ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvaddxxbr GIF version

Theorem dvaddxxbr 14036
Description: The sum rule for derivatives at a point. That is, if the derivative of 𝐹 at 𝐶 is 𝐾 and the derivative of 𝐺 at 𝐶 is 𝐿, then the derivative of the pointwise sum of those two functions at 𝐶 is 𝐾 + 𝐿. (Contributed by Mario Carneiro, 9-Aug-2014.) (Revised by Jim Kingdon, 25-Nov-2023.)
Hypotheses
Ref Expression
dvadd.f (𝜑𝐹:𝑋⟶ℂ)
dvadd.x (𝜑𝑋𝑆)
dvaddxx.g (𝜑𝐺:𝑋⟶ℂ)
dvaddbr.s (𝜑𝑆 ⊆ ℂ)
dvadd.bf (𝜑𝐶(𝑆 D 𝐹)𝐾)
dvadd.bg (𝜑𝐶(𝑆 D 𝐺)𝐿)
dvaddcntop.j 𝐽 = (MetOpen‘(abs ∘ − ))
Assertion
Ref Expression
dvaddxxbr (𝜑𝐶(𝑆 D (𝐹𝑓 + 𝐺))(𝐾 + 𝐿))

Proof of Theorem dvaddxxbr
Dummy variables 𝑦 𝑧 𝑥 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dvadd.bg . . . 4 (𝜑𝐶(𝑆 D 𝐺)𝐿)
2 eqid 2177 . . . . 5 (𝐽t 𝑆) = (𝐽t 𝑆)
3 dvaddcntop.j . . . . 5 𝐽 = (MetOpen‘(abs ∘ − ))
4 eqid 2177 . . . . 5 (𝑧 ∈ {𝑤𝑋𝑤 # 𝐶} ↦ (((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶))) = (𝑧 ∈ {𝑤𝑋𝑤 # 𝐶} ↦ (((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶)))
5 dvaddbr.s . . . . 5 (𝜑𝑆 ⊆ ℂ)
6 dvaddxx.g . . . . 5 (𝜑𝐺:𝑋⟶ℂ)
7 dvadd.x . . . . 5 (𝜑𝑋𝑆)
82, 3, 4, 5, 6, 7eldvap 14022 . . . 4 (𝜑 → (𝐶(𝑆 D 𝐺)𝐿 ↔ (𝐶 ∈ ((int‘(𝐽t 𝑆))‘𝑋) ∧ 𝐿 ∈ ((𝑧 ∈ {𝑤𝑋𝑤 # 𝐶} ↦ (((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶))) lim 𝐶))))
91, 8mpbid 147 . . 3 (𝜑 → (𝐶 ∈ ((int‘(𝐽t 𝑆))‘𝑋) ∧ 𝐿 ∈ ((𝑧 ∈ {𝑤𝑋𝑤 # 𝐶} ↦ (((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶))) lim 𝐶)))
109simpld 112 . 2 (𝜑𝐶 ∈ ((int‘(𝐽t 𝑆))‘𝑋))
11 dvadd.f . . . . 5 (𝜑𝐹:𝑋⟶ℂ)
127, 5sstrd 3165 . . . . 5 (𝜑𝑋 ⊆ ℂ)
133cntoptopon 13903 . . . . . . . . 9 𝐽 ∈ (TopOn‘ℂ)
14 resttopon 13542 . . . . . . . . 9 ((𝐽 ∈ (TopOn‘ℂ) ∧ 𝑆 ⊆ ℂ) → (𝐽t 𝑆) ∈ (TopOn‘𝑆))
1513, 5, 14sylancr 414 . . . . . . . 8 (𝜑 → (𝐽t 𝑆) ∈ (TopOn‘𝑆))
16 topontop 13383 . . . . . . . 8 ((𝐽t 𝑆) ∈ (TopOn‘𝑆) → (𝐽t 𝑆) ∈ Top)
1715, 16syl 14 . . . . . . 7 (𝜑 → (𝐽t 𝑆) ∈ Top)
18 toponuni 13384 . . . . . . . . 9 ((𝐽t 𝑆) ∈ (TopOn‘𝑆) → 𝑆 = (𝐽t 𝑆))
1915, 18syl 14 . . . . . . . 8 (𝜑𝑆 = (𝐽t 𝑆))
207, 19sseqtrd 3193 . . . . . . 7 (𝜑𝑋 (𝐽t 𝑆))
21 eqid 2177 . . . . . . . 8 (𝐽t 𝑆) = (𝐽t 𝑆)
2221ntrss2 13492 . . . . . . 7 (((𝐽t 𝑆) ∈ Top ∧ 𝑋 (𝐽t 𝑆)) → ((int‘(𝐽t 𝑆))‘𝑋) ⊆ 𝑋)
2317, 20, 22syl2anc 411 . . . . . 6 (𝜑 → ((int‘(𝐽t 𝑆))‘𝑋) ⊆ 𝑋)
24 dvadd.bf . . . . . . . 8 (𝜑𝐶(𝑆 D 𝐹)𝐾)
25 eqid 2177 . . . . . . . . 9 (𝑧 ∈ {𝑤𝑋𝑤 # 𝐶} ↦ (((𝐹𝑧) − (𝐹𝐶)) / (𝑧𝐶))) = (𝑧 ∈ {𝑤𝑋𝑤 # 𝐶} ↦ (((𝐹𝑧) − (𝐹𝐶)) / (𝑧𝐶)))
262, 3, 25, 5, 11, 7eldvap 14022 . . . . . . . 8 (𝜑 → (𝐶(𝑆 D 𝐹)𝐾 ↔ (𝐶 ∈ ((int‘(𝐽t 𝑆))‘𝑋) ∧ 𝐾 ∈ ((𝑧 ∈ {𝑤𝑋𝑤 # 𝐶} ↦ (((𝐹𝑧) − (𝐹𝐶)) / (𝑧𝐶))) lim 𝐶))))
2724, 26mpbid 147 . . . . . . 7 (𝜑 → (𝐶 ∈ ((int‘(𝐽t 𝑆))‘𝑋) ∧ 𝐾 ∈ ((𝑧 ∈ {𝑤𝑋𝑤 # 𝐶} ↦ (((𝐹𝑧) − (𝐹𝐶)) / (𝑧𝐶))) lim 𝐶)))
2827simpld 112 . . . . . 6 (𝜑𝐶 ∈ ((int‘(𝐽t 𝑆))‘𝑋))
2923, 28sseldd 3156 . . . . 5 (𝜑𝐶𝑋)
3011, 12, 29dvlemap 14020 . . . 4 ((𝜑𝑧 ∈ {𝑤𝑋𝑤 # 𝐶}) → (((𝐹𝑧) − (𝐹𝐶)) / (𝑧𝐶)) ∈ ℂ)
316, 12, 29dvlemap 14020 . . . 4 ((𝜑𝑧 ∈ {𝑤𝑋𝑤 # 𝐶}) → (((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶)) ∈ ℂ)
32 ssidd 3176 . . . 4 (𝜑 → ℂ ⊆ ℂ)
33 txtopon 13633 . . . . . 6 ((𝐽 ∈ (TopOn‘ℂ) ∧ 𝐽 ∈ (TopOn‘ℂ)) → (𝐽 ×t 𝐽) ∈ (TopOn‘(ℂ × ℂ)))
3413, 13, 33mp2an 426 . . . . 5 (𝐽 ×t 𝐽) ∈ (TopOn‘(ℂ × ℂ))
3534toponrestid 13390 . . . 4 (𝐽 ×t 𝐽) = ((𝐽 ×t 𝐽) ↾t (ℂ × ℂ))
3627simprd 114 . . . 4 (𝜑𝐾 ∈ ((𝑧 ∈ {𝑤𝑋𝑤 # 𝐶} ↦ (((𝐹𝑧) − (𝐹𝐶)) / (𝑧𝐶))) lim 𝐶))
379simprd 114 . . . 4 (𝜑𝐿 ∈ ((𝑧 ∈ {𝑤𝑋𝑤 # 𝐶} ↦ (((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶))) lim 𝐶))
383addcncntop 13923 . . . . 5 + ∈ ((𝐽 ×t 𝐽) Cn 𝐽)
395, 11, 7dvcl 14023 . . . . . . 7 ((𝜑𝐶(𝑆 D 𝐹)𝐾) → 𝐾 ∈ ℂ)
4024, 39mpdan 421 . . . . . 6 (𝜑𝐾 ∈ ℂ)
415, 6, 7dvcl 14023 . . . . . . 7 ((𝜑𝐶(𝑆 D 𝐺)𝐿) → 𝐿 ∈ ℂ)
421, 41mpdan 421 . . . . . 6 (𝜑𝐿 ∈ ℂ)
4340, 42opelxpd 4658 . . . . 5 (𝜑 → ⟨𝐾, 𝐿⟩ ∈ (ℂ × ℂ))
4434toponunii 13386 . . . . . 6 (ℂ × ℂ) = (𝐽 ×t 𝐽)
4544cncnpi 13599 . . . . 5 (( + ∈ ((𝐽 ×t 𝐽) Cn 𝐽) ∧ ⟨𝐾, 𝐿⟩ ∈ (ℂ × ℂ)) → + ∈ (((𝐽 ×t 𝐽) CnP 𝐽)‘⟨𝐾, 𝐿⟩))
4638, 43, 45sylancr 414 . . . 4 (𝜑 → + ∈ (((𝐽 ×t 𝐽) CnP 𝐽)‘⟨𝐾, 𝐿⟩))
4730, 31, 32, 32, 3, 35, 36, 37, 46limccnp2cntop 14017 . . 3 (𝜑 → (𝐾 + 𝐿) ∈ ((𝑧 ∈ {𝑤𝑋𝑤 # 𝐶} ↦ ((((𝐹𝑧) − (𝐹𝐶)) / (𝑧𝐶)) + (((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶)))) lim 𝐶))
48 elrabi 2890 . . . . . . . . . . 11 (𝑧 ∈ {𝑤𝑋𝑤 # 𝐶} → 𝑧𝑋)
4948adantl 277 . . . . . . . . . 10 ((𝜑𝑧 ∈ {𝑤𝑋𝑤 # 𝐶}) → 𝑧𝑋)
5011ffnd 5365 . . . . . . . . . . . 12 (𝜑𝐹 Fn 𝑋)
5150adantr 276 . . . . . . . . . . 11 ((𝜑𝑧 ∈ {𝑤𝑋𝑤 # 𝐶}) → 𝐹 Fn 𝑋)
526ffnd 5365 . . . . . . . . . . . 12 (𝜑𝐺 Fn 𝑋)
5352adantr 276 . . . . . . . . . . 11 ((𝜑𝑧 ∈ {𝑤𝑋𝑤 # 𝐶}) → 𝐺 Fn 𝑋)
54 cnex 7932 . . . . . . . . . . . . 13 ℂ ∈ V
55 ssexg 4141 . . . . . . . . . . . . 13 ((𝑋 ⊆ ℂ ∧ ℂ ∈ V) → 𝑋 ∈ V)
5612, 54, 55sylancl 413 . . . . . . . . . . . 12 (𝜑𝑋 ∈ V)
5756adantr 276 . . . . . . . . . . 11 ((𝜑𝑧 ∈ {𝑤𝑋𝑤 # 𝐶}) → 𝑋 ∈ V)
58 inidm 3344 . . . . . . . . . . 11 (𝑋𝑋) = 𝑋
59 eqidd 2178 . . . . . . . . . . 11 (((𝜑𝑧 ∈ {𝑤𝑋𝑤 # 𝐶}) ∧ 𝑧𝑋) → (𝐹𝑧) = (𝐹𝑧))
60 eqidd 2178 . . . . . . . . . . 11 (((𝜑𝑧 ∈ {𝑤𝑋𝑤 # 𝐶}) ∧ 𝑧𝑋) → (𝐺𝑧) = (𝐺𝑧))
6111adantr 276 . . . . . . . . . . . . 13 ((𝜑𝑧 ∈ {𝑤𝑋𝑤 # 𝐶}) → 𝐹:𝑋⟶ℂ)
6261ffvelcdmda 5650 . . . . . . . . . . . 12 (((𝜑𝑧 ∈ {𝑤𝑋𝑤 # 𝐶}) ∧ 𝑧𝑋) → (𝐹𝑧) ∈ ℂ)
636adantr 276 . . . . . . . . . . . . 13 ((𝜑𝑧 ∈ {𝑤𝑋𝑤 # 𝐶}) → 𝐺:𝑋⟶ℂ)
6463ffvelcdmda 5650 . . . . . . . . . . . 12 (((𝜑𝑧 ∈ {𝑤𝑋𝑤 # 𝐶}) ∧ 𝑧𝑋) → (𝐺𝑧) ∈ ℂ)
6562, 64addcld 7973 . . . . . . . . . . 11 (((𝜑𝑧 ∈ {𝑤𝑋𝑤 # 𝐶}) ∧ 𝑧𝑋) → ((𝐹𝑧) + (𝐺𝑧)) ∈ ℂ)
6651, 53, 57, 57, 58, 59, 60, 65ofvalg 6089 . . . . . . . . . 10 (((𝜑𝑧 ∈ {𝑤𝑋𝑤 # 𝐶}) ∧ 𝑧𝑋) → ((𝐹𝑓 + 𝐺)‘𝑧) = ((𝐹𝑧) + (𝐺𝑧)))
6749, 66mpdan 421 . . . . . . . . 9 ((𝜑𝑧 ∈ {𝑤𝑋𝑤 # 𝐶}) → ((𝐹𝑓 + 𝐺)‘𝑧) = ((𝐹𝑧) + (𝐺𝑧)))
68 eqidd 2178 . . . . . . . . . . 11 (((𝜑𝑧 ∈ {𝑤𝑋𝑤 # 𝐶}) ∧ 𝐶𝑋) → (𝐹𝐶) = (𝐹𝐶))
69 eqidd 2178 . . . . . . . . . . 11 (((𝜑𝑧 ∈ {𝑤𝑋𝑤 # 𝐶}) ∧ 𝐶𝑋) → (𝐺𝐶) = (𝐺𝐶))
7061ffvelcdmda 5650 . . . . . . . . . . . 12 (((𝜑𝑧 ∈ {𝑤𝑋𝑤 # 𝐶}) ∧ 𝐶𝑋) → (𝐹𝐶) ∈ ℂ)
7163ffvelcdmda 5650 . . . . . . . . . . . 12 (((𝜑𝑧 ∈ {𝑤𝑋𝑤 # 𝐶}) ∧ 𝐶𝑋) → (𝐺𝐶) ∈ ℂ)
7270, 71addcld 7973 . . . . . . . . . . 11 (((𝜑𝑧 ∈ {𝑤𝑋𝑤 # 𝐶}) ∧ 𝐶𝑋) → ((𝐹𝐶) + (𝐺𝐶)) ∈ ℂ)
7351, 53, 57, 57, 58, 68, 69, 72ofvalg 6089 . . . . . . . . . 10 (((𝜑𝑧 ∈ {𝑤𝑋𝑤 # 𝐶}) ∧ 𝐶𝑋) → ((𝐹𝑓 + 𝐺)‘𝐶) = ((𝐹𝐶) + (𝐺𝐶)))
7429, 73mpidan 423 . . . . . . . . 9 ((𝜑𝑧 ∈ {𝑤𝑋𝑤 # 𝐶}) → ((𝐹𝑓 + 𝐺)‘𝐶) = ((𝐹𝐶) + (𝐺𝐶)))
7567, 74oveq12d 5890 . . . . . . . 8 ((𝜑𝑧 ∈ {𝑤𝑋𝑤 # 𝐶}) → (((𝐹𝑓 + 𝐺)‘𝑧) − ((𝐹𝑓 + 𝐺)‘𝐶)) = (((𝐹𝑧) + (𝐺𝑧)) − ((𝐹𝐶) + (𝐺𝐶))))
76 ffvelcdm 5648 . . . . . . . . . 10 ((𝐹:𝑋⟶ℂ ∧ 𝑧𝑋) → (𝐹𝑧) ∈ ℂ)
7711, 48, 76syl2an 289 . . . . . . . . 9 ((𝜑𝑧 ∈ {𝑤𝑋𝑤 # 𝐶}) → (𝐹𝑧) ∈ ℂ)
7863, 49ffvelcdmd 5651 . . . . . . . . 9 ((𝜑𝑧 ∈ {𝑤𝑋𝑤 # 𝐶}) → (𝐺𝑧) ∈ ℂ)
7911, 29ffvelcdmd 5651 . . . . . . . . . 10 (𝜑 → (𝐹𝐶) ∈ ℂ)
8079adantr 276 . . . . . . . . 9 ((𝜑𝑧 ∈ {𝑤𝑋𝑤 # 𝐶}) → (𝐹𝐶) ∈ ℂ)
816, 29ffvelcdmd 5651 . . . . . . . . . 10 (𝜑 → (𝐺𝐶) ∈ ℂ)
8281adantr 276 . . . . . . . . 9 ((𝜑𝑧 ∈ {𝑤𝑋𝑤 # 𝐶}) → (𝐺𝐶) ∈ ℂ)
8377, 78, 80, 82addsub4d 8311 . . . . . . . 8 ((𝜑𝑧 ∈ {𝑤𝑋𝑤 # 𝐶}) → (((𝐹𝑧) + (𝐺𝑧)) − ((𝐹𝐶) + (𝐺𝐶))) = (((𝐹𝑧) − (𝐹𝐶)) + ((𝐺𝑧) − (𝐺𝐶))))
8475, 83eqtrd 2210 . . . . . . 7 ((𝜑𝑧 ∈ {𝑤𝑋𝑤 # 𝐶}) → (((𝐹𝑓 + 𝐺)‘𝑧) − ((𝐹𝑓 + 𝐺)‘𝐶)) = (((𝐹𝑧) − (𝐹𝐶)) + ((𝐺𝑧) − (𝐺𝐶))))
8584oveq1d 5887 . . . . . 6 ((𝜑𝑧 ∈ {𝑤𝑋𝑤 # 𝐶}) → ((((𝐹𝑓 + 𝐺)‘𝑧) − ((𝐹𝑓 + 𝐺)‘𝐶)) / (𝑧𝐶)) = ((((𝐹𝑧) − (𝐹𝐶)) + ((𝐺𝑧) − (𝐺𝐶))) / (𝑧𝐶)))
8661, 49ffvelcdmd 5651 . . . . . . . 8 ((𝜑𝑧 ∈ {𝑤𝑋𝑤 # 𝐶}) → (𝐹𝑧) ∈ ℂ)
8786, 80subcld 8264 . . . . . . 7 ((𝜑𝑧 ∈ {𝑤𝑋𝑤 # 𝐶}) → ((𝐹𝑧) − (𝐹𝐶)) ∈ ℂ)
8878, 82subcld 8264 . . . . . . 7 ((𝜑𝑧 ∈ {𝑤𝑋𝑤 # 𝐶}) → ((𝐺𝑧) − (𝐺𝐶)) ∈ ℂ)
89 ssrab2 3240 . . . . . . . . . 10 {𝑤𝑋𝑤 # 𝐶} ⊆ 𝑋
9089, 12sstrid 3166 . . . . . . . . 9 (𝜑 → {𝑤𝑋𝑤 # 𝐶} ⊆ ℂ)
9190sselda 3155 . . . . . . . 8 ((𝜑𝑧 ∈ {𝑤𝑋𝑤 # 𝐶}) → 𝑧 ∈ ℂ)
9212, 29sseldd 3156 . . . . . . . . 9 (𝜑𝐶 ∈ ℂ)
9392adantr 276 . . . . . . . 8 ((𝜑𝑧 ∈ {𝑤𝑋𝑤 # 𝐶}) → 𝐶 ∈ ℂ)
9491, 93subcld 8264 . . . . . . 7 ((𝜑𝑧 ∈ {𝑤𝑋𝑤 # 𝐶}) → (𝑧𝐶) ∈ ℂ)
95 breq1 4005 . . . . . . . . . . 11 (𝑤 = 𝑧 → (𝑤 # 𝐶𝑧 # 𝐶))
9695elrab 2893 . . . . . . . . . 10 (𝑧 ∈ {𝑤𝑋𝑤 # 𝐶} ↔ (𝑧𝑋𝑧 # 𝐶))
9796simprbi 275 . . . . . . . . 9 (𝑧 ∈ {𝑤𝑋𝑤 # 𝐶} → 𝑧 # 𝐶)
9897adantl 277 . . . . . . . 8 ((𝜑𝑧 ∈ {𝑤𝑋𝑤 # 𝐶}) → 𝑧 # 𝐶)
9991, 93, 98subap0d 8597 . . . . . . 7 ((𝜑𝑧 ∈ {𝑤𝑋𝑤 # 𝐶}) → (𝑧𝐶) # 0)
10087, 88, 94, 99divdirapd 8782 . . . . . 6 ((𝜑𝑧 ∈ {𝑤𝑋𝑤 # 𝐶}) → ((((𝐹𝑧) − (𝐹𝐶)) + ((𝐺𝑧) − (𝐺𝐶))) / (𝑧𝐶)) = ((((𝐹𝑧) − (𝐹𝐶)) / (𝑧𝐶)) + (((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶))))
10185, 100eqtrd 2210 . . . . 5 ((𝜑𝑧 ∈ {𝑤𝑋𝑤 # 𝐶}) → ((((𝐹𝑓 + 𝐺)‘𝑧) − ((𝐹𝑓 + 𝐺)‘𝐶)) / (𝑧𝐶)) = ((((𝐹𝑧) − (𝐹𝐶)) / (𝑧𝐶)) + (((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶))))
102101mpteq2dva 4092 . . . 4 (𝜑 → (𝑧 ∈ {𝑤𝑋𝑤 # 𝐶} ↦ ((((𝐹𝑓 + 𝐺)‘𝑧) − ((𝐹𝑓 + 𝐺)‘𝐶)) / (𝑧𝐶))) = (𝑧 ∈ {𝑤𝑋𝑤 # 𝐶} ↦ ((((𝐹𝑧) − (𝐹𝐶)) / (𝑧𝐶)) + (((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶)))))
103102oveq1d 5887 . . 3 (𝜑 → ((𝑧 ∈ {𝑤𝑋𝑤 # 𝐶} ↦ ((((𝐹𝑓 + 𝐺)‘𝑧) − ((𝐹𝑓 + 𝐺)‘𝐶)) / (𝑧𝐶))) lim 𝐶) = ((𝑧 ∈ {𝑤𝑋𝑤 # 𝐶} ↦ ((((𝐹𝑧) − (𝐹𝐶)) / (𝑧𝐶)) + (((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶)))) lim 𝐶))
10447, 103eleqtrrd 2257 . 2 (𝜑 → (𝐾 + 𝐿) ∈ ((𝑧 ∈ {𝑤𝑋𝑤 # 𝐶} ↦ ((((𝐹𝑓 + 𝐺)‘𝑧) − ((𝐹𝑓 + 𝐺)‘𝐶)) / (𝑧𝐶))) lim 𝐶))
105 eqid 2177 . . 3 (𝑧 ∈ {𝑤𝑋𝑤 # 𝐶} ↦ ((((𝐹𝑓 + 𝐺)‘𝑧) − ((𝐹𝑓 + 𝐺)‘𝐶)) / (𝑧𝐶))) = (𝑧 ∈ {𝑤𝑋𝑤 # 𝐶} ↦ ((((𝐹𝑓 + 𝐺)‘𝑧) − ((𝐹𝑓 + 𝐺)‘𝐶)) / (𝑧𝐶)))
106 addcl 7933 . . . . 5 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 + 𝑦) ∈ ℂ)
107106adantl 277 . . . 4 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → (𝑥 + 𝑦) ∈ ℂ)
108107, 11, 6, 56, 56, 58off 6092 . . 3 (𝜑 → (𝐹𝑓 + 𝐺):𝑋⟶ℂ)
1092, 3, 105, 5, 108, 7eldvap 14022 . 2 (𝜑 → (𝐶(𝑆 D (𝐹𝑓 + 𝐺))(𝐾 + 𝐿) ↔ (𝐶 ∈ ((int‘(𝐽t 𝑆))‘𝑋) ∧ (𝐾 + 𝐿) ∈ ((𝑧 ∈ {𝑤𝑋𝑤 # 𝐶} ↦ ((((𝐹𝑓 + 𝐺)‘𝑧) − ((𝐹𝑓 + 𝐺)‘𝐶)) / (𝑧𝐶))) lim 𝐶))))
11010, 104, 109mpbir2and 944 1 (𝜑𝐶(𝑆 D (𝐹𝑓 + 𝐺))(𝐾 + 𝐿))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1353  wcel 2148  {crab 2459  Vcvv 2737  wss 3129  cop 3595   cuni 3809   class class class wbr 4002  cmpt 4063   × cxp 4623  ccom 4629   Fn wfn 5210  wf 5211  cfv 5215  (class class class)co 5872  𝑓 cof 6078  cc 7806   + caddc 7811  cmin 8124   # cap 8534   / cdiv 8625  abscabs 10999  t crest 12676  MetOpencmopn 13314  Topctop 13366  TopOnctopon 13379  intcnt 13464   Cn ccn 13556   CnP ccnp 13557   ×t ctx 13623   lim climc 13994   D cdv 13995
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4117  ax-sep 4120  ax-nul 4128  ax-pow 4173  ax-pr 4208  ax-un 4432  ax-setind 4535  ax-iinf 4586  ax-cnex 7899  ax-resscn 7900  ax-1cn 7901  ax-1re 7902  ax-icn 7903  ax-addcl 7904  ax-addrcl 7905  ax-mulcl 7906  ax-mulrcl 7907  ax-addcom 7908  ax-mulcom 7909  ax-addass 7910  ax-mulass 7911  ax-distr 7912  ax-i2m1 7913  ax-0lt1 7914  ax-1rid 7915  ax-0id 7916  ax-rnegex 7917  ax-precex 7918  ax-cnre 7919  ax-pre-ltirr 7920  ax-pre-ltwlin 7921  ax-pre-lttrn 7922  ax-pre-apti 7923  ax-pre-ltadd 7924  ax-pre-mulgt0 7925  ax-pre-mulext 7926  ax-arch 7927  ax-caucvg 7928  ax-addf 7930
This theorem depends on definitions:  df-bi 117  df-stab 831  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-if 3535  df-pw 3577  df-sn 3598  df-pr 3599  df-op 3601  df-uni 3810  df-int 3845  df-iun 3888  df-br 4003  df-opab 4064  df-mpt 4065  df-tr 4101  df-id 4292  df-po 4295  df-iso 4296  df-iord 4365  df-on 4367  df-ilim 4368  df-suc 4370  df-iom 4589  df-xp 4631  df-rel 4632  df-cnv 4633  df-co 4634  df-dm 4635  df-rn 4636  df-res 4637  df-ima 4638  df-iota 5177  df-fun 5217  df-fn 5218  df-f 5219  df-f1 5220  df-fo 5221  df-f1o 5222  df-fv 5223  df-isom 5224  df-riota 5828  df-ov 5875  df-oprab 5876  df-mpo 5877  df-of 6080  df-1st 6138  df-2nd 6139  df-recs 6303  df-frec 6389  df-map 6647  df-pm 6648  df-sup 6980  df-inf 6981  df-pnf 7990  df-mnf 7991  df-xr 7992  df-ltxr 7993  df-le 7994  df-sub 8126  df-neg 8127  df-reap 8528  df-ap 8535  df-div 8626  df-inn 8916  df-2 8974  df-3 8975  df-4 8976  df-n0 9173  df-z 9250  df-uz 9525  df-q 9616  df-rp 9650  df-xneg 9768  df-xadd 9769  df-seqfrec 10441  df-exp 10515  df-cj 10844  df-re 10845  df-im 10846  df-rsqrt 11000  df-abs 11001  df-rest 12678  df-topgen 12697  df-psmet 13316  df-xmet 13317  df-met 13318  df-bl 13319  df-mopn 13320  df-top 13367  df-topon 13380  df-bases 13412  df-ntr 13467  df-cn 13559  df-cnp 13560  df-tx 13624  df-limced 13996  df-dvap 13997
This theorem is referenced by:  dvaddxx  14038  dviaddf  14040
  Copyright terms: Public domain W3C validator