ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  php5dom GIF version

Theorem php5dom 6659
Description: A natural number does not dominate its successor. (Contributed by Jim Kingdon, 1-Sep-2021.)
Assertion
Ref Expression
php5dom (𝐴 ∈ ω → ¬ suc 𝐴𝐴)

Proof of Theorem php5dom
Dummy variables 𝑤 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 suceq 4253 . . . 4 (𝑤 = ∅ → suc 𝑤 = suc ∅)
2 id 19 . . . 4 (𝑤 = ∅ → 𝑤 = ∅)
31, 2breq12d 3880 . . 3 (𝑤 = ∅ → (suc 𝑤𝑤 ↔ suc ∅ ≼ ∅))
43notbid 630 . 2 (𝑤 = ∅ → (¬ suc 𝑤𝑤 ↔ ¬ suc ∅ ≼ ∅))
5 suceq 4253 . . . 4 (𝑤 = 𝑘 → suc 𝑤 = suc 𝑘)
6 id 19 . . . 4 (𝑤 = 𝑘𝑤 = 𝑘)
75, 6breq12d 3880 . . 3 (𝑤 = 𝑘 → (suc 𝑤𝑤 ↔ suc 𝑘𝑘))
87notbid 630 . 2 (𝑤 = 𝑘 → (¬ suc 𝑤𝑤 ↔ ¬ suc 𝑘𝑘))
9 suceq 4253 . . . 4 (𝑤 = suc 𝑘 → suc 𝑤 = suc suc 𝑘)
10 id 19 . . . 4 (𝑤 = suc 𝑘𝑤 = suc 𝑘)
119, 10breq12d 3880 . . 3 (𝑤 = suc 𝑘 → (suc 𝑤𝑤 ↔ suc suc 𝑘 ≼ suc 𝑘))
1211notbid 630 . 2 (𝑤 = suc 𝑘 → (¬ suc 𝑤𝑤 ↔ ¬ suc suc 𝑘 ≼ suc 𝑘))
13 suceq 4253 . . . 4 (𝑤 = 𝐴 → suc 𝑤 = suc 𝐴)
14 id 19 . . . 4 (𝑤 = 𝐴𝑤 = 𝐴)
1513, 14breq12d 3880 . . 3 (𝑤 = 𝐴 → (suc 𝑤𝑤 ↔ suc 𝐴𝐴))
1615notbid 630 . 2 (𝑤 = 𝐴 → (¬ suc 𝑤𝑤 ↔ ¬ suc 𝐴𝐴))
17 peano1 4437 . . . 4 ∅ ∈ ω
18 php5 6654 . . . 4 (∅ ∈ ω → ¬ ∅ ≈ suc ∅)
1917, 18ax-mp 7 . . 3 ¬ ∅ ≈ suc ∅
20 0ex 3987 . . . . . 6 ∅ ∈ V
2120domen 6548 . . . . 5 (suc ∅ ≼ ∅ ↔ ∃𝑥(suc ∅ ≈ 𝑥𝑥 ⊆ ∅))
22 ss0 3342 . . . . . . . 8 (𝑥 ⊆ ∅ → 𝑥 = ∅)
23 en0 6592 . . . . . . . 8 (𝑥 ≈ ∅ ↔ 𝑥 = ∅)
2422, 23sylibr 133 . . . . . . 7 (𝑥 ⊆ ∅ → 𝑥 ≈ ∅)
25 entr 6581 . . . . . . 7 ((suc ∅ ≈ 𝑥𝑥 ≈ ∅) → suc ∅ ≈ ∅)
2624, 25sylan2 281 . . . . . 6 ((suc ∅ ≈ 𝑥𝑥 ⊆ ∅) → suc ∅ ≈ ∅)
2726exlimiv 1541 . . . . 5 (∃𝑥(suc ∅ ≈ 𝑥𝑥 ⊆ ∅) → suc ∅ ≈ ∅)
2821, 27sylbi 120 . . . 4 (suc ∅ ≼ ∅ → suc ∅ ≈ ∅)
2928ensymd 6580 . . 3 (suc ∅ ≼ ∅ → ∅ ≈ suc ∅)
3019, 29mto 626 . 2 ¬ suc ∅ ≼ ∅
31 peano2 4438 . . . 4 (𝑘 ∈ ω → suc 𝑘 ∈ ω)
32 phplem4dom 6658 . . . 4 ((suc 𝑘 ∈ ω ∧ 𝑘 ∈ ω) → (suc suc 𝑘 ≼ suc 𝑘 → suc 𝑘𝑘))
3331, 32mpancom 414 . . 3 (𝑘 ∈ ω → (suc suc 𝑘 ≼ suc 𝑘 → suc 𝑘𝑘))
3433con3d 599 . 2 (𝑘 ∈ ω → (¬ suc 𝑘𝑘 → ¬ suc suc 𝑘 ≼ suc 𝑘))
354, 8, 12, 16, 30, 34finds 4443 1 (𝐴 ∈ ω → ¬ suc 𝐴𝐴)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103   = wceq 1296  wex 1433  wcel 1445  wss 3013  c0 3302   class class class wbr 3867  suc csuc 4216  ωcom 4433  cen 6535  cdom 6536
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 582  ax-in2 583  ax-io 668  ax-5 1388  ax-7 1389  ax-gen 1390  ax-ie1 1434  ax-ie2 1435  ax-8 1447  ax-10 1448  ax-11 1449  ax-i12 1450  ax-bndl 1451  ax-4 1452  ax-13 1456  ax-14 1457  ax-17 1471  ax-i9 1475  ax-ial 1479  ax-i5r 1480  ax-ext 2077  ax-sep 3978  ax-nul 3986  ax-pow 4030  ax-pr 4060  ax-un 4284  ax-setind 4381  ax-iinf 4431
This theorem depends on definitions:  df-bi 116  df-dc 784  df-3or 928  df-3an 929  df-tru 1299  df-fal 1302  df-nf 1402  df-sb 1700  df-eu 1958  df-mo 1959  df-clab 2082  df-cleq 2088  df-clel 2091  df-nfc 2224  df-ne 2263  df-ral 2375  df-rex 2376  df-rab 2379  df-v 2635  df-sbc 2855  df-dif 3015  df-un 3017  df-in 3019  df-ss 3026  df-nul 3303  df-pw 3451  df-sn 3472  df-pr 3473  df-op 3475  df-uni 3676  df-int 3711  df-br 3868  df-opab 3922  df-tr 3959  df-id 4144  df-iord 4217  df-on 4219  df-suc 4222  df-iom 4434  df-xp 4473  df-rel 4474  df-cnv 4475  df-co 4476  df-dm 4477  df-rn 4478  df-res 4479  df-ima 4480  df-iota 5014  df-fun 5051  df-fn 5052  df-f 5053  df-f1 5054  df-fo 5055  df-f1o 5056  df-fv 5057  df-er 6332  df-en 6538  df-dom 6539
This theorem is referenced by:  nndomo  6660  phpm  6661  infnfi  6691
  Copyright terms: Public domain W3C validator