![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ntrcls0 | GIF version |
Description: A subset whose closure has an empty interior also has an empty interior. (Contributed by NM, 4-Oct-2007.) |
Ref | Expression |
---|---|
clscld.1 | ⊢ 𝑋 = ∪ 𝐽 |
Ref | Expression |
---|---|
ntrcls0 | ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ ((int‘𝐽)‘((cls‘𝐽)‘𝑆)) = ∅) → ((int‘𝐽)‘𝑆) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 109 | . . . . 5 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → 𝐽 ∈ Top) | |
2 | clscld.1 | . . . . . 6 ⊢ 𝑋 = ∪ 𝐽 | |
3 | 2 | clsss3 14298 | . . . . 5 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ((cls‘𝐽)‘𝑆) ⊆ 𝑋) |
4 | 2 | sscls 14288 | . . . . 5 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → 𝑆 ⊆ ((cls‘𝐽)‘𝑆)) |
5 | 2 | ntrss 14287 | . . . . 5 ⊢ ((𝐽 ∈ Top ∧ ((cls‘𝐽)‘𝑆) ⊆ 𝑋 ∧ 𝑆 ⊆ ((cls‘𝐽)‘𝑆)) → ((int‘𝐽)‘𝑆) ⊆ ((int‘𝐽)‘((cls‘𝐽)‘𝑆))) |
6 | 1, 3, 4, 5 | syl3anc 1249 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ((int‘𝐽)‘𝑆) ⊆ ((int‘𝐽)‘((cls‘𝐽)‘𝑆))) |
7 | 6 | 3adant3 1019 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ ((int‘𝐽)‘((cls‘𝐽)‘𝑆)) = ∅) → ((int‘𝐽)‘𝑆) ⊆ ((int‘𝐽)‘((cls‘𝐽)‘𝑆))) |
8 | sseq2 3203 | . . . 4 ⊢ (((int‘𝐽)‘((cls‘𝐽)‘𝑆)) = ∅ → (((int‘𝐽)‘𝑆) ⊆ ((int‘𝐽)‘((cls‘𝐽)‘𝑆)) ↔ ((int‘𝐽)‘𝑆) ⊆ ∅)) | |
9 | 8 | 3ad2ant3 1022 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ ((int‘𝐽)‘((cls‘𝐽)‘𝑆)) = ∅) → (((int‘𝐽)‘𝑆) ⊆ ((int‘𝐽)‘((cls‘𝐽)‘𝑆)) ↔ ((int‘𝐽)‘𝑆) ⊆ ∅)) |
10 | 7, 9 | mpbid 147 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ ((int‘𝐽)‘((cls‘𝐽)‘𝑆)) = ∅) → ((int‘𝐽)‘𝑆) ⊆ ∅) |
11 | ss0 3487 | . 2 ⊢ (((int‘𝐽)‘𝑆) ⊆ ∅ → ((int‘𝐽)‘𝑆) = ∅) | |
12 | 10, 11 | syl 14 | 1 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ ((int‘𝐽)‘((cls‘𝐽)‘𝑆)) = ∅) → ((int‘𝐽)‘𝑆) = ∅) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∧ w3a 980 = wceq 1364 ∈ wcel 2164 ⊆ wss 3153 ∅c0 3446 ∪ cuni 3835 ‘cfv 5254 Topctop 14165 intcnt 14261 clsccl 14262 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-coll 4144 ax-sep 4147 ax-pow 4203 ax-pr 4238 ax-un 4464 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-reu 2479 df-rab 2481 df-v 2762 df-sbc 2986 df-csb 3081 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-nul 3447 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-int 3871 df-iun 3914 df-br 4030 df-opab 4091 df-mpt 4092 df-id 4324 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-rn 4670 df-res 4671 df-ima 4672 df-iota 5215 df-fun 5256 df-fn 5257 df-f 5258 df-f1 5259 df-fo 5260 df-f1o 5261 df-fv 5262 df-top 14166 df-cld 14263 df-ntr 14264 df-cls 14265 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |