ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltletrd GIF version

Theorem ltletrd 8052
Description: Transitive law deduction for 'less than', 'less than or equal to'. (Contributed by NM, 9-Jan-2006.)
Hypotheses
Ref Expression
ltadd2d.1 (𝜑𝐴 ∈ ℝ)
ltadd2d.2 (𝜑𝐵 ∈ ℝ)
ltadd2d.3 (𝜑𝐶 ∈ ℝ)
ltletrd.4 (𝜑𝐴 < 𝐵)
ltletrd.5 (𝜑𝐵𝐶)
Assertion
Ref Expression
ltletrd (𝜑𝐴 < 𝐶)

Proof of Theorem ltletrd
StepHypRef Expression
1 ltletrd.4 . 2 (𝜑𝐴 < 𝐵)
2 ltletrd.5 . 2 (𝜑𝐵𝐶)
3 ltadd2d.1 . . 3 (𝜑𝐴 ∈ ℝ)
4 ltadd2d.2 . . 3 (𝜑𝐵 ∈ ℝ)
5 ltadd2d.3 . . 3 (𝜑𝐶 ∈ ℝ)
6 ltletr 7724 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 < 𝐵𝐵𝐶) → 𝐴 < 𝐶))
73, 4, 5, 6syl3anc 1184 . 2 (𝜑 → ((𝐴 < 𝐵𝐵𝐶) → 𝐴 < 𝐶))
81, 2, 7mp2and 427 1 (𝜑𝐴 < 𝐶)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wcel 1448   class class class wbr 3875  cr 7499   < clt 7672  cle 7673
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 584  ax-in2 585  ax-io 671  ax-5 1391  ax-7 1392  ax-gen 1393  ax-ie1 1437  ax-ie2 1438  ax-8 1450  ax-10 1451  ax-11 1452  ax-i12 1453  ax-bndl 1454  ax-4 1455  ax-13 1459  ax-14 1460  ax-17 1474  ax-i9 1478  ax-ial 1482  ax-i5r 1483  ax-ext 2082  ax-sep 3986  ax-pow 4038  ax-pr 4069  ax-un 4293  ax-setind 4390  ax-cnex 7586  ax-resscn 7587  ax-pre-ltwlin 7608
This theorem depends on definitions:  df-bi 116  df-3an 932  df-tru 1302  df-fal 1305  df-nf 1405  df-sb 1704  df-eu 1963  df-mo 1964  df-clab 2087  df-cleq 2093  df-clel 2096  df-nfc 2229  df-ne 2268  df-nel 2363  df-ral 2380  df-rex 2381  df-rab 2384  df-v 2643  df-dif 3023  df-un 3025  df-in 3027  df-ss 3034  df-pw 3459  df-sn 3480  df-pr 3481  df-op 3483  df-uni 3684  df-br 3876  df-opab 3930  df-xp 4483  df-cnv 4485  df-pnf 7674  df-mnf 7675  df-xr 7676  df-ltxr 7677  df-le 7678
This theorem is referenced by:  lelttrdi  8055  lediv12a  8510  btwnapz  9033  rpgecl  9319  fznatpl1  9697  elfz1b  9711  exbtwnzlemstep  9866  ceiqle  9927  modqabs  9971  mulp1mod1  9979  seq3f1olemqsumk  10113  expgt1  10172  leexp2a  10187  bernneq3  10255  expnbnd  10256  nn0opthlem2d  10308  cvg1nlemres  10597  resqrexlemlo  10625  resqrexlemnmsq  10629  resqrexlemga  10635  abssubap0  10702  icodiamlt  10792  reccn2ap  10921  divcnv  11105  cvgratnnlembern  11131  cvgratnnlemabsle  11135  efcllemp  11162  sin01bnd  11262  cos01bnd  11263  sin01gt0  11266  eirraplem  11278  dvdslelemd  11336  dvdsbnd  11440  znnen  11703  limcimolemlt  12513
  Copyright terms: Public domain W3C validator