ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  grpinvssd GIF version

Theorem grpinvssd 13219
Description: If the base set of a group is contained in the base set of another group, and the group operation of the group is the restriction of the group operation of the other group to its base set, then the elements of the first group have the same inverses in both groups. (Contributed by AV, 15-Mar-2019.)
Hypotheses
Ref Expression
grpidssd.m (𝜑𝑀 ∈ Grp)
grpidssd.s (𝜑𝑆 ∈ Grp)
grpidssd.b 𝐵 = (Base‘𝑆)
grpidssd.c (𝜑𝐵 ⊆ (Base‘𝑀))
grpidssd.o (𝜑 → ∀𝑥𝐵𝑦𝐵 (𝑥(+g𝑀)𝑦) = (𝑥(+g𝑆)𝑦))
Assertion
Ref Expression
grpinvssd (𝜑 → (𝑋𝐵 → ((invg𝑆)‘𝑋) = ((invg𝑀)‘𝑋)))
Distinct variable groups:   𝑥,𝐵,𝑦   𝑥,𝑀,𝑦   𝑥,𝑆,𝑦   𝑥,𝑋,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem grpinvssd
StepHypRef Expression
1 grpidssd.s . . . . . 6 (𝜑𝑆 ∈ Grp)
2 grpidssd.b . . . . . . 7 𝐵 = (Base‘𝑆)
3 eqid 2196 . . . . . . 7 (invg𝑆) = (invg𝑆)
42, 3grpinvcl 13190 . . . . . 6 ((𝑆 ∈ Grp ∧ 𝑋𝐵) → ((invg𝑆)‘𝑋) ∈ 𝐵)
51, 4sylan 283 . . . . 5 ((𝜑𝑋𝐵) → ((invg𝑆)‘𝑋) ∈ 𝐵)
6 simpr 110 . . . . 5 ((𝜑𝑋𝐵) → 𝑋𝐵)
7 grpidssd.o . . . . . 6 (𝜑 → ∀𝑥𝐵𝑦𝐵 (𝑥(+g𝑀)𝑦) = (𝑥(+g𝑆)𝑦))
87adantr 276 . . . . 5 ((𝜑𝑋𝐵) → ∀𝑥𝐵𝑦𝐵 (𝑥(+g𝑀)𝑦) = (𝑥(+g𝑆)𝑦))
9 oveq1 5930 . . . . . . 7 (𝑥 = ((invg𝑆)‘𝑋) → (𝑥(+g𝑀)𝑦) = (((invg𝑆)‘𝑋)(+g𝑀)𝑦))
10 oveq1 5930 . . . . . . 7 (𝑥 = ((invg𝑆)‘𝑋) → (𝑥(+g𝑆)𝑦) = (((invg𝑆)‘𝑋)(+g𝑆)𝑦))
119, 10eqeq12d 2211 . . . . . 6 (𝑥 = ((invg𝑆)‘𝑋) → ((𝑥(+g𝑀)𝑦) = (𝑥(+g𝑆)𝑦) ↔ (((invg𝑆)‘𝑋)(+g𝑀)𝑦) = (((invg𝑆)‘𝑋)(+g𝑆)𝑦)))
12 oveq2 5931 . . . . . . 7 (𝑦 = 𝑋 → (((invg𝑆)‘𝑋)(+g𝑀)𝑦) = (((invg𝑆)‘𝑋)(+g𝑀)𝑋))
13 oveq2 5931 . . . . . . 7 (𝑦 = 𝑋 → (((invg𝑆)‘𝑋)(+g𝑆)𝑦) = (((invg𝑆)‘𝑋)(+g𝑆)𝑋))
1412, 13eqeq12d 2211 . . . . . 6 (𝑦 = 𝑋 → ((((invg𝑆)‘𝑋)(+g𝑀)𝑦) = (((invg𝑆)‘𝑋)(+g𝑆)𝑦) ↔ (((invg𝑆)‘𝑋)(+g𝑀)𝑋) = (((invg𝑆)‘𝑋)(+g𝑆)𝑋)))
1511, 14rspc2va 2882 . . . . 5 (((((invg𝑆)‘𝑋) ∈ 𝐵𝑋𝐵) ∧ ∀𝑥𝐵𝑦𝐵 (𝑥(+g𝑀)𝑦) = (𝑥(+g𝑆)𝑦)) → (((invg𝑆)‘𝑋)(+g𝑀)𝑋) = (((invg𝑆)‘𝑋)(+g𝑆)𝑋))
165, 6, 8, 15syl21anc 1248 . . . 4 ((𝜑𝑋𝐵) → (((invg𝑆)‘𝑋)(+g𝑀)𝑋) = (((invg𝑆)‘𝑋)(+g𝑆)𝑋))
17 eqid 2196 . . . . . 6 (+g𝑆) = (+g𝑆)
18 eqid 2196 . . . . . 6 (0g𝑆) = (0g𝑆)
192, 17, 18, 3grplinv 13192 . . . . 5 ((𝑆 ∈ Grp ∧ 𝑋𝐵) → (((invg𝑆)‘𝑋)(+g𝑆)𝑋) = (0g𝑆))
201, 19sylan 283 . . . 4 ((𝜑𝑋𝐵) → (((invg𝑆)‘𝑋)(+g𝑆)𝑋) = (0g𝑆))
21 grpidssd.m . . . . . 6 (𝜑𝑀 ∈ Grp)
22 grpidssd.c . . . . . . 7 (𝜑𝐵 ⊆ (Base‘𝑀))
2322sselda 3184 . . . . . 6 ((𝜑𝑋𝐵) → 𝑋 ∈ (Base‘𝑀))
24 eqid 2196 . . . . . . 7 (Base‘𝑀) = (Base‘𝑀)
25 eqid 2196 . . . . . . 7 (+g𝑀) = (+g𝑀)
26 eqid 2196 . . . . . . 7 (0g𝑀) = (0g𝑀)
27 eqid 2196 . . . . . . 7 (invg𝑀) = (invg𝑀)
2824, 25, 26, 27grplinv 13192 . . . . . 6 ((𝑀 ∈ Grp ∧ 𝑋 ∈ (Base‘𝑀)) → (((invg𝑀)‘𝑋)(+g𝑀)𝑋) = (0g𝑀))
2921, 23, 28syl2an2r 595 . . . . 5 ((𝜑𝑋𝐵) → (((invg𝑀)‘𝑋)(+g𝑀)𝑋) = (0g𝑀))
3021, 1, 2, 22, 7grpidssd 13218 . . . . . 6 (𝜑 → (0g𝑀) = (0g𝑆))
3130adantr 276 . . . . 5 ((𝜑𝑋𝐵) → (0g𝑀) = (0g𝑆))
3229, 31eqtr2d 2230 . . . 4 ((𝜑𝑋𝐵) → (0g𝑆) = (((invg𝑀)‘𝑋)(+g𝑀)𝑋))
3316, 20, 323eqtrd 2233 . . 3 ((𝜑𝑋𝐵) → (((invg𝑆)‘𝑋)(+g𝑀)𝑋) = (((invg𝑀)‘𝑋)(+g𝑀)𝑋))
3421adantr 276 . . . 4 ((𝜑𝑋𝐵) → 𝑀 ∈ Grp)
3522adantr 276 . . . . 5 ((𝜑𝑋𝐵) → 𝐵 ⊆ (Base‘𝑀))
3635, 5sseldd 3185 . . . 4 ((𝜑𝑋𝐵) → ((invg𝑆)‘𝑋) ∈ (Base‘𝑀))
3724, 27grpinvcl 13190 . . . . 5 ((𝑀 ∈ Grp ∧ 𝑋 ∈ (Base‘𝑀)) → ((invg𝑀)‘𝑋) ∈ (Base‘𝑀))
3821, 23, 37syl2an2r 595 . . . 4 ((𝜑𝑋𝐵) → ((invg𝑀)‘𝑋) ∈ (Base‘𝑀))
3924, 25grprcan 13179 . . . 4 ((𝑀 ∈ Grp ∧ (((invg𝑆)‘𝑋) ∈ (Base‘𝑀) ∧ ((invg𝑀)‘𝑋) ∈ (Base‘𝑀) ∧ 𝑋 ∈ (Base‘𝑀))) → ((((invg𝑆)‘𝑋)(+g𝑀)𝑋) = (((invg𝑀)‘𝑋)(+g𝑀)𝑋) ↔ ((invg𝑆)‘𝑋) = ((invg𝑀)‘𝑋)))
4034, 36, 38, 23, 39syl13anc 1251 . . 3 ((𝜑𝑋𝐵) → ((((invg𝑆)‘𝑋)(+g𝑀)𝑋) = (((invg𝑀)‘𝑋)(+g𝑀)𝑋) ↔ ((invg𝑆)‘𝑋) = ((invg𝑀)‘𝑋)))
4133, 40mpbid 147 . 2 ((𝜑𝑋𝐵) → ((invg𝑆)‘𝑋) = ((invg𝑀)‘𝑋))
4241ex 115 1 (𝜑 → (𝑋𝐵 → ((invg𝑆)‘𝑋) = ((invg𝑀)‘𝑋)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1364  wcel 2167  wral 2475  wss 3157  cfv 5259  (class class class)co 5923  Basecbs 12688  +gcplusg 12765  0gc0g 12937  Grpcgrp 13142  invgcminusg 13143
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-cnex 7972  ax-resscn 7973  ax-1re 7975  ax-addrcl 7978
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-riota 5878  df-ov 5926  df-inn 8993  df-2 9051  df-ndx 12691  df-slot 12692  df-base 12694  df-plusg 12778  df-0g 12939  df-mgm 13009  df-sgrp 13055  df-mnd 13068  df-grp 13145  df-minusg 13146
This theorem is referenced by:  grpissubg  13334
  Copyright terms: Public domain W3C validator