ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvaddxxbr GIF version

Theorem dvaddxxbr 15288
Description: The sum rule for derivatives at a point. That is, if the derivative of 𝐹 at 𝐶 is 𝐾 and the derivative of 𝐺 at 𝐶 is 𝐿, then the derivative of the pointwise sum of those two functions at 𝐶 is 𝐾 + 𝐿. (Contributed by Mario Carneiro, 9-Aug-2014.) (Revised by Jim Kingdon, 25-Nov-2023.)
Hypotheses
Ref Expression
dvadd.f (𝜑𝐹:𝑋⟶ℂ)
dvadd.x (𝜑𝑋𝑆)
dvaddxx.g (𝜑𝐺:𝑋⟶ℂ)
dvaddbr.s (𝜑𝑆 ⊆ ℂ)
dvadd.bf (𝜑𝐶(𝑆 D 𝐹)𝐾)
dvadd.bg (𝜑𝐶(𝑆 D 𝐺)𝐿)
dvaddcntop.j 𝐽 = (MetOpen‘(abs ∘ − ))
Assertion
Ref Expression
dvaddxxbr (𝜑𝐶(𝑆 D (𝐹𝑓 + 𝐺))(𝐾 + 𝐿))

Proof of Theorem dvaddxxbr
Dummy variables 𝑦 𝑧 𝑥 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dvadd.bg . . . 4 (𝜑𝐶(𝑆 D 𝐺)𝐿)
2 eqid 2207 . . . . 5 (𝐽t 𝑆) = (𝐽t 𝑆)
3 dvaddcntop.j . . . . 5 𝐽 = (MetOpen‘(abs ∘ − ))
4 eqid 2207 . . . . 5 (𝑧 ∈ {𝑤𝑋𝑤 # 𝐶} ↦ (((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶))) = (𝑧 ∈ {𝑤𝑋𝑤 # 𝐶} ↦ (((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶)))
5 dvaddbr.s . . . . 5 (𝜑𝑆 ⊆ ℂ)
6 dvaddxx.g . . . . 5 (𝜑𝐺:𝑋⟶ℂ)
7 dvadd.x . . . . 5 (𝜑𝑋𝑆)
82, 3, 4, 5, 6, 7eldvap 15269 . . . 4 (𝜑 → (𝐶(𝑆 D 𝐺)𝐿 ↔ (𝐶 ∈ ((int‘(𝐽t 𝑆))‘𝑋) ∧ 𝐿 ∈ ((𝑧 ∈ {𝑤𝑋𝑤 # 𝐶} ↦ (((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶))) lim 𝐶))))
91, 8mpbid 147 . . 3 (𝜑 → (𝐶 ∈ ((int‘(𝐽t 𝑆))‘𝑋) ∧ 𝐿 ∈ ((𝑧 ∈ {𝑤𝑋𝑤 # 𝐶} ↦ (((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶))) lim 𝐶)))
109simpld 112 . 2 (𝜑𝐶 ∈ ((int‘(𝐽t 𝑆))‘𝑋))
11 dvadd.f . . . . 5 (𝜑𝐹:𝑋⟶ℂ)
127, 5sstrd 3211 . . . . 5 (𝜑𝑋 ⊆ ℂ)
133cntoptopon 15119 . . . . . . . . 9 𝐽 ∈ (TopOn‘ℂ)
14 resttopon 14758 . . . . . . . . 9 ((𝐽 ∈ (TopOn‘ℂ) ∧ 𝑆 ⊆ ℂ) → (𝐽t 𝑆) ∈ (TopOn‘𝑆))
