| Step | Hyp | Ref
 | Expression | 
| 1 |   | dvadd.bg | 
. . . 4
⊢ (𝜑 → 𝐶(𝑆 D 𝐺)𝐿) | 
| 2 |   | eqid 2196 | 
. . . . 5
⊢ (𝐽 ↾t 𝑆) = (𝐽 ↾t 𝑆) | 
| 3 |   | dvaddcntop.j | 
. . . . 5
⊢ 𝐽 = (MetOpen‘(abs ∘
− )) | 
| 4 |   | eqid 2196 | 
. . . . 5
⊢ (𝑧 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶} ↦ (((𝐺‘𝑧) − (𝐺‘𝐶)) / (𝑧 − 𝐶))) = (𝑧 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶} ↦ (((𝐺‘𝑧) − (𝐺‘𝐶)) / (𝑧 − 𝐶))) | 
| 5 |   | dvaddbr.s | 
. . . . 5
⊢ (𝜑 → 𝑆 ⊆ ℂ) | 
| 6 |   | dvaddxx.g | 
. . . . 5
⊢ (𝜑 → 𝐺:𝑋⟶ℂ) | 
| 7 |   | dvadd.x | 
. . . . 5
⊢ (𝜑 → 𝑋 ⊆ 𝑆) | 
| 8 | 2, 3, 4, 5, 6, 7 | eldvap 14918 | 
. . . 4
⊢ (𝜑 → (𝐶(𝑆 D 𝐺)𝐿 ↔ (𝐶 ∈ ((int‘(𝐽 ↾t 𝑆))‘𝑋) ∧ 𝐿 ∈ ((𝑧 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶} ↦ (((𝐺‘𝑧) − (𝐺‘𝐶)) / (𝑧 − 𝐶))) limℂ 𝐶)))) | 
| 9 | 1, 8 | mpbid 147 | 
. . 3
⊢ (𝜑 → (𝐶 ∈ ((int‘(𝐽 ↾t 𝑆))‘𝑋) ∧ 𝐿 ∈ ((𝑧 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶} ↦ (((𝐺‘𝑧) − (𝐺‘𝐶)) / (𝑧 − 𝐶))) limℂ 𝐶))) | 
| 10 | 9 | simpld 112 | 
. 2
⊢ (𝜑 → 𝐶 ∈ ((int‘(𝐽 ↾t 𝑆))‘𝑋)) | 
| 11 |   | dvadd.f | 
. . . . 5
⊢ (𝜑 → 𝐹:𝑋⟶ℂ) | 
| 12 | 7, 5 | sstrd 3193 | 
. . . . 5
⊢ (𝜑 → 𝑋 ⊆ ℂ) | 
| 13 | 3 | cntoptopon 14768 | 
. . . . . . . . 9
⊢ 𝐽 ∈
(TopOn‘ℂ) | 
| 14 |   | resttopon 14407 | 
. . . . . . . . 9
⊢ ((𝐽 ∈ (TopOn‘ℂ)
∧ 𝑆 ⊆ ℂ)
→ (𝐽
↾t 𝑆)
∈ (TopOn‘𝑆)) | 
| 15 | 13, 5, 14 | sylancr 414 | 
. . . . . . . 8
⊢ (𝜑 → (𝐽 ↾t 𝑆) ∈ (TopOn‘𝑆)) | 
| 16 |   | topontop 14250 | 
. . . . . . . 8
⊢ ((𝐽 ↾t 𝑆) ∈ (TopOn‘𝑆) → (𝐽 ↾t 𝑆) ∈ Top) | 
| 17 | 15, 16 | syl 14 | 
. . . . . . 7
⊢ (𝜑 → (𝐽 ↾t 𝑆) ∈ Top) | 
| 18 |   | toponuni 14251 | 
. . . . . . . . 9
⊢ ((𝐽 ↾t 𝑆) ∈ (TopOn‘𝑆) → 𝑆 = ∪ (𝐽 ↾t 𝑆)) | 
| 19 | 15, 18 | syl 14 | 
. . . . . . . 8
⊢ (𝜑 → 𝑆 = ∪ (𝐽 ↾t 𝑆)) | 
| 20 | 7, 19 | sseqtrd 3221 | 
. . . . . . 7
⊢ (𝜑 → 𝑋 ⊆ ∪ (𝐽 ↾t 𝑆)) | 
| 21 |   | eqid 2196 | 
. . . . . . . 8
⊢ ∪ (𝐽
↾t 𝑆) =
∪ (𝐽 ↾t 𝑆) | 
| 22 | 21 | ntrss2 14357 | 
. . . . . . 7
⊢ (((𝐽 ↾t 𝑆) ∈ Top ∧ 𝑋 ⊆ ∪ (𝐽
↾t 𝑆))
→ ((int‘(𝐽
↾t 𝑆))‘𝑋) ⊆ 𝑋) | 
| 23 | 17, 20, 22 | syl2anc 411 | 
. . . . . 6
⊢ (𝜑 → ((int‘(𝐽 ↾t 𝑆))‘𝑋) ⊆ 𝑋) | 
| 24 |   | dvadd.bf | 
. . . . . . . 8
⊢ (𝜑 → 𝐶(𝑆 D 𝐹)𝐾) | 
| 25 |   | eqid 2196 | 
. . . . . . . . 9
⊢ (𝑧 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶} ↦ (((𝐹‘𝑧) − (𝐹‘𝐶)) / (𝑧 − 𝐶))) = (𝑧 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶} ↦ (((𝐹‘𝑧) − (𝐹‘𝐶)) / (𝑧 − 𝐶))) | 
| 26 | 2, 3, 25, 5, 11, 7 | eldvap 14918 | 
. . . . . . . 8
⊢ (𝜑 → (𝐶(𝑆 D 𝐹)𝐾 ↔ (𝐶 ∈ ((int‘(𝐽 ↾t 𝑆))‘𝑋) ∧ 𝐾 ∈ ((𝑧 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶} ↦ (((𝐹‘𝑧) − (𝐹‘𝐶)) / (𝑧 − 𝐶))) limℂ 𝐶)))) | 
| 27 | 24, 26 | mpbid 147 | 
. . . . . . 7
⊢ (𝜑 → (𝐶 ∈ ((int‘(𝐽 ↾t 𝑆))‘𝑋) ∧ 𝐾 ∈ ((𝑧 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶} ↦ (((𝐹‘𝑧) − (𝐹‘𝐶)) / (𝑧 − 𝐶))) limℂ 𝐶))) | 
| 28 | 27 | simpld 112 | 
. . . . . 6
⊢ (𝜑 → 𝐶 ∈ ((int‘(𝐽 ↾t 𝑆))‘𝑋)) | 
| 29 | 23, 28 | sseldd 3184 | 
. . . . 5
⊢ (𝜑 → 𝐶 ∈ 𝑋) | 
| 30 | 11, 12, 29 | dvlemap 14916 | 
. . . 4
⊢ ((𝜑 ∧ 𝑧 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶}) → (((𝐹‘𝑧) − (𝐹‘𝐶)) / (𝑧 − 𝐶)) ∈ ℂ) | 
| 31 | 6, 12, 29 | dvlemap 14916 | 
. . . 4
⊢ ((𝜑 ∧ 𝑧 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶}) → (((𝐺‘𝑧) − (𝐺‘𝐶)) / (𝑧 − 𝐶)) ∈ ℂ) | 
| 32 |   | ssidd 3204 | 
. . . 4
⊢ (𝜑 → ℂ ⊆
ℂ) | 
| 33 |   | txtopon 14498 | 
. . . . . 6
⊢ ((𝐽 ∈ (TopOn‘ℂ)
∧ 𝐽 ∈
(TopOn‘ℂ)) → (𝐽 ×t 𝐽) ∈ (TopOn‘(ℂ ×
ℂ))) | 
| 34 | 13, 13, 33 | mp2an 426 | 
. . . . 5
⊢ (𝐽 ×t 𝐽) ∈ (TopOn‘(ℂ
× ℂ)) | 
| 35 | 34 | toponrestid 14257 | 
. . . 4
⊢ (𝐽 ×t 𝐽) = ((𝐽 ×t 𝐽) ↾t (ℂ ×
ℂ)) | 
| 36 | 27 | simprd 114 | 
. . . 4
⊢ (𝜑 → 𝐾 ∈ ((𝑧 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶} ↦ (((𝐹‘𝑧) − (𝐹‘𝐶)) / (𝑧 − 𝐶))) limℂ 𝐶)) | 
| 37 | 9 | simprd 114 | 
. . . 4
⊢ (𝜑 → 𝐿 ∈ ((𝑧 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶} ↦ (((𝐺‘𝑧) − (𝐺‘𝐶)) / (𝑧 − 𝐶))) limℂ 𝐶)) | 
| 38 | 3 | addcncntop 14798 | 
. . . . 5
⊢  + ∈
((𝐽 ×t
𝐽) Cn 𝐽) | 
| 39 | 5, 11, 7 | dvcl 14919 | 
. . . . . . 7
⊢ ((𝜑 ∧ 𝐶(𝑆 D 𝐹)𝐾) → 𝐾 ∈ ℂ) | 
| 40 | 24, 39 | mpdan 421 | 
. . . . . 6
⊢ (𝜑 → 𝐾 ∈ ℂ) | 
| 41 | 5, 6, 7 | dvcl 14919 | 
. . . . . . 7
⊢ ((𝜑 ∧ 𝐶(𝑆 D 𝐺)𝐿) → 𝐿 ∈ ℂ) | 
| 42 | 1, 41 | mpdan 421 | 
. . . . . 6
⊢ (𝜑 → 𝐿 ∈ ℂ) | 
| 43 | 40, 42 | opelxpd 4696 | 
. . . . 5
⊢ (𝜑 → 〈𝐾, 𝐿〉 ∈ (ℂ ×
ℂ)) | 
| 44 | 34 | toponunii 14253 | 
. . . . . 6
⊢ (ℂ
× ℂ) = ∪ (𝐽 ×t 𝐽) | 
| 45 | 44 | cncnpi 14464 | 
. . . . 5
⊢ (( +
∈ ((𝐽
×t 𝐽) Cn
𝐽) ∧ 〈𝐾, 𝐿〉 ∈ (ℂ × ℂ))
→ + ∈ (((𝐽
×t 𝐽) CnP
𝐽)‘〈𝐾, 𝐿〉)) | 
| 46 | 38, 43, 45 | sylancr 414 | 
. . . 4
⊢ (𝜑 → + ∈ (((𝐽 ×t 𝐽) CnP 𝐽)‘〈𝐾, 𝐿〉)) | 
| 47 | 30, 31, 32, 32, 3, 35, 36, 37, 46 | limccnp2cntop 14913 | 
. . 3
⊢ (𝜑 → (𝐾 + 𝐿) ∈ ((𝑧 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶} ↦ ((((𝐹‘𝑧) − (𝐹‘𝐶)) / (𝑧 − 𝐶)) + (((𝐺‘𝑧) − (𝐺‘𝐶)) / (𝑧 − 𝐶)))) limℂ 𝐶)) | 
| 48 |   | elrabi 2917 | 
. . . . . . . . . . 11
⊢ (𝑧 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶} → 𝑧 ∈ 𝑋) | 
| 49 | 48 | adantl 277 | 
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑧 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶}) → 𝑧 ∈ 𝑋) | 
| 50 | 11 | ffnd 5408 | 
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐹 Fn 𝑋) | 
| 51 | 50 | adantr 276 | 
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑧 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶}) → 𝐹 Fn 𝑋) | 
| 52 | 6 | ffnd 5408 | 
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐺 Fn 𝑋) | 
| 53 | 52 | adantr 276 | 
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑧 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶}) → 𝐺 Fn 𝑋) | 
| 54 |   | cnex 8003 | 
. . . . . . . . . . . . 13
⊢ ℂ
∈ V | 
| 55 |   | ssexg 4172 | 
. . . . . . . . . . . . 13
⊢ ((𝑋 ⊆ ℂ ∧ ℂ
∈ V) → 𝑋 ∈
V) | 
| 56 | 12, 54, 55 | sylancl 413 | 
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑋 ∈ V) | 
| 57 | 56 | adantr 276 | 
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑧 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶}) → 𝑋 ∈ V) | 
| 58 |   | inidm 3372 | 
. . . . . . . . . . 11
⊢ (𝑋 ∩ 𝑋) = 𝑋 | 
| 59 |   | eqidd 2197 | 
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑧 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶}) ∧ 𝑧 ∈ 𝑋) → (𝐹‘𝑧) = (𝐹‘𝑧)) | 
| 60 |   | eqidd 2197 | 
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑧 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶}) ∧ 𝑧 ∈ 𝑋) → (𝐺‘𝑧) = (𝐺‘𝑧)) | 
| 61 | 11 | adantr 276 | 
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑧 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶}) → 𝐹:𝑋⟶ℂ) | 
| 62 | 61 | ffvelcdmda 5697 | 
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑧 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶}) ∧ 𝑧 ∈ 𝑋) → (𝐹‘𝑧) ∈ ℂ) | 
| 63 | 6 | adantr 276 | 
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑧 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶}) → 𝐺:𝑋⟶ℂ) | 
| 64 | 63 | ffvelcdmda 5697 | 
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑧 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶}) ∧ 𝑧 ∈ 𝑋) → (𝐺‘𝑧) ∈ ℂ) | 
| 65 | 62, 64 | addcld 8046 | 
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑧 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶}) ∧ 𝑧 ∈ 𝑋) → ((𝐹‘𝑧) + (𝐺‘𝑧)) ∈ ℂ) | 
| 66 | 51, 53, 57, 57, 58, 59, 60, 65 | ofvalg 6145 | 
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑧 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶}) ∧ 𝑧 ∈ 𝑋) → ((𝐹 ∘𝑓 + 𝐺)‘𝑧) = ((𝐹‘𝑧) + (𝐺‘𝑧))) | 
| 67 | 49, 66 | mpdan 421 | 
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑧 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶}) → ((𝐹 ∘𝑓 + 𝐺)‘𝑧) = ((𝐹‘𝑧) + (𝐺‘𝑧))) | 
| 68 |   | eqidd 2197 | 
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑧 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶}) ∧ 𝐶 ∈ 𝑋) → (𝐹‘𝐶) = (𝐹‘𝐶)) | 
| 69 |   | eqidd 2197 | 
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑧 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶}) ∧ 𝐶 ∈ 𝑋) → (𝐺‘𝐶) = (𝐺‘𝐶)) | 
| 70 | 61 | ffvelcdmda 5697 | 
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑧 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶}) ∧ 𝐶 ∈ 𝑋) → (𝐹‘𝐶) ∈ ℂ) | 
| 71 | 63 | ffvelcdmda 5697 | 
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑧 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶}) ∧ 𝐶 ∈ 𝑋) → (𝐺‘𝐶) ∈ ℂ) | 
| 72 | 70, 71 | addcld 8046 | 
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑧 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶}) ∧ 𝐶 ∈ 𝑋) → ((𝐹‘𝐶) + (𝐺‘𝐶)) ∈ ℂ) | 
| 73 | 51, 53, 57, 57, 58, 68, 69, 72 | ofvalg 6145 | 
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑧 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶}) ∧ 𝐶 ∈ 𝑋) → ((𝐹 ∘𝑓 + 𝐺)‘𝐶) = ((𝐹‘𝐶) + (𝐺‘𝐶))) | 
| 74 | 29, 73 | mpidan 423 | 
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑧 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶}) → ((𝐹 ∘𝑓 + 𝐺)‘𝐶) = ((𝐹‘𝐶) + (𝐺‘𝐶))) | 
| 75 | 67, 74 | oveq12d 5940 | 
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑧 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶}) → (((𝐹 ∘𝑓 + 𝐺)‘𝑧) − ((𝐹 ∘𝑓 + 𝐺)‘𝐶)) = (((𝐹‘𝑧) + (𝐺‘𝑧)) − ((𝐹‘𝐶) + (𝐺‘𝐶)))) | 
| 76 |   | ffvelcdm 5695 | 
. . . . . . . . . 10
⊢ ((𝐹:𝑋⟶ℂ ∧ 𝑧 ∈ 𝑋) → (𝐹‘𝑧) ∈ ℂ) | 
| 77 | 11, 48, 76 | syl2an 289 | 
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑧 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶}) → (𝐹‘𝑧) ∈ ℂ) | 
| 78 | 63, 49 | ffvelcdmd 5698 | 
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑧 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶}) → (𝐺‘𝑧) ∈ ℂ) | 
| 79 | 11, 29 | ffvelcdmd 5698 | 
. . . . . . . . . 10
⊢ (𝜑 → (𝐹‘𝐶) ∈ ℂ) | 
| 80 | 79 | adantr 276 | 
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑧 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶}) → (𝐹‘𝐶) ∈ ℂ) | 
| 81 | 6, 29 | ffvelcdmd 5698 | 
. . . . . . . . . 10
⊢ (𝜑 → (𝐺‘𝐶) ∈ ℂ) | 
| 82 | 81 | adantr 276 | 
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑧 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶}) → (𝐺‘𝐶) ∈ ℂ) | 
| 83 | 77, 78, 80, 82 | addsub4d 8384 | 
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑧 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶}) → (((𝐹‘𝑧) + (𝐺‘𝑧)) − ((𝐹‘𝐶) + (𝐺‘𝐶))) = (((𝐹‘𝑧) − (𝐹‘𝐶)) + ((𝐺‘𝑧) − (𝐺‘𝐶)))) | 
| 84 | 75, 83 | eqtrd 2229 | 
. . . . . . 7
⊢ ((𝜑 ∧ 𝑧 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶}) → (((𝐹 ∘𝑓 + 𝐺)‘𝑧) − ((𝐹 ∘𝑓 + 𝐺)‘𝐶)) = (((𝐹‘𝑧) − (𝐹‘𝐶)) + ((𝐺‘𝑧) − (𝐺‘𝐶)))) | 
| 85 | 84 | oveq1d 5937 | 
. . . . . 6
⊢ ((𝜑 ∧ 𝑧 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶}) → ((((𝐹 ∘𝑓 + 𝐺)‘𝑧) − ((𝐹 ∘𝑓 + 𝐺)‘𝐶)) / (𝑧 − 𝐶)) = ((((𝐹‘𝑧) − (𝐹‘𝐶)) + ((𝐺‘𝑧) − (𝐺‘𝐶))) / (𝑧 − 𝐶))) | 
| 86 | 61, 49 | ffvelcdmd 5698 | 
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑧 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶}) → (𝐹‘𝑧) ∈ ℂ) | 
| 87 | 86, 80 | subcld 8337 | 
. . . . . . 7
⊢ ((𝜑 ∧ 𝑧 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶}) → ((𝐹‘𝑧) − (𝐹‘𝐶)) ∈ ℂ) | 
| 88 | 78, 82 | subcld 8337 | 
. . . . . . 7
⊢ ((𝜑 ∧ 𝑧 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶}) → ((𝐺‘𝑧) − (𝐺‘𝐶)) ∈ ℂ) | 
| 89 |   | ssrab2 3268 | 
. . . . . . . . . 10
⊢ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶} ⊆ 𝑋 | 
| 90 | 89, 12 | sstrid 3194 | 
. . . . . . . . 9
⊢ (𝜑 → {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶} ⊆ ℂ) | 
| 91 | 90 | sselda 3183 | 
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑧 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶}) → 𝑧 ∈ ℂ) | 
| 92 | 12, 29 | sseldd 3184 | 
. . . . . . . . 9
⊢ (𝜑 → 𝐶 ∈ ℂ) | 
| 93 | 92 | adantr 276 | 
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑧 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶}) → 𝐶 ∈ ℂ) | 
| 94 | 91, 93 | subcld 8337 | 
. . . . . . 7
⊢ ((𝜑 ∧ 𝑧 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶}) → (𝑧 − 𝐶) ∈ ℂ) | 
| 95 |   | breq1 4036 | 
. . . . . . . . . . 11
⊢ (𝑤 = 𝑧 → (𝑤 # 𝐶 ↔ 𝑧 # 𝐶)) | 
| 96 | 95 | elrab 2920 | 
. . . . . . . . . 10
⊢ (𝑧 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶} ↔ (𝑧 ∈ 𝑋 ∧ 𝑧 # 𝐶)) | 
| 97 | 96 | simprbi 275 | 
. . . . . . . . 9
⊢ (𝑧 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶} → 𝑧 # 𝐶) | 
