Step | Hyp | Ref
| Expression |
1 | | dvadd.bg |
. . . 4
⊢ (𝜑 → 𝐶(𝑆 D 𝐺)𝐿) |
2 | | eqid 2157 |
. . . . 5
⊢ (𝐽 ↾t 𝑆) = (𝐽 ↾t 𝑆) |
3 | | dvaddcntop.j |
. . . . 5
⊢ 𝐽 = (MetOpen‘(abs ∘
− )) |
4 | | eqid 2157 |
. . . . 5
⊢ (𝑧 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶} ↦ (((𝐺‘𝑧) − (𝐺‘𝐶)) / (𝑧 − 𝐶))) = (𝑧 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶} ↦ (((𝐺‘𝑧) − (𝐺‘𝐶)) / (𝑧 − 𝐶))) |
5 | | dvaddbr.s |
. . . . 5
⊢ (𝜑 → 𝑆 ⊆ ℂ) |
6 | | dvaddxx.g |
. . . . 5
⊢ (𝜑 → 𝐺:𝑋⟶ℂ) |
7 | | dvadd.x |
. . . . 5
⊢ (𝜑 → 𝑋 ⊆ 𝑆) |
8 | 2, 3, 4, 5, 6, 7 | eldvap 13011 |
. . . 4
⊢ (𝜑 → (𝐶(𝑆 D 𝐺)𝐿 ↔ (𝐶 ∈ ((int‘(𝐽 ↾t 𝑆))‘𝑋) ∧ 𝐿 ∈ ((𝑧 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶} ↦ (((𝐺‘𝑧) − (𝐺‘𝐶)) / (𝑧 − 𝐶))) limℂ 𝐶)))) |
9 | 1, 8 | mpbid 146 |
. . 3
⊢ (𝜑 → (𝐶 ∈ ((int‘(𝐽 ↾t 𝑆))‘𝑋) ∧ 𝐿 ∈ ((𝑧 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶} ↦ (((𝐺‘𝑧) − (𝐺‘𝐶)) / (𝑧 − 𝐶))) limℂ 𝐶))) |
10 | 9 | simpld 111 |
. 2
⊢ (𝜑 → 𝐶 ∈ ((int‘(𝐽 ↾t 𝑆))‘𝑋)) |
11 | | dvadd.f |
. . . . 5
⊢ (𝜑 → 𝐹:𝑋⟶ℂ) |
12 | 7, 5 | sstrd 3138 |
. . . . 5
⊢ (𝜑 → 𝑋 ⊆ ℂ) |
13 | 3 | cntoptopon 12892 |
. . . . . . . . 9
⊢ 𝐽 ∈
(TopOn‘ℂ) |
14 | | resttopon 12531 |
. . . . . . . . 9
⊢ ((𝐽 ∈ (TopOn‘ℂ)
∧ 𝑆 ⊆ ℂ)
→ (𝐽
↾t 𝑆)
∈ (TopOn‘𝑆)) |
15 | 13, 5, 14 | sylancr 411 |
. . . . . . . 8
⊢ (𝜑 → (𝐽 ↾t 𝑆) ∈ (TopOn‘𝑆)) |
16 | | topontop 12372 |
. . . . . . . 8
⊢ ((𝐽 ↾t 𝑆) ∈ (TopOn‘𝑆) → (𝐽 ↾t 𝑆) ∈ Top) |
17 | 15, 16 | syl 14 |
. . . . . . 7
⊢ (𝜑 → (𝐽 ↾t 𝑆) ∈ Top) |
18 | | toponuni 12373 |
. . . . . . . . 9
⊢ ((𝐽 ↾t 𝑆) ∈ (TopOn‘𝑆) → 𝑆 = ∪ (𝐽 ↾t 𝑆)) |
19 | 15, 18 | syl 14 |
. . . . . . . 8
⊢ (𝜑 → 𝑆 = ∪ (𝐽 ↾t 𝑆)) |
20 | 7, 19 | sseqtrd 3166 |
. . . . . . 7
⊢ (𝜑 → 𝑋 ⊆ ∪ (𝐽 ↾t 𝑆)) |
21 | | eqid 2157 |
. . . . . . . 8
⊢ ∪ (𝐽
↾t 𝑆) =
∪ (𝐽 ↾t 𝑆) |
22 | 21 | ntrss2 12481 |
. . . . . . 7
⊢ (((𝐽 ↾t 𝑆) ∈ Top ∧ 𝑋 ⊆ ∪ (𝐽
↾t 𝑆))
→ ((int‘(𝐽
↾t 𝑆))‘𝑋) ⊆ 𝑋) |
23 | 17, 20, 22 | syl2anc 409 |
. . . . . 6
⊢ (𝜑 → ((int‘(𝐽 ↾t 𝑆))‘𝑋) ⊆ 𝑋) |
24 | | dvadd.bf |
. . . . . . . 8
⊢ (𝜑 → 𝐶(𝑆 D 𝐹)𝐾) |
25 | | eqid 2157 |
. . . . . . . . 9
⊢ (𝑧 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶} ↦ (((𝐹‘𝑧) − (𝐹‘𝐶)) / (𝑧 − 𝐶))) = (𝑧 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶} ↦ (((𝐹‘𝑧) − (𝐹‘𝐶)) / (𝑧 − 𝐶))) |
26 | 2, 3, 25, 5, 11, 7 | eldvap 13011 |
. . . . . . . 8
⊢ (𝜑 → (𝐶(𝑆 D 𝐹)𝐾 ↔ (𝐶 ∈ ((int‘(𝐽 ↾t 𝑆))‘𝑋) ∧ 𝐾 ∈ ((𝑧 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶} ↦ (((𝐹‘𝑧) − (𝐹‘𝐶)) / (𝑧 − 𝐶))) limℂ 𝐶)))) |
