ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ixxdisj GIF version

Theorem ixxdisj 9969
Description: Split an interval into disjoint pieces. (Contributed by Mario Carneiro, 16-Jun-2014.)
Hypotheses
Ref Expression
ixxssixx.1 𝑂 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑅𝑧𝑧𝑆𝑦)})
ixxun.2 𝑃 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑇𝑧𝑧𝑈𝑦)})
ixxun.3 ((𝐵 ∈ ℝ*𝑤 ∈ ℝ*) → (𝐵𝑇𝑤 ↔ ¬ 𝑤𝑆𝐵))
Assertion
Ref Expression
ixxdisj ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → ((𝐴𝑂𝐵) ∩ (𝐵𝑃𝐶)) = ∅)
Distinct variable groups:   𝑥,𝑤,𝑦,𝑧,𝐴   𝑤,𝐶,𝑥,𝑦,𝑧   𝑤,𝑂,𝑥   𝑤,𝐵,𝑥,𝑦,𝑧   𝑤,𝑃   𝑥,𝑅,𝑦,𝑧   𝑥,𝑆,𝑦,𝑧   𝑥,𝑇,𝑦,𝑧   𝑥,𝑈,𝑦,𝑧
Allowed substitution hints:   𝑃(𝑥,𝑦,𝑧)   𝑅(𝑤)   𝑆(𝑤)   𝑇(𝑤)   𝑈(𝑤)   𝑂(𝑦,𝑧)

Proof of Theorem ixxdisj
StepHypRef Expression
1 elin 3342 . . . 4 (𝑤 ∈ ((𝐴𝑂𝐵) ∩ (𝐵𝑃𝐶)) ↔ (𝑤 ∈ (𝐴𝑂𝐵) ∧ 𝑤 ∈ (𝐵𝑃𝐶)))
2 ixxssixx.1 . . . . . . . . . . 11 𝑂 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑅𝑧𝑧𝑆𝑦)})
32elixx1 9963 . . . . . . . . . 10 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝑤 ∈ (𝐴𝑂𝐵) ↔ (𝑤 ∈ ℝ*𝐴𝑅𝑤𝑤𝑆𝐵)))
433adant3 1019 . . . . . . . . 9 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝑤 ∈ (𝐴𝑂𝐵) ↔ (𝑤 ∈ ℝ*𝐴𝑅𝑤𝑤𝑆𝐵)))
54biimpa 296 . . . . . . . 8 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝑤 ∈ (𝐴𝑂𝐵)) → (𝑤 ∈ ℝ*𝐴𝑅𝑤𝑤𝑆𝐵))
65simp3d 1013 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝑤 ∈ (𝐴𝑂𝐵)) → 𝑤𝑆𝐵)
76adantrr 479 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝑤 ∈ (𝐴𝑂𝐵) ∧ 𝑤 ∈ (𝐵𝑃𝐶))) → 𝑤𝑆𝐵)
8 ixxun.2 . . . . . . . . . . . 12 𝑃 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑇𝑧𝑧𝑈𝑦)})
98elixx1 9963 . . . . . . . . . . 11 ((𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝑤 ∈ (𝐵𝑃𝐶) ↔ (𝑤 ∈ ℝ*𝐵𝑇𝑤𝑤𝑈𝐶)))
1093adant1 1017 . . . . . . . . . 10 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝑤 ∈ (𝐵𝑃𝐶) ↔ (𝑤 ∈ ℝ*𝐵𝑇𝑤𝑤𝑈𝐶)))
1110biimpa 296 . . . . . . . . 9 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝑤 ∈ (𝐵𝑃𝐶)) → (𝑤 ∈ ℝ*𝐵𝑇𝑤𝑤𝑈𝐶))
1211simp2d 1012 . . . . . . . 8 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝑤 ∈ (𝐵𝑃𝐶)) → 𝐵𝑇𝑤)
13 simpl2 1003 . . . . . . . . 9 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝑤 ∈ (𝐵𝑃𝐶)) → 𝐵 ∈ ℝ*)
1411simp1d 1011 . . . . . . . . 9 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝑤 ∈ (𝐵𝑃𝐶)) → 𝑤 ∈ ℝ*)
15 ixxun.3 . . . . . . . . 9 ((𝐵 ∈ ℝ*𝑤 ∈ ℝ*) → (𝐵𝑇𝑤 ↔ ¬ 𝑤𝑆𝐵))
1613, 14, 15syl2anc 411 . . . . . . . 8 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝑤 ∈ (𝐵𝑃𝐶)) → (𝐵𝑇𝑤 ↔ ¬ 𝑤𝑆𝐵))
1712, 16mpbid 147 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝑤 ∈ (𝐵𝑃𝐶)) → ¬ 𝑤𝑆𝐵)
1817adantrl 478 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝑤 ∈ (𝐴𝑂𝐵) ∧ 𝑤 ∈ (𝐵𝑃𝐶))) → ¬ 𝑤𝑆𝐵)
197, 18pm2.65da 662 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → ¬ (𝑤 ∈ (𝐴𝑂𝐵) ∧ 𝑤 ∈ (𝐵𝑃𝐶)))
2019pm2.21d 620 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → ((𝑤 ∈ (𝐴𝑂𝐵) ∧ 𝑤 ∈ (𝐵𝑃𝐶)) → 𝑤 ∈ ∅))
211, 20biimtrid 152 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝑤 ∈ ((𝐴𝑂𝐵) ∩ (𝐵𝑃𝐶)) → 𝑤 ∈ ∅))
2221ssrdv 3185 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → ((𝐴𝑂𝐵) ∩ (𝐵𝑃𝐶)) ⊆ ∅)
23 ss0 3487 . 2 (((𝐴𝑂𝐵) ∩ (𝐵𝑃𝐶)) ⊆ ∅ → ((𝐴𝑂𝐵) ∩ (𝐵𝑃𝐶)) = ∅)
2422, 23syl 14 1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → ((𝐴𝑂𝐵) ∩ (𝐵𝑃𝐶)) = ∅)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  w3a 980   = wceq 1364  wcel 2164  {crab 2476  cin 3152  wss 3153  c0 3446   class class class wbr 4029  (class class class)co 5918  cmpo 5920  *cxr 8053
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-cnex 7963  ax-resscn 7964
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-sbc 2986  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-br 4030  df-opab 4091  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-iota 5215  df-fun 5256  df-fv 5262  df-ov 5921  df-oprab 5922  df-mpo 5923  df-pnf 8056  df-mnf 8057  df-xr 8058
This theorem is referenced by:  ioodisj  10059
  Copyright terms: Public domain W3C validator