| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ltletrd | GIF version | ||
| Description: Transitive law deduction for 'less than', 'less than or equal to'. (Contributed by NM, 9-Jan-2006.) |
| Ref | Expression |
|---|---|
| ltadd2d.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| ltadd2d.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
| ltadd2d.3 | ⊢ (𝜑 → 𝐶 ∈ ℝ) |
| ltletrd.4 | ⊢ (𝜑 → 𝐴 < 𝐵) |
| ltletrd.5 | ⊢ (𝜑 → 𝐵 ≤ 𝐶) |
| Ref | Expression |
|---|---|
| ltletrd | ⊢ (𝜑 → 𝐴 < 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ltletrd.4 | . 2 ⊢ (𝜑 → 𝐴 < 𝐵) | |
| 2 | ltletrd.5 | . 2 ⊢ (𝜑 → 𝐵 ≤ 𝐶) | |
| 3 | ltadd2d.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
| 4 | ltadd2d.2 | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
| 5 | ltadd2d.3 | . . 3 ⊢ (𝜑 → 𝐶 ∈ ℝ) | |
| 6 | ltletr 8161 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 < 𝐵 ∧ 𝐵 ≤ 𝐶) → 𝐴 < 𝐶)) | |
| 7 | 3, 4, 5, 6 | syl3anc 1249 | . 2 ⊢ (𝜑 → ((𝐴 < 𝐵 ∧ 𝐵 ≤ 𝐶) → 𝐴 < 𝐶)) |
| 8 | 1, 2, 7 | mp2and 433 | 1 ⊢ (𝜑 → 𝐴 < 𝐶) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2175 class class class wbr 4043 ℝcr 7923 < clt 8106 ≤ cle 8107 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 ax-un 4479 ax-setind 4584 ax-cnex 8015 ax-resscn 8016 ax-pre-ltwlin 8037 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-nel 2471 df-ral 2488 df-rex 2489 df-rab 2492 df-v 2773 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-br 4044 df-opab 4105 df-xp 4680 df-cnv 4682 df-pnf 8108 df-mnf 8109 df-xr 8110 df-ltxr 8111 df-le 8112 |
| This theorem is referenced by: lelttrdi 8498 lediv12a 8966 btwnapz 9502 rpgecl 9803 fznatpl1 10197 elfz1b 10211 exbtwnzlemstep 10388 ceiqle 10456 modqabs 10500 mulp1mod1 10508 seq3f1olemqsumk 10655 seqf1oglem1 10662 expgt1 10720 leexp2a 10735 bernneq3 10805 expnbnd 10806 nn0opthlem2d 10864 cvg1nlemres 11238 resqrexlemlo 11266 resqrexlemnmsq 11270 resqrexlemga 11276 abssubap0 11343 icodiamlt 11433 rpmaxcl 11476 reccn2ap 11566 divcnv 11750 cvgratnnlembern 11776 cvgratnnlemabsle 11780 fprodntrivap 11837 efcllemp 11911 sin01bnd 12010 cos01bnd 12011 sin01gt0 12015 cos12dec 12021 eirraplem 12030 dvdslelemd 12096 bitsmod 12209 bitsinv1lem 12214 dvdsbnd 12219 isprm5 12406 1arith 12632 2expltfac 12704 znnen 12711 nninfdclemp1 12763 cnopnap 15025 dedekindeulemlu 15035 suplociccreex 15038 dedekindicclemlu 15044 dedekindicc 15047 ivthinclemlopn 15050 hoverb 15062 limcimolemlt 15078 limccnp2lem 15090 coseq00topi 15249 cosordlem 15263 logdivlti 15295 gausslemma2dlem0c 15470 lgsquadlem1 15496 |
| Copyright terms: Public domain | W3C validator |