Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  ntrcls0 GIF version

Theorem ntrcls0 12375
 Description: A subset whose closure has an empty interior also has an empty interior. (Contributed by NM, 4-Oct-2007.)
Hypothesis
Ref Expression
clscld.1 𝑋 = 𝐽
Assertion
Ref Expression
ntrcls0 ((𝐽 ∈ Top ∧ 𝑆𝑋 ∧ ((int‘𝐽)‘((cls‘𝐽)‘𝑆)) = ∅) → ((int‘𝐽)‘𝑆) = ∅)

Proof of Theorem ntrcls0
StepHypRef Expression
1 simpl 108 . . . . 5 ((𝐽 ∈ Top ∧ 𝑆𝑋) → 𝐽 ∈ Top)
2 clscld.1 . . . . . 6 𝑋 = 𝐽
32clsss3 12374 . . . . 5 ((𝐽 ∈ Top ∧ 𝑆𝑋) → ((cls‘𝐽)‘𝑆) ⊆ 𝑋)
42sscls 12364 . . . . 5 ((𝐽 ∈ Top ∧ 𝑆𝑋) → 𝑆 ⊆ ((cls‘𝐽)‘𝑆))
52ntrss 12363 . . . . 5 ((𝐽 ∈ Top ∧ ((cls‘𝐽)‘𝑆) ⊆ 𝑋𝑆 ⊆ ((cls‘𝐽)‘𝑆)) → ((int‘𝐽)‘𝑆) ⊆ ((int‘𝐽)‘((cls‘𝐽)‘𝑆)))
61, 3, 4, 5syl3anc 1217 . . . 4 ((𝐽 ∈ Top ∧ 𝑆𝑋) → ((int‘𝐽)‘𝑆) ⊆ ((int‘𝐽)‘((cls‘𝐽)‘𝑆)))
763adant3 1002 . . 3 ((𝐽 ∈ Top ∧ 𝑆𝑋 ∧ ((int‘𝐽)‘((cls‘𝐽)‘𝑆)) = ∅) → ((int‘𝐽)‘𝑆) ⊆ ((int‘𝐽)‘((cls‘𝐽)‘𝑆)))
8 sseq2 3128 . . . 4 (((int‘𝐽)‘((cls‘𝐽)‘𝑆)) = ∅ → (((int‘𝐽)‘𝑆) ⊆ ((int‘𝐽)‘((cls‘𝐽)‘𝑆)) ↔ ((int‘𝐽)‘𝑆) ⊆ ∅))
983ad2ant3 1005 . . 3 ((𝐽 ∈ Top ∧ 𝑆𝑋 ∧ ((int‘𝐽)‘((cls‘𝐽)‘𝑆)) = ∅) → (((int‘𝐽)‘𝑆) ⊆ ((int‘𝐽)‘((cls‘𝐽)‘𝑆)) ↔ ((int‘𝐽)‘𝑆) ⊆ ∅))
107, 9mpbid 146 . 2 ((𝐽 ∈ Top ∧ 𝑆𝑋 ∧ ((int‘𝐽)‘((cls‘𝐽)‘𝑆)) = ∅) → ((int‘𝐽)‘𝑆) ⊆ ∅)
11 ss0 3410 . 2 (((int‘𝐽)‘𝑆) ⊆ ∅ → ((int‘𝐽)‘𝑆) = ∅)
1210, 11syl 14 1 ((𝐽 ∈ Top ∧ 𝑆𝑋 ∧ ((int‘𝐽)‘((cls‘𝐽)‘𝑆)) = ∅) → ((int‘𝐽)‘𝑆) = ∅)
 Colors of variables: wff set class Syntax hints:   → wi 4   ∧ wa 103   ↔ wb 104   ∧ w3a 963   = wceq 1332   ∈ wcel 2112   ⊆ wss 3078  ∅c0 3370  ∪ cuni 3746  ‘cfv 5135  Topctop 12239  intcnt 12337  clsccl 12338 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1481  ax-10 1482  ax-11 1483  ax-i12 1484  ax-bndl 1486  ax-4 1487  ax-17 1503  ax-i9 1507  ax-ial 1511  ax-i5r 1512  ax-13 2114  ax-14 2115  ax-ext 2123  ax-coll 4053  ax-sep 4056  ax-pow 4108  ax-pr 4142  ax-un 4366 This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1732  df-eu 1993  df-mo 1994  df-clab 2128  df-cleq 2134  df-clel 2137  df-nfc 2272  df-ral 2423  df-rex 2424  df-reu 2425  df-rab 2427  df-v 2693  df-sbc 2916  df-csb 3010  df-dif 3080  df-un 3082  df-in 3084  df-ss 3091  df-nul 3371  df-pw 3519  df-sn 3540  df-pr 3541  df-op 3543  df-uni 3747  df-int 3782  df-iun 3825  df-br 3940  df-opab 4000  df-mpt 4001  df-id 4226  df-xp 4557  df-rel 4558  df-cnv 4559  df-co 4560  df-dm 4561  df-rn 4562  df-res 4563  df-ima 4564  df-iota 5100  df-fun 5137  df-fn 5138  df-f 5139  df-f1 5140  df-fo 5141  df-f1o 5142  df-fv 5143  df-top 12240  df-cld 12339  df-ntr 12340  df-cls 12341 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator