logdivlti  15549  gausslemma2dlem0c  15724  lgsquadlem1  15750
  Copyright terms: Public domain W3C validator