1513, 5, 14sylancr 414 . . . . . . . 8 (𝜑 → (𝐽t 𝑆) ∈ (TopOn‘𝑆))
16 topontop 14601 . . . . . . . 8 ((𝐽t 𝑆) ∈ (TopOn‘𝑆) → (𝐽t 𝑆) ∈ Top)
1715, 16syl 14 . . . . . . 7 (𝜑 → (𝐽t 𝑆) ∈ Top)
18 toponuni 14602 . . . . . . . . 9 ((𝐽t 𝑆) ∈ (TopOn‘𝑆) → 𝑆 = (𝐽t 𝑆))
1915, 18syl 14 . . . . . . . 8 (𝜑𝑆 = (𝐽t 𝑆))
207, 19sseqtrd 3239 . . . . . . 7 (𝜑𝑋 (𝐽t 𝑆))
21 eqid 2207 . . . . . . . 8 (𝐽t 𝑆) = (𝐽t 𝑆)
2221ntrss2 14708 . . . . . . 7 (((𝐽t 𝑆) ∈ Top ∧ 𝑋 (𝐽t 𝑆)) → ((int‘(𝐽t 𝑆))‘𝑋) ⊆ 𝑋)
2317, 20, 22syl2anc 411 . . . . . 6 (𝜑 → ((int‘(𝐽t 𝑆))‘𝑋) ⊆ 𝑋)
24 dvadd.bf . . . . . . . 8 (𝜑𝐶(𝑆 D 𝐹)𝐾)
25 eqid 2207 . . . . . . . . 9 (𝑧 ∈ {𝑤𝑋𝑤 # 𝐶} ↦ (((𝐹𝑧) − (𝐹𝐶)) / (𝑧𝐶))) = (𝑧 ∈ {𝑤𝑋𝑤 # 𝐶} ↦ (((𝐹𝑧) − (𝐹𝐶)) / (𝑧𝐶)))
262, 3, 25, 5, 11, 7eldvap 15269 . . . . . . . 8 (𝜑 → (𝐶(𝑆 D 𝐹)𝐾 ↔ (𝐶 ∈ ((int‘(𝐽t 𝑆))‘𝑋) ∧ 𝐾 ∈ ((𝑧 ∈ {𝑤𝑋𝑤 # 𝐶} ↦ (((𝐹𝑧) − (𝐹𝐶)) / (𝑧𝐶))) lim 𝐶))))
2724, 26mpbid 147 . . . . . . 7 (𝜑 → (𝐶 ∈ ((int‘(𝐽t 𝑆))‘𝑋) ∧ 𝐾 ∈ ((𝑧 ∈ {𝑤𝑋𝑤 # 𝐶} ↦ (((𝐹𝑧) − (𝐹𝐶)) / (𝑧𝐶))) lim 𝐶)))
2827simpld 112 . . . . . 6 (𝜑𝐶 ∈ ((int‘(𝐽t 𝑆))‘𝑋))
2923, 28sseldd 3202 . . . . 5 (𝜑𝐶𝑋)
3011, 12, 29dvlemap 15267 . . . 4 ((𝜑𝑧 ∈ {𝑤𝑋𝑤 # 𝐶}) → (((𝐹𝑧) − (𝐹𝐶)) / (𝑧𝐶)) ∈ ℂ)
316, 12, 29dvlemap 15267 . . . 4 ((𝜑𝑧 ∈ {𝑤𝑋𝑤 # 𝐶}) → (((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶)) ∈ ℂ)
32 ssidd 3222 . . . 4 (𝜑 → ℂ ⊆ ℂ)
33 txtopon 14849 . . . . . 6 ((𝐽 ∈ (TopOn‘ℂ) ∧ 𝐽 ∈ (TopOn‘ℂ)) → (𝐽 ×t 𝐽) ∈ (TopOn‘(ℂ × ℂ)))
3413, 13, 33mp2an 426 . . . . 5 (𝐽 ×t 𝐽) ∈ (TopOn‘(ℂ × ℂ))
3534toponrestid 14608 . . . 4 (𝐽 ×t 𝐽) = ((𝐽 ×t 𝐽) ↾t (ℂ × ℂ))
3627simprd 114 . . . 4 (𝜑𝐾 ∈ ((𝑧 ∈ {𝑤𝑋𝑤 # 𝐶} ↦ (((𝐹𝑧) − (𝐹𝐶)) / (𝑧𝐶))) lim 𝐶))
379simprd 114 . . . 4 (𝜑𝐿 ∈ ((𝑧 ∈ {𝑤𝑋𝑤 # 𝐶} ↦ (((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶))) lim 𝐶))
383addcncntop 15149 . . . . 5 + ∈ ((𝐽 ×t 𝐽) Cn 𝐽)
395, 11, 7dvcl 15270 . . . . . . 7 ((𝜑𝐶(𝑆 D 𝐹)𝐾) → 𝐾 ∈ ℂ)
4024, 39mpdan 421 . . . . . 6 (𝜑𝐾 ∈ ℂ)
415, 6, 7dvcl 15270 . . . . . . 7 ((𝜑𝐶(𝑆 D 𝐺)𝐿) → 𝐿 ∈ ℂ)
421, 41mpdan 421 . . . . . 6 (𝜑𝐿 ∈ ℂ)
4340, 42opelxpd 4726 . . . . 5 (𝜑 → ⟨𝐾, 𝐿⟩ ∈ (ℂ × ℂ))
4434toponunii 14604 . . . . . 6 (ℂ × ℂ) = (𝐽 ×t 𝐽)
4544cncnpi 14815 . . . . 5 (( + ∈ ((𝐽 ×t 𝐽) Cn 𝐽) ∧ ⟨𝐾, 𝐿⟩ ∈ (ℂ × ℂ)) → + ∈ (((𝐽 ×t 𝐽) CnP 𝐽)‘⟨𝐾, 𝐿⟩))
4638, 43, 45sylancr 414 . . . 4 (𝜑 → + ∈ (((𝐽 ×t 𝐽) CnP 𝐽)‘⟨𝐾, 𝐿⟩))
4730, 31, 32, 32, 3, 35, 36, 37, 46limccnp2cntop 15264 . . 3 (𝜑 → (𝐾 + 𝐿) ∈ ((𝑧 ∈ {𝑤𝑋𝑤 # 𝐶} ↦ ((((𝐹𝑧) − (𝐹𝐶)) / (𝑧𝐶)) + (((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶)))) lim 𝐶))
48 elrabi 2933 . . . . . . . . . . 11 (𝑧 ∈ {𝑤𝑋𝑤 # 𝐶} → 𝑧𝑋)
4948adantl 277 . . . . . . . . . 10 ((𝜑𝑧 ∈ {𝑤𝑋𝑤 # 𝐶}) → 𝑧𝑋)
5011ffnd 5446 . . . . . . . . . . . 12 (𝜑𝐹 Fn 𝑋)
5150adantr 276 . . . . . . . . . . 11 ((𝜑𝑧 ∈ {𝑤𝑋𝑤 # 𝐶}) → 𝐹 Fn 𝑋)
526ffnd 5446 . . . . . . . . . . . 12 (𝜑𝐺 Fn 𝑋)
5352adantr 276 . . . . . . . . . . 11 ((𝜑𝑧 ∈ {𝑤𝑋𝑤 # 𝐶}) → 𝐺 Fn 𝑋)
54 cnex 8084 . . . . . . . . . . . . 13 ℂ ∈ V
55 ssexg 4199 . . . . . . . . . . . . 13 ((𝑋 ⊆ ℂ ∧ ℂ ∈ V) → 𝑋 ∈ V)
5612, 54, 55sylancl 413 . . . . . . . . . . . 12 (𝜑𝑋 ∈ V)
5756adantr 276 . . . . . . . . . . 11 ((𝜑𝑧 ∈ {𝑤𝑋𝑤 # 𝐶}) → 𝑋 ∈ V)
58 inidm 3390 . . . . . . . . . . 11 (𝑋𝑋) = 𝑋
59 eqidd 2208 . . . . . . . . . . 11 (((𝜑𝑧 ∈ {𝑤𝑋𝑤 # 𝐶}) ∧ 𝑧𝑋) → (𝐹𝑧) = (𝐹𝑧))
60 eqidd 2208 . . . . . . . . . . 11 (((𝜑𝑧 ∈ {𝑤𝑋𝑤 # 𝐶}) ∧ 𝑧𝑋) → (𝐺𝑧) = (𝐺𝑧))
6111adantr 276 . . . . . . . . . . . . 13 ((𝜑𝑧 ∈ {𝑤𝑋𝑤 # 𝐶}) → 𝐹:𝑋⟶ℂ)
6261ffvelcdmda 5738 . . . . . . . . . . . 12 (((𝜑𝑧 ∈ {𝑤𝑋𝑤 # 𝐶}) ∧ 𝑧𝑋) → (𝐹𝑧) ∈ ℂ)
636adantr 276 . . . . . . . . . . . . 13 ((𝜑𝑧 ∈ {𝑤𝑋𝑤 # 𝐶}) → 𝐺:𝑋⟶ℂ)
6463ffvelcdmda 5738 . . . . . . . . . . . 12 (((𝜑𝑧 ∈ {𝑤𝑋𝑤 # 𝐶}) ∧ 𝑧𝑋) → (𝐺𝑧) ∈ ℂ)
6562, 64addcld 8127 . . . . . . . . . . 11 (((𝜑𝑧 ∈ {𝑤𝑋𝑤 # 𝐶}) ∧ 𝑧𝑋) → ((𝐹𝑧) + (𝐺𝑧)) ∈ ℂ)
6651, 53, 57, 57, 58, 59, 60, 65ofvalg 6191 . . . . . . . . . 10 (((𝜑𝑧 ∈ {𝑤𝑋𝑤 # 𝐶}) ∧ 𝑧𝑋) → ((𝐹𝑓 + 𝐺)‘𝑧) = ((𝐹𝑧) + (𝐺𝑧)))
6749, 66mpdan 421 . . . . . . . . 9 ((𝜑𝑧 ∈ {𝑤𝑋𝑤 # 𝐶}) → ((𝐹𝑓 + 𝐺)‘𝑧) = ((𝐹𝑧) + (𝐺𝑧)))
68 eqidd 2208 . . . . . . . . . . 11 (((𝜑𝑧 ∈ {𝑤𝑋𝑤 # 𝐶}) ∧ 𝐶𝑋) → (𝐹𝐶) = (𝐹𝐶))
69 eqidd 2208 . . . . . . . . . . 11 (((𝜑𝑧 ∈ {𝑤𝑋𝑤 # 𝐶}) ∧ 𝐶𝑋) → (𝐺𝐶) = (𝐺𝐶))
7061ffvelcdmda 5738 . . . . . . . . . . . 12 (((𝜑𝑧 ∈ {𝑤𝑋𝑤 # 𝐶}) ∧ 𝐶𝑋) → (𝐹𝐶) ∈ ℂ)
7163ffvelcdmda 5738 . . . . . . . . . . . 12 (((𝜑𝑧 ∈ {𝑤𝑋𝑤 # 𝐶}) ∧ 𝐶𝑋) → (𝐺𝐶) ∈ ℂ)
7270, 71addcld 8127 . . . . . . . . . . 11 (((𝜑𝑧 ∈ {𝑤𝑋𝑤 # 𝐶}) ∧ 𝐶𝑋) → ((𝐹𝐶) + (𝐺𝐶)) ∈ ℂ)
7351, 53, 57, 57, 58, 68, 69, 72ofvalg 6191 . . . . . . . . . 10 (((𝜑𝑧 ∈ {𝑤𝑋𝑤 # 𝐶}) ∧ 𝐶𝑋) → ((𝐹𝑓 + 𝐺)‘𝐶) = ((𝐹𝐶) + (𝐺𝐶)))
7429, 73mpidan 423 . . . . . . . . 9 ((𝜑𝑧 ∈ {𝑤𝑋𝑤 # 𝐶}) → ((𝐹𝑓 + 𝐺)‘𝐶) = ((𝐹𝐶) + (𝐺𝐶)))
7567, 74oveq12d 5985 . . . . . . . 8 ((𝜑𝑧 ∈ {𝑤𝑋𝑤 # 𝐶}) → (((𝐹𝑓 + 𝐺)‘𝑧) − ((𝐹𝑓 + 𝐺)‘𝐶)) = (((𝐹𝑧) + (𝐺𝑧)) − ((𝐹𝐶) + (𝐺𝐶))))
76 ffvelcdm 5736 . . . . . . . . . 10 ((𝐹:𝑋⟶ℂ ∧ 𝑧𝑋) → (𝐹𝑧) ∈ ℂ)
7711, 48, 76syl2an 289 . . . . . . . . 9 ((𝜑𝑧 ∈ {𝑤𝑋𝑤 # 𝐶}) → (𝐹𝑧) ∈ ℂ)
7863, 49ffvelcdmd 5739 . . . . . . . . 9 ((𝜑𝑧 ∈ {𝑤𝑋𝑤 # 𝐶}) → (𝐺𝑧) ∈ ℂ)
7911, 29ffvelcdmd 5739 . . . . . . . . . 10 (𝜑 → (𝐹𝐶) ∈ ℂ)
8079adantr 276 . . . . . . . . 9 ((𝜑𝑧 ∈ {𝑤𝑋𝑤 # 𝐶}) → (𝐹𝐶) ∈ ℂ)
816, 29ffvelcdmd 5739 . . . . . . . . . 10 (𝜑 → (𝐺𝐶) ∈ ℂ)
8281adantr 276 . . . . . . . . 9 ((𝜑𝑧 ∈ {𝑤𝑋𝑤 # 𝐶}) → (𝐺𝐶) ∈ ℂ)
8377, 78, 80, 82addsub4d 8465 . . . . . . . 8 ((𝜑𝑧 ∈ {𝑤𝑋𝑤 # 𝐶}) → (((𝐹𝑧) + (𝐺𝑧)) − ((𝐹𝐶) + (𝐺𝐶))) = (((𝐹𝑧) − (𝐹𝐶)) + ((𝐺𝑧) − (𝐺𝐶))))
8475, 83eqtrd 2240 . . . . . . 7 ((𝜑𝑧 ∈ {𝑤𝑋𝑤 # 𝐶}) → (((𝐹𝑓 + 𝐺)‘𝑧) − ((𝐹𝑓 + 𝐺)‘𝐶)) = (((𝐹𝑧) − (𝐹𝐶)) + ((𝐺𝑧) − (𝐺𝐶))))
8584oveq1d 5982 . . . . . 6 ((𝜑𝑧 ∈ {𝑤𝑋𝑤 # 𝐶}) → ((((𝐹𝑓 + 𝐺)‘𝑧) − ((𝐹𝑓 + 𝐺)‘𝐶)) / (𝑧𝐶)) = ((((𝐹𝑧) − (𝐹𝐶)) + ((𝐺𝑧) − (𝐺𝐶))) / (𝑧𝐶)))
8661, 49ffvelcdmd 5739 . . . . . . . 8 ((𝜑𝑧 ∈ {𝑤𝑋𝑤 # 𝐶}) → (𝐹𝑧) ∈ ℂ)
8786, 80subcld 8418 . . . . . . 7 ((𝜑𝑧 ∈ {𝑤𝑋𝑤 # 𝐶}) → ((𝐹𝑧) − (𝐹𝐶)) ∈ ℂ)
8878, 82subcld 8418 . . . . . . 7 ((𝜑𝑧 ∈ {𝑤𝑋𝑤 # 𝐶}) → ((𝐺𝑧) − (𝐺𝐶)) ∈ ℂ)
89 ssrab2 3286 . . . . . . . . . 10 {𝑤𝑋𝑤 # 𝐶} ⊆ 𝑋
9089, 12sstrid 3212 . . . . . . . . 9 (𝜑 → {𝑤𝑋𝑤 # 𝐶} ⊆ ℂ)
9190sselda 3201 . . . . . . . 8 ((𝜑𝑧 ∈ {𝑤𝑋𝑤 # 𝐶}) → 𝑧 ∈ ℂ)
9212, 29sseldd 3202 . . . . . . . . 9 (𝜑𝐶 ∈ ℂ)
9392adantr 276 . . . . . . . 8 ((𝜑𝑧 ∈ {𝑤𝑋𝑤 # 𝐶}) → 𝐶 ∈ ℂ)
9491, 93subcld 8418 . . . . . . 7 ((𝜑𝑧 ∈ {𝑤𝑋𝑤 # 𝐶}) → (𝑧𝐶) ∈ ℂ)
95 breq1 4062 . . . . . . . . . . 11 (𝑤 = 𝑧 → (𝑤 # 𝐶𝑧 # 𝐶))
9695elrab 2936 . . . . . . . . . 10 (𝑧 ∈ {𝑤𝑋𝑤 # 𝐶} ↔ (𝑧𝑋𝑧 # 𝐶))
9796simprbi 275 . . . . . . . . 9 (𝑧 ∈ {𝑤𝑋𝑤 # 𝐶} → 𝑧 # 𝐶)
9897adantl 277 . . . . . . . 8 ((𝜑𝑧 ∈ {𝑤𝑋𝑤 # 𝐶}) → 𝑧 # 𝐶)
9991, 93, 98subap0d 8752 . . . . . . 7 ((𝜑𝑧 ∈ {𝑤𝑋𝑤 # 𝐶}) → (𝑧𝐶) # 0)
10087, 88, 94, 99divdirapd 8937 . . . . . 6 ((𝜑𝑧 ∈ {𝑤𝑋𝑤 # 𝐶}) → ((((𝐹𝑧) − (𝐹𝐶)) + ((𝐺𝑧) − (𝐺𝐶))) / (𝑧𝐶)) = ((((𝐹𝑧) − (𝐹𝐶)) / (𝑧𝐶)) + (((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶))))
10185, 100eqtrd 2240 . . . . 5 ((𝜑𝑧 ∈ {𝑤𝑋𝑤 # 𝐶}) → ((((𝐹𝑓 + 𝐺)‘𝑧) − ((𝐹𝑓 + 𝐺)‘𝐶)) / (𝑧𝐶)) = ((((𝐹𝑧) − (𝐹𝐶)) / (𝑧𝐶)) + (((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶))))
102101mpteq2dva 4150 . . . 4 (𝜑 → (𝑧 ∈ {𝑤𝑋𝑤 # 𝐶} ↦ ((((𝐹𝑓 + 𝐺)‘𝑧) − ((𝐹𝑓 + 𝐺)‘𝐶)) / (𝑧𝐶))) = (𝑧 ∈ {𝑤𝑋𝑤 # 𝐶} ↦ ((((𝐹𝑧) − (𝐹𝐶)) / (𝑧𝐶)) + (((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶)))))
103102oveq1d 5982 . . 3 (𝜑 → ((𝑧 ∈ {𝑤𝑋𝑤 # 𝐶} ↦ ((((𝐹𝑓 + 𝐺)‘𝑧) − ((𝐹𝑓 + 𝐺)‘𝐶)) / (𝑧𝐶))) lim 𝐶) = ((𝑧 ∈ {𝑤𝑋𝑤 # 𝐶} ↦ ((((𝐹𝑧) − (𝐹𝐶)) / (𝑧𝐶)) + (((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶)))) lim 𝐶))
10447, 103eleqtrrd 2287 . 2 (𝜑 → (𝐾 + 𝐿) ∈ ((𝑧 ∈ {𝑤𝑋𝑤 # 𝐶} ↦ ((((𝐹𝑓 + 𝐺)‘𝑧) − ((𝐹𝑓 + 𝐺)‘𝐶)) / (𝑧𝐶))) lim 𝐶))
105 eqid 2207 . . 3 (𝑧 ∈ {𝑤𝑋𝑤 # 𝐶} ↦ ((((𝐹𝑓 + 𝐺)‘𝑧) − ((𝐹𝑓 + 𝐺)‘𝐶)) / (𝑧𝐶))) = (𝑧 ∈ {𝑤𝑋𝑤 # 𝐶} ↦ ((((𝐹𝑓 + 𝐺)‘𝑧) − ((𝐹𝑓 + 𝐺)‘𝐶)) / (𝑧𝐶)))
106 addcl 8085 . . . . 5 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 + 𝑦) ∈ ℂ)
107106adantl 277 . . . 4 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → (𝑥 + 𝑦) ∈ ℂ)
108107, 11, 6, 56, 56, 58off 6194 . . 3 (𝜑 → (𝐹𝑓 + 𝐺):𝑋⟶ℂ)
1092, 3, 105, 5, 108, 7eldvap 15269 . 2 (𝜑 → (𝐶(𝑆 D (𝐹𝑓 + 𝐺))(𝐾 + 𝐿) ↔ (𝐶 ∈ ((int‘(𝐽t 𝑆))‘𝑋) ∧ (𝐾 + 𝐿) ∈ ((𝑧 ∈ {𝑤𝑋𝑤 # 𝐶} ↦ ((((𝐹𝑓 + 𝐺)‘𝑧) − ((𝐹𝑓 + 𝐺)‘𝐶)) / (𝑧𝐶))) lim 𝐶))))
11010, 104, 109mpbir2and 947 1 (𝜑𝐶(𝑆 D (𝐹𝑓 + 𝐺))(𝐾 + 𝐿))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1373  wcel 2178  {crab 2490  Vcvv 2776  wss 3174  cop 3646   cuni 3864   class class class wbr 4059  cmpt 4121   × cxp 4691  ccom 4697   Fn wfn 5285  wf 5286  cfv 5290  (class class class)co 5967  𝑓 cof 6179  cc 7958   + caddc 7963  cmin 8278   # cap 8689   / cdiv 8780  abscabs 11423  t crest 13186  MetOpencmopn 14418  Topctop 14584  TopOnctopon 14597  intcnt 14680   Cn ccn 14772   CnP ccnp 14773   ×t ctx 14839   lim climc 15241   D cdv 15242
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-iinf 4654  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-mulrcl 8059  ax-addcom 8060  ax-mulcom 8061  ax-addass 8062  ax-mulass 8063  ax-distr 8064  ax-i2m1 8065  ax-0lt1 8066  ax-1rid 8067  ax-0id 8068  ax-rnegex 8069  ax-precex 8070  ax-cnre 8071  ax-pre-ltirr 8072  ax-pre-ltwlin 8073  ax-pre-lttrn 8074  ax-pre-apti 8075  ax-pre-ltadd 8076  ax-pre-mulgt0 8077  ax-pre-mulext 8078  ax-arch 8079  ax-caucvg 8080  ax-addf 8082
This theorem depends on definitions:  df-bi 117  df-stab 833  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-reu 2493  df-rmo 2494  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-if 3580  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-tr 4159  df-id 4358  df-po 4361  df-iso 4362  df-iord 4431  df-on 4433  df-ilim 4434  df-suc 4436  df-iom 4657  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-isom 5299  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-of 6181  df-1st 6249  df-2nd 6250  df-recs 6414  df-frec 6500  df-map 6760  df-pm 6761  df-sup 7112  df-inf 7113  df-pnf 8144  df-mnf 8145  df-xr 8146  df-ltxr 8147  df-le 8148  df-sub 8280  df-neg 8281  df-reap 8683  df-ap 8690  df-div 8781  df-inn 9072  df-2 9130  df-3 9131  df-4 9132  df-n0 9331  df-z 9408  df-uz 9684  df-q 9776  df-rp 9811  df-xneg 9929  df-xadd 9930  df-seqfrec 10630  df-exp 10721  df-cj 11268  df-re 11269  df-im 11270  df-rsqrt 11424  df-abs 11425  df-rest 13188  df-topgen 13207  df-psmet 14420  df-xmet 14421  df-met 14422  df-bl 14423  df-mopn 14424  df-top 14585  df-topon 14598  df-bases 14630  df-ntr 14683  df-cn 14775  df-cnp 14776  df-tx 14840  df-limced 15243  df-dvap 15244
This theorem is referenced by:  dvaddxx  15290  dviaddf  15292
  Copyright terms: Public domain W3C validator