Step | Hyp | Ref
| Expression |
1 | | elin 3305 |
. . . 4
⊢ (𝑥 ∈ ((𝐴[,)𝐵) ∩ (𝐵[,)𝐶)) ↔ (𝑥 ∈ (𝐴[,)𝐵) ∧ 𝑥 ∈ (𝐵[,)𝐶))) |
2 | | elico1 9859 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) → (𝑥 ∈ (𝐴[,)𝐵) ↔ (𝑥 ∈ ℝ* ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 < 𝐵))) |
3 | 2 | 3adant3 1007 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ 𝐶
∈ ℝ*) → (𝑥 ∈ (𝐴[,)𝐵) ↔ (𝑥 ∈ ℝ* ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 < 𝐵))) |
4 | 3 | biimpa 294 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ 𝐶
∈ ℝ*) ∧ 𝑥 ∈ (𝐴[,)𝐵)) → (𝑥 ∈ ℝ* ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 < 𝐵)) |
5 | 4 | simp3d 1001 |
. . . . . . 7
⊢ (((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ 𝐶
∈ ℝ*) ∧ 𝑥 ∈ (𝐴[,)𝐵)) → 𝑥 < 𝐵) |
6 | 5 | adantrr 471 |
. . . . . 6
⊢ (((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ 𝐶
∈ ℝ*) ∧ (𝑥 ∈ (𝐴[,)𝐵) ∧ 𝑥 ∈ (𝐵[,)𝐶))) → 𝑥 < 𝐵) |
7 | | elico1 9859 |
. . . . . . . . . . 11
⊢ ((𝐵 ∈ ℝ*
∧ 𝐶 ∈
ℝ*) → (𝑥 ∈ (𝐵[,)𝐶) ↔ (𝑥 ∈ ℝ* ∧ 𝐵 ≤ 𝑥 ∧ 𝑥 < 𝐶))) |
8 | 7 | 3adant1 1005 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ 𝐶
∈ ℝ*) → (𝑥 ∈ (𝐵[,)𝐶) ↔ (𝑥 ∈ ℝ* ∧ 𝐵 ≤ 𝑥 ∧ 𝑥 < 𝐶))) |
9 | 8 | biimpa 294 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ 𝐶
∈ ℝ*) ∧ 𝑥 ∈ (𝐵[,)𝐶)) → (𝑥 ∈ ℝ* ∧ 𝐵 ≤ 𝑥 ∧ 𝑥 < 𝐶)) |
10 | 9 | simp2d 1000 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ 𝐶
∈ ℝ*) ∧ 𝑥 ∈ (𝐵[,)𝐶)) → 𝐵 ≤ 𝑥) |
11 | | simpl2 991 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ 𝐶
∈ ℝ*) ∧ 𝑥 ∈ (𝐵[,)𝐶)) → 𝐵 ∈
ℝ*) |
12 | 9 | simp1d 999 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ 𝐶
∈ ℝ*) ∧ 𝑥 ∈ (𝐵[,)𝐶)) → 𝑥 ∈ ℝ*) |
13 | | xrlenlt 7963 |
. . . . . . . . 9
⊢ ((𝐵 ∈ ℝ*
∧ 𝑥 ∈
ℝ*) → (𝐵 ≤ 𝑥 ↔ ¬ 𝑥 < 𝐵)) |
14 | 11, 12, 13 | syl2anc 409 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ 𝐶
∈ ℝ*) ∧ 𝑥 ∈ (𝐵[,)𝐶)) → (𝐵 ≤ 𝑥 ↔ ¬ 𝑥 < 𝐵)) |
15 | 10, 14 | mpbid 146 |
. . . . . . 7
⊢ (((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ 𝐶
∈ ℝ*) ∧ 𝑥 ∈ (𝐵[,)𝐶)) → ¬ 𝑥 < 𝐵) |
16 | 15 | adantrl 470 |
. . . . . 6
⊢ (((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ 𝐶
∈ ℝ*) ∧ (𝑥 ∈ (𝐴[,)𝐵) ∧ 𝑥 ∈ (𝐵[,)𝐶))) → ¬ 𝑥 < 𝐵) |
17 | 6, 16 | pm2.65da 651 |
. . . . 5
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ 𝐶
∈ ℝ*) → ¬ (𝑥 ∈ (𝐴[,)𝐵) ∧ 𝑥 ∈ (𝐵[,)𝐶))) |
18 | 17 | pm2.21d 609 |
. . . 4
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ 𝐶
∈ ℝ*) → ((𝑥 ∈ (𝐴[,)𝐵) ∧ 𝑥 ∈ (𝐵[,)𝐶)) → 𝑥 ∈ ∅)) |
19 | 1, 18 | syl5bi 151 |
. . 3
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ 𝐶
∈ ℝ*) → (𝑥 ∈ ((𝐴[,)𝐵) ∩ (𝐵[,)𝐶)) → 𝑥 ∈ ∅)) |
20 | 19 | ssrdv 3148 |
. 2
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ 𝐶
∈ ℝ*) → ((𝐴[,)𝐵) ∩ (𝐵[,)𝐶)) ⊆ ∅) |
21 | | ss0 3449 |
. 2
⊢ (((𝐴[,)𝐵) ∩ (𝐵[,)𝐶)) ⊆ ∅ → ((𝐴[,)𝐵) ∩ (𝐵[,)𝐶)) = ∅) |
22 | 20, 21 | syl 14 |
1
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ 𝐶
∈ ℝ*) → ((𝐴[,)𝐵) ∩ (𝐵[,)𝐶)) = ∅) |