| 98 | 97 | adantl 277 | 
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑧 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶}) → 𝑧 # 𝐶) | 
| 99 | 91, 93, 98 | subap0d 8671 | 
. . . . . . 7
⊢ ((𝜑 ∧ 𝑧 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶}) → (𝑧 − 𝐶) # 0) | 
| 100 | 87, 88, 94, 99 | divdirapd 8856 | 
. . . . . 6
⊢ ((𝜑 ∧ 𝑧 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶}) → ((((𝐹‘𝑧) − (𝐹‘𝐶)) + ((𝐺‘𝑧) − (𝐺‘𝐶))) / (𝑧 − 𝐶)) = ((((𝐹‘𝑧) − (𝐹‘𝐶)) / (𝑧 − 𝐶)) + (((𝐺‘𝑧) − (𝐺‘𝐶)) / (𝑧 − 𝐶)))) | 
| 101 | 85, 100 | eqtrd 2229 | 
. . . . 5
⊢ ((𝜑 ∧ 𝑧 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶}) → ((((𝐹 ∘𝑓 + 𝐺)‘𝑧) − ((𝐹 ∘𝑓 + 𝐺)‘𝐶)) / (𝑧 − 𝐶)) = ((((𝐹‘𝑧) − (𝐹‘𝐶)) / (𝑧 − 𝐶)) + (((𝐺‘𝑧) − (𝐺‘𝐶)) / (𝑧 − 𝐶)))) | 
| 102 | 101 | mpteq2dva 4123 | 
. . . 4
⊢ (𝜑 → (𝑧 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶} ↦ ((((𝐹 ∘𝑓 + 𝐺)‘𝑧) − ((𝐹 ∘𝑓 + 𝐺)‘𝐶)) / (𝑧 − 𝐶))) = (𝑧 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶} ↦ ((((𝐹‘𝑧) − (𝐹‘𝐶)) / (𝑧 − 𝐶)) + (((𝐺‘𝑧) − (𝐺‘𝐶)) / (𝑧 − 𝐶))))) | 
| 103 | 102 | oveq1d 5937 | 
. . 3
⊢ (𝜑 → ((𝑧 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶} ↦ ((((𝐹 ∘𝑓 + 𝐺)‘𝑧) − ((𝐹 ∘𝑓 + 𝐺)‘𝐶)) / (𝑧 − 𝐶))) limℂ 𝐶) = ((𝑧 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶} ↦ ((((𝐹‘𝑧) − (𝐹‘𝐶)) / (𝑧 − 𝐶)) + (((𝐺‘𝑧) − (𝐺‘𝐶)) / (𝑧 − 𝐶)))) limℂ 𝐶)) | 
| 104 | 47, 103 | eleqtrrd 2276 | 
. 2
⊢ (𝜑 → (𝐾 + 𝐿) ∈ ((𝑧 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶} ↦ ((((𝐹 ∘𝑓 + 𝐺)‘𝑧) − ((𝐹 ∘𝑓 + 𝐺)‘𝐶)) / (𝑧 − 𝐶))) limℂ 𝐶)) | 
| 105 |   | eqid 2196 | 
. . 3
⊢ (𝑧 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶} ↦ ((((𝐹 ∘𝑓 + 𝐺)‘𝑧) − ((𝐹 ∘𝑓 + 𝐺)‘𝐶)) / (𝑧 − 𝐶))) = (𝑧 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶} ↦ ((((𝐹 ∘𝑓 + 𝐺)‘𝑧) − ((𝐹 ∘𝑓 + 𝐺)‘𝐶)) / (𝑧 − 𝐶))) | 
| 106 |   | addcl 8004 | 
. . . . 5
⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 + 𝑦) ∈ ℂ) | 
| 107 | 106 | adantl 277 | 
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → (𝑥 + 𝑦) ∈ ℂ) | 
| 108 | 107, 11, 6, 56, 56, 58 | off 6148 | 
. . 3
⊢ (𝜑 → (𝐹 ∘𝑓 + 𝐺):𝑋⟶ℂ) | 
| 109 | 2, 3, 105, 5, 108, 7 | eldvap 14918 | 
. 2
⊢ (𝜑 → (𝐶(𝑆 D (𝐹 ∘𝑓 + 𝐺))(𝐾 + 𝐿) ↔ (𝐶 ∈ ((int‘(𝐽 ↾t 𝑆))‘𝑋) ∧ (𝐾 + 𝐿) ∈ ((𝑧 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝐶} ↦ ((((𝐹 ∘𝑓 + 𝐺)‘𝑧) − ((𝐹 ∘𝑓 + 𝐺)‘𝐶)) / (𝑧 − 𝐶))) limℂ 𝐶)))) | 
| 110 | 10, 104, 109 | mpbir2and 946 | 
1
⊢ (𝜑 → 𝐶(𝑆 D (𝐹 ∘𝑓 + 𝐺))(𝐾 + 𝐿)) |