27 | 24, 26 | mpbid 146 |
. . . . . . 7
⊢ (𝜑 → (𝐶 ∈ ((int‘(𝐽 ↾t 𝑆))‘𝑋) ∧ 𝐾 ∈ ((𝑧 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶} ↦ (((𝐹‘𝑧) − (𝐹‘𝐶)) / (𝑧 − 𝐶))) limℂ 𝐶))) |
28 | 27 | simpld 111 |
. . . . . 6
⊢ (𝜑 → 𝐶 ∈ ((int‘(𝐽 ↾t 𝑆))‘𝑋)) |
29 | 23, 28 | sseldd 3129 |
. . . . 5
⊢ (𝜑 → 𝐶 ∈ 𝑋) |
30 | 11, 12, 29 | dvlemap 13009 |
. . . 4
⊢ ((𝜑 ∧ 𝑧 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶}) → (((𝐹‘𝑧) − (𝐹‘𝐶)) / (𝑧 − 𝐶)) ∈ ℂ) |
31 | 6, 12, 29 | dvlemap 13009 |
. . . 4
⊢ ((𝜑 ∧ 𝑧 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶}) → (((𝐺‘𝑧) − (𝐺‘𝐶)) / (𝑧 − 𝐶)) ∈ ℂ) |
32 | | ssidd 3149 |
. . . 4
⊢ (𝜑 → ℂ ⊆
ℂ) |
33 | | txtopon 12622 |
. . . . . 6
⊢ ((𝐽 ∈ (TopOn‘ℂ)
∧ 𝐽 ∈
(TopOn‘ℂ)) → (𝐽 ×t 𝐽) ∈ (TopOn‘(ℂ ×
ℂ))) |
34 | 13, 13, 33 | mp2an 423 |
. . . . 5
⊢ (𝐽 ×t 𝐽) ∈ (TopOn‘(ℂ
× ℂ)) |
35 | 34 | toponrestid 12379 |
. . . 4
⊢ (𝐽 ×t 𝐽) = ((𝐽 ×t 𝐽) ↾t (ℂ ×
ℂ)) |
36 | 27 | simprd 113 |
. . . 4
⊢ (𝜑 → 𝐾 ∈ ((𝑧 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶} ↦ (((𝐹‘𝑧) − (𝐹‘𝐶)) / (𝑧 − 𝐶))) limℂ 𝐶)) |
37 | 9 | simprd 113 |
. . . 4
⊢ (𝜑 → 𝐿 ∈ ((𝑧 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶} ↦ (((𝐺‘𝑧) − (𝐺‘𝐶)) / (𝑧 − 𝐶))) limℂ 𝐶)) |
38 | 3 | addcncntop 12912 |
. . . . 5
⊢ + ∈
((𝐽 ×t
𝐽) Cn 𝐽) |
39 | 5, 11, 7 | dvcl 13012 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐶(𝑆 D 𝐹)𝐾) → 𝐾 ∈ ℂ) |
40 | 24, 39 | mpdan 418 |
. . . . . 6
⊢ (𝜑 → 𝐾 ∈ ℂ) |
41 | 5, 6, 7 | dvcl 13012 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐶(𝑆 D 𝐺)𝐿) → 𝐿 ∈ ℂ) |
42 | 1, 41 | mpdan 418 |
. . . . . 6
⊢ (𝜑 → 𝐿 ∈ ℂ) |
43 | 40, 42 | opelxpd 4616 |
. . . . 5
⊢ (𝜑 → 〈𝐾, 𝐿〉 ∈ (ℂ ×
ℂ)) |
44 | 34 | toponunii 12375 |
. . . . . 6
⊢ (ℂ
× ℂ) = ∪ (𝐽 ×t 𝐽) |
45 | 44 | cncnpi 12588 |
. . . . 5
⊢ (( +
∈ ((𝐽
×t 𝐽) Cn
𝐽) ∧ 〈𝐾, 𝐿〉 ∈ (ℂ × ℂ))
→ + ∈ (((𝐽
×t 𝐽) CnP
𝐽)‘〈𝐾, 𝐿〉)) |
46 | 38, 43, 45 | sylancr 411 |
. . . 4
⊢ (𝜑 → + ∈ (((𝐽 ×t 𝐽) CnP 𝐽)‘〈𝐾, 𝐿〉)) |
47 | 30, 31, 32, 32, 3, 35, 36, 37, 46 | limccnp2cntop 13006 |
. . 3
⊢ (𝜑 → (𝐾 + 𝐿) ∈ ((𝑧 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶} ↦ ((((𝐹‘𝑧) − (𝐹‘𝐶)) / (𝑧 − 𝐶)) + (((𝐺‘𝑧) − (𝐺‘𝐶)) / (𝑧 − 𝐶)))) limℂ 𝐶)) |
48 | | elrabi 2865 |
. . . . . . . . . . 11
⊢ (𝑧 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶} → 𝑧 ∈ 𝑋) |
49 | 48 | adantl 275 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑧 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶}) → 𝑧 ∈ 𝑋) |
50 | 11 | ffnd 5317 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐹 Fn 𝑋) |
51 | 50 | adantr 274 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑧 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶}) → 𝐹 Fn 𝑋) |
52 | 6 | ffnd 5317 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐺 Fn 𝑋) |
53 | 52 | adantr 274 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑧 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶}) → 𝐺 Fn 𝑋) |
54 | | cnex 7839 |
. . . . . . . . . . . . 13
⊢ ℂ
∈ V |
55 | | ssexg 4103 |
. . . . . . . . . . . . 13
⊢ ((𝑋 ⊆ ℂ ∧ ℂ
∈ V) → 𝑋 ∈
V) |
56 | 12, 54, 55 | sylancl 410 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑋 ∈ V) |
57 | 56 | adantr 274 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑧 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶}) → 𝑋 ∈ V) |
58 | | inidm 3316 |
. . . . . . . . . . 11
⊢ (𝑋 ∩ 𝑋) = 𝑋 |
59 | | eqidd 2158 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑧 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶}) ∧ 𝑧 ∈ 𝑋) → (𝐹‘𝑧) = (𝐹‘𝑧)) |
60 | | eqidd 2158 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑧 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶}) ∧ 𝑧 ∈ 𝑋) → (𝐺‘𝑧) = (𝐺‘𝑧)) |
61 | 11 | adantr 274 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑧 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶}) → 𝐹:𝑋⟶ℂ) |
62 | 61 | ffvelrnda 5599 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑧 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶}) ∧ 𝑧 ∈ 𝑋) → (𝐹‘𝑧) ∈ ℂ) |
63 | 6 | adantr 274 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑧 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶}) → 𝐺:𝑋⟶ℂ) |
64 | 63 | ffvelrnda 5599 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑧 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶}) ∧ 𝑧 ∈ 𝑋) → (𝐺‘𝑧) ∈ ℂ) |
65 | 62, 64 | addcld 7880 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑧 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶}) ∧ 𝑧 ∈ 𝑋) → ((𝐹‘𝑧) + (𝐺‘𝑧)) ∈ ℂ) |
66 | 51, 53, 57, 57, 58, 59, 60, 65 | ofvalg 6035 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑧 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶}) ∧ 𝑧 ∈ 𝑋) → ((𝐹 ∘𝑓 + 𝐺)‘𝑧) = ((𝐹‘𝑧) + (𝐺‘𝑧))) |
67 | 49, 66 | mpdan 418 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑧 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶}) → ((𝐹 ∘𝑓 + 𝐺)‘𝑧) = ((𝐹‘𝑧) + (𝐺‘𝑧))) |
68 | | eqidd 2158 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑧 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶}) ∧ 𝐶 ∈ 𝑋) → (𝐹‘𝐶) = (𝐹‘𝐶)) |
69 | | eqidd 2158 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑧 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶}) ∧ 𝐶 ∈ 𝑋) → (𝐺‘𝐶) = (𝐺‘𝐶)) |
70 | 61 | ffvelrnda 5599 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑧 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶}) ∧ 𝐶 ∈ 𝑋) → (𝐹‘𝐶) ∈ ℂ) |
71 | 63 | ffvelrnda 5599 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑧 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶}) ∧ 𝐶 ∈ 𝑋) → (𝐺‘𝐶) ∈ ℂ) |
72 | 70, 71 | addcld 7880 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑧 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶}) ∧ 𝐶 ∈ 𝑋) → ((𝐹‘𝐶) + (𝐺‘𝐶)) ∈ ℂ) |
73 | 51, 53, 57, 57, 58, 68, 69, 72 | ofvalg 6035 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑧 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶}) ∧ 𝐶 ∈ 𝑋) → ((𝐹 ∘𝑓 + 𝐺)‘𝐶) = ((𝐹‘𝐶) + (𝐺‘𝐶))) |
74 | 29, 73 | mpidan 420 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑧 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶}) → ((𝐹 ∘𝑓 + 𝐺)‘𝐶) = ((𝐹‘𝐶) + (𝐺‘𝐶))) |
75 | 67, 74 | oveq12d 5836 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑧 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶}) → (((𝐹 ∘𝑓 + 𝐺)‘𝑧) − ((𝐹 ∘𝑓 + 𝐺)‘𝐶)) = (((𝐹‘𝑧) + (𝐺‘𝑧)) − ((𝐹‘𝐶) + (𝐺‘𝐶)))) |
76 | | ffvelrn 5597 |
. . . . . . . . . 10
⊢ ((𝐹:𝑋⟶ℂ ∧ 𝑧 ∈ 𝑋) → (𝐹‘𝑧) ∈ ℂ) |
77 | 11, 48, 76 | syl2an 287 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑧 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶}) → (𝐹‘𝑧) ∈ ℂ) |
78 | 63, 49 | ffvelrnd 5600 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑧 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶}) → (𝐺‘𝑧) ∈ ℂ) |
79 | 11, 29 | ffvelrnd 5600 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐹‘𝐶) ∈ ℂ) |
80 | 79 | adantr 274 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑧 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶}) → (𝐹‘𝐶) ∈ ℂ) |
81 | 6, 29 | ffvelrnd 5600 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐺‘𝐶) ∈ ℂ) |
82 | 81 | adantr 274 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑧 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶}) → (𝐺‘𝐶) ∈ ℂ) |
83 | 77, 78, 80, 82 | addsub4d 8216 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑧 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶}) → (((𝐹‘𝑧) + (𝐺‘𝑧)) − ((𝐹‘𝐶) + (𝐺‘𝐶))) = (((𝐹‘𝑧) − (𝐹‘𝐶)) + ((𝐺‘𝑧) − (𝐺‘𝐶)))) |
84 | 75, 83 | eqtrd 2190 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑧 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶}) → (((𝐹 ∘𝑓 + 𝐺)‘𝑧) − ((𝐹 ∘𝑓 + 𝐺)‘𝐶)) = (((𝐹‘𝑧) − (𝐹‘𝐶)) + ((𝐺‘𝑧) − (𝐺‘𝐶)))) |
85 | 84 | oveq1d 5833 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑧 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶}) → ((((𝐹 ∘𝑓 + 𝐺)‘𝑧) − ((𝐹 ∘𝑓 + 𝐺)‘𝐶)) / (𝑧 − 𝐶)) = ((((𝐹‘𝑧) − (𝐹‘𝐶)) + ((𝐺‘𝑧) − (𝐺‘𝐶))) / (𝑧 − 𝐶))) |
86 | 61, 49 | ffvelrnd 5600 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑧 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶}) → (𝐹‘𝑧) ∈ ℂ) |
87 | 86, 80 | subcld 8169 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑧 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶}) → ((𝐹‘𝑧) − (𝐹‘𝐶)) ∈ ℂ) |
88 | 78, 82 | subcld 8169 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑧 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶}) → ((𝐺‘𝑧) − (𝐺‘𝐶)) ∈ ℂ) |
89 | | ssrab2 3213 |
. . . . . . . . . 10
⊢ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶} ⊆ 𝑋 |
90 | 89, 12 | sstrid 3139 |
. . . . . . . . 9
⊢ (𝜑 → {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶} ⊆ ℂ) |
91 | 90 | sselda 3128 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑧 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶}) → 𝑧 ∈ ℂ) |
92 | 12, 29 | sseldd 3129 |
. . . . . . . . 9
⊢ (𝜑 → 𝐶 ∈ ℂ) |
93 | 92 | adantr 274 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑧 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶}) → 𝐶 ∈ ℂ) |
94 | 91, 93 | subcld 8169 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑧 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶}) → (𝑧 − 𝐶) ∈ ℂ) |
95 | | breq1 3968 |
. . . . . . . . . . 11
⊢ (𝑤 = 𝑧 → (𝑤 # 𝐶 ↔ 𝑧 # 𝐶)) |
96 | 95 | elrab 2868 |
. . . . . . . . . 10
⊢ (𝑧 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶} ↔ (𝑧 ∈ 𝑋 ∧ 𝑧 # 𝐶)) |
97 | 96 | simprbi 273 |
. . . . . . . . 9
⊢ (𝑧 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶} → 𝑧 # 𝐶) |
98 | 97 | adantl 275 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑧 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶}) → 𝑧 # 𝐶) |
99 | 91, 93, 98 | subap0d 8502 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑧 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶}) → (𝑧 − 𝐶) # 0) |
100 | 87, 88, 94, 99 | divdirapd 8685 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑧 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶}) → ((((𝐹‘𝑧) − (𝐹‘𝐶)) + ((𝐺‘𝑧) − (𝐺‘𝐶))) / (𝑧 − 𝐶)) = ((((𝐹‘𝑧) − (𝐹‘𝐶)) / (𝑧 − 𝐶)) + (((𝐺‘𝑧) − (𝐺‘𝐶)) / (𝑧 − 𝐶)))) |
101 | 85, 100 | eqtrd 2190 |
. . . . 5
⊢ ((𝜑 ∧ 𝑧 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶}) → ((((𝐹 ∘𝑓 + 𝐺)‘𝑧) − ((𝐹 ∘𝑓 + 𝐺)‘𝐶)) / (𝑧 − 𝐶)) = ((((𝐹‘𝑧) − (𝐹‘𝐶)) / (𝑧 − 𝐶)) + (((𝐺‘𝑧) − (𝐺‘𝐶)) / (𝑧 − 𝐶)))) |
102 | 101 | mpteq2dva 4054 |
. . . 4
⊢ (𝜑 → (𝑧 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶} ↦ ((((𝐹 ∘𝑓 + 𝐺)‘𝑧) − ((𝐹 ∘𝑓 + 𝐺)‘𝐶)) / (𝑧 − 𝐶))) = (𝑧 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶} ↦ ((((𝐹‘𝑧) − (𝐹‘𝐶)) / (𝑧 − 𝐶)) + (((𝐺‘𝑧) − (𝐺‘𝐶)) / (𝑧 − 𝐶))))) |
103 | 102 | oveq1d 5833 |
. . 3
⊢ (𝜑 → ((𝑧 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶} ↦ ((((𝐹 ∘𝑓 + 𝐺)‘𝑧) − ((𝐹 ∘𝑓 + 𝐺)‘𝐶)) / (𝑧 − 𝐶))) limℂ 𝐶) = ((𝑧 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶} ↦ ((((𝐹‘𝑧) − (𝐹‘𝐶)) / (𝑧 − 𝐶)) + (((𝐺‘𝑧) − (𝐺‘𝐶)) / (𝑧 − 𝐶)))) limℂ 𝐶)) |
104 | 47, 103 | eleqtrrd 2237 |
. 2
⊢ (𝜑 → (𝐾 + 𝐿) ∈ ((𝑧 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶} ↦ ((((𝐹 ∘𝑓 + 𝐺)‘𝑧) − ((𝐹 ∘𝑓 + 𝐺)‘𝐶)) / (𝑧 − 𝐶))) limℂ 𝐶)) |
105 | | eqid 2157 |
. . 3
⊢ (𝑧 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶} ↦ ((((𝐹 ∘𝑓 + 𝐺)‘𝑧) − ((𝐹 ∘𝑓 + 𝐺)‘𝐶)) / (𝑧 − 𝐶))) = (𝑧 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶} ↦ ((((𝐹 ∘𝑓 + 𝐺)‘𝑧) − ((𝐹 ∘𝑓 + 𝐺)‘𝐶)) / (𝑧 − 𝐶))) |
106 | | addcl 7840 |
. . . . 5
⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 + 𝑦) ∈ ℂ) |
107 | 106 | adantl 275 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → (𝑥 + 𝑦) ∈ ℂ) |
108 | 107, 11, 6, 56, 56, 58 | off 6038 |
. . 3
⊢ (𝜑 → (𝐹 ∘𝑓 + 𝐺):𝑋⟶ℂ) |
109 | 2, 3, 105, 5, 108, 7 | eldvap 13011 |
. 2
⊢ (𝜑 → (𝐶(𝑆 D (𝐹 ∘𝑓 + 𝐺))(𝐾 + 𝐿) ↔ (𝐶 ∈ ((int‘(𝐽 ↾t 𝑆))‘𝑋) ∧ (𝐾 + 𝐿) ∈ ((𝑧 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶} ↦ ((((𝐹 ∘𝑓 + 𝐺)‘𝑧) − ((𝐹 ∘𝑓 + 𝐺)‘𝐶)) / (𝑧 − 𝐶))) limℂ 𝐶)))) |
110 | 10, 104, 109 | mpbir2and 929 |
1
⊢ (𝜑 → 𝐶(𝑆 D (𝐹 ∘𝑓 + 𝐺))(𝐾 + 𝐿)) |