ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ntrcls0 GIF version

Theorem ntrcls0 12925
Description: A subset whose closure has an empty interior also has an empty interior. (Contributed by NM, 4-Oct-2007.)
Hypothesis
Ref Expression
clscld.1 𝑋 = 𝐽
Assertion
Ref Expression
ntrcls0 ((𝐽 ∈ Top ∧ 𝑆𝑋 ∧ ((int‘𝐽)‘((cls‘𝐽)‘𝑆)) = ∅) → ((int‘𝐽)‘𝑆) = ∅)

Proof of Theorem ntrcls0
StepHypRef Expression
1 simpl 108 . . . . 5 ((𝐽 ∈ Top ∧ 𝑆𝑋) → 𝐽 ∈ Top)
2 clscld.1 . . . . . 6 𝑋 = 𝐽
32clsss3 12924 . . . . 5 ((𝐽 ∈ Top ∧ 𝑆𝑋) → ((cls‘𝐽)‘𝑆) ⊆ 𝑋)
42sscls 12914 . . . . 5 ((𝐽 ∈ Top ∧ 𝑆𝑋) → 𝑆 ⊆ ((cls‘𝐽)‘𝑆))
52ntrss 12913 . . . . 5 ((𝐽 ∈ Top ∧ ((cls‘𝐽)‘𝑆) ⊆ 𝑋𝑆 ⊆ ((cls‘𝐽)‘𝑆)) → ((int‘𝐽)‘𝑆) ⊆ ((int‘𝐽)‘((cls‘𝐽)‘𝑆)))
61, 3, 4, 5syl3anc 1233 . . . 4 ((𝐽 ∈ Top ∧ 𝑆𝑋) → ((int‘𝐽)‘𝑆) ⊆ ((int‘𝐽)‘((cls‘𝐽)‘𝑆)))
763adant3 1012 . . 3 ((𝐽 ∈ Top ∧ 𝑆𝑋 ∧ ((int‘𝐽)‘((cls‘𝐽)‘𝑆)) = ∅) → ((int‘𝐽)‘𝑆) ⊆ ((int‘𝐽)‘((cls‘𝐽)‘𝑆)))
8 sseq2 3171 . . . 4 (((int‘𝐽)‘((cls‘𝐽)‘𝑆)) = ∅ → (((int‘𝐽)‘𝑆) ⊆ ((int‘𝐽)‘((cls‘𝐽)‘𝑆)) ↔ ((int‘𝐽)‘𝑆) ⊆ ∅))
983ad2ant3 1015 . . 3 ((𝐽 ∈ Top ∧ 𝑆𝑋 ∧ ((int‘𝐽)‘((cls‘𝐽)‘𝑆)) = ∅) → (((int‘𝐽)‘𝑆) ⊆ ((int‘𝐽)‘((cls‘𝐽)‘𝑆)) ↔ ((int‘𝐽)‘𝑆) ⊆ ∅))
107, 9mpbid 146 . 2 ((𝐽 ∈ Top ∧ 𝑆𝑋 ∧ ((int‘𝐽)‘((cls‘𝐽)‘𝑆)) = ∅) → ((int‘𝐽)‘𝑆) ⊆ ∅)
11 ss0 3455 . 2 (((int‘𝐽)‘𝑆) ⊆ ∅ → ((int‘𝐽)‘𝑆) = ∅)
1210, 11syl 14 1 ((𝐽 ∈ Top ∧ 𝑆𝑋 ∧ ((int‘𝐽)‘((cls‘𝐽)‘𝑆)) = ∅) → ((int‘𝐽)‘𝑆) = ∅)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  w3a 973   = wceq 1348  wcel 2141  wss 3121  c0 3414   cuni 3796  cfv 5198  Topctop 12789  intcnt 12887  clsccl 12888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-top 12790  df-cld 12889  df-ntr 12890  df-cls 12891
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator