ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvaddxxbr GIF version

Theorem dvaddxxbr 14937
Description: The sum rule for derivatives at a point. That is, if the derivative of 𝐹 at 𝐶 is 𝐾 and the derivative of 𝐺 at 𝐶 is 𝐿, then the derivative of the pointwise sum of those two functions at 𝐶 is 𝐾 + 𝐿. (Contributed by Mario Carneiro, 9-Aug-2014.) (Revised by Jim Kingdon, 25-Nov-2023.)
Hypotheses
Ref Expression
dvadd.f (𝜑𝐹:𝑋⟶ℂ)
dvadd.x (𝜑𝑋𝑆)
dvaddxx.g (𝜑𝐺:𝑋⟶ℂ)
dvaddbr.s (𝜑𝑆 ⊆ ℂ)
dvadd.bf (𝜑𝐶(𝑆 D 𝐹)𝐾)
dvadd.bg (𝜑𝐶(𝑆 D 𝐺)𝐿)
dvaddcntop.j 𝐽 = (MetOpen‘(abs ∘ − ))
Assertion
Ref Expression
dvaddxxbr (𝜑𝐶(𝑆 D (𝐹𝑓 + 𝐺))(𝐾 + 𝐿))

Proof of Theorem dvaddxxbr
Dummy variables 𝑦 𝑧 𝑥 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dvadd.bg . . . 4 (𝜑𝐶(𝑆 D 𝐺)𝐿)
2 eqid 2196 . . . . 5 (𝐽t 𝑆) = (𝐽t 𝑆)
3 dvaddcntop.j . . . . 5 𝐽 = (MetOpen‘(abs ∘ − ))
4 eqid 2196 . . . . 5 (𝑧 ∈ {𝑤𝑋𝑤 # 𝐶} ↦ (((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶))) = (𝑧 ∈ {𝑤𝑋𝑤 # 𝐶} ↦ (((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶)))
5 dvaddbr.s . . . . 5 (𝜑𝑆 ⊆ ℂ)
6 dvaddxx.g . . . . 5 (𝜑𝐺:𝑋⟶ℂ)
7 dvadd.x . . . . 5 (𝜑𝑋𝑆)
82, 3, 4, 5, 6, 7eldvap 14918 . . . 4 (𝜑 → (𝐶(𝑆 D 𝐺)𝐿 ↔ (𝐶 ∈ ((int‘(𝐽t 𝑆))‘𝑋) ∧ 𝐿 ∈ ((𝑧 ∈ {𝑤𝑋𝑤 # 𝐶} ↦ (((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶))) lim 𝐶))))
91, 8mpbid 147 . . 3 (𝜑 → (𝐶 ∈ ((int‘(𝐽t 𝑆))‘𝑋) ∧ 𝐿 ∈ ((𝑧 ∈ {𝑤𝑋𝑤 # 𝐶} ↦ (((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶))) lim 𝐶)))
109simpld 112 . 2 (𝜑𝐶 ∈ ((int‘(𝐽t 𝑆))‘𝑋))
11 dvadd.f . . . . 5 (𝜑𝐹:𝑋⟶ℂ)
127, 5sstrd 3193 . . . . 5 (𝜑𝑋 ⊆ ℂ)
133cntoptopon 14768 . . . . . . . . 9 𝐽 ∈ (TopOn‘ℂ)
14 resttopon 14407 . . . . . . . . 9 ((𝐽 ∈ (TopOn‘ℂ) ∧ 𝑆 ⊆ ℂ) → (𝐽t 𝑆) ∈ (TopOn‘𝑆))
1513, 5, 14sylancr 414 . . . . . . . 8 (𝜑 → (𝐽t 𝑆) ∈ (TopOn‘𝑆))
16 topontop 14250 . . . . . . . 8 ((𝐽t 𝑆) ∈ (TopOn‘𝑆) → (𝐽t 𝑆) ∈ Top)
1715, 16syl 14 . . . . . . 7 (𝜑 → (𝐽t 𝑆) ∈ Top)
18 toponuni 14251 . . . . . . . . 9 ((𝐽t 𝑆) ∈ (TopOn‘𝑆) → 𝑆 = (𝐽t 𝑆))
1915, 18syl 14 . . . . . . . 8 (𝜑𝑆 = (𝐽t 𝑆))
207, 19sseqtrd 3221 . . . . . . 7 (𝜑𝑋 (𝐽t 𝑆))
21 eqid 2196 . . . . . . . 8 (𝐽t 𝑆) = (𝐽t 𝑆)
2221ntrss2 14357 . . . . . . 7 (((𝐽t 𝑆) ∈ Top ∧ 𝑋 (𝐽t 𝑆)) → ((int‘(𝐽t 𝑆))‘𝑋) ⊆ 𝑋)
2317, 20, 22syl2anc 411 . . . . . 6 (𝜑 → ((int‘(𝐽t 𝑆))‘𝑋) ⊆ 𝑋)
24 dvadd.bf . . . . . . . 8 (𝜑𝐶(𝑆 D 𝐹)𝐾)
25 eqid 2196 . . . . . . . . 9 (𝑧 ∈ {𝑤𝑋𝑤 # 𝐶} ↦ (((𝐹𝑧) − (𝐹𝐶)) / (𝑧𝐶))) = (𝑧 ∈ {𝑤𝑋𝑤 # 𝐶} ↦ (((𝐹𝑧) − (𝐹𝐶)) / (𝑧𝐶)))
262, 3, 25, 5, 11, 7eldvap 14918 . . . . . . . 8 (𝜑 → (𝐶(𝑆 D 𝐹)𝐾 ↔ (𝐶 ∈ ((int‘(𝐽t 𝑆))‘𝑋) ∧ 𝐾 ∈ ((𝑧 ∈ {𝑤𝑋𝑤 # 𝐶} ↦ (((𝐹𝑧) − (𝐹𝐶)) / (𝑧𝐶))) lim 𝐶))))
2724, 26mpbid 147 . . . . . . 7 (𝜑 → (𝐶 ∈ ((int‘(𝐽t 𝑆))‘𝑋) ∧ 𝐾 ∈ ((𝑧 ∈ {𝑤𝑋𝑤 # 𝐶} ↦ (((𝐹𝑧) − (𝐹𝐶)) / (𝑧𝐶))) lim 𝐶)))
2827simpld 112 . . . . . 6 (𝜑𝐶 ∈ ((int‘(𝐽t 𝑆))‘𝑋))
2923, 28sseldd 3184 . . . . 5 (𝜑𝐶𝑋)
3011, 12, 29dvlemap 14916 . . . 4 ((𝜑𝑧 ∈ {𝑤𝑋𝑤 # 𝐶}) → (((𝐹𝑧) − (𝐹𝐶)) / (𝑧𝐶)) ∈ ℂ)
316, 12, 29dvlemap 14916 . . . 4 ((𝜑𝑧 ∈ {𝑤𝑋𝑤 # 𝐶}) → (((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶)) ∈ ℂ)
32 ssidd 3204 . . . 4 (𝜑 → ℂ ⊆ ℂ)
33 txtopon 14498 . . . . . 6 ((𝐽 ∈ (TopOn‘ℂ) ∧ 𝐽 ∈ (TopOn‘ℂ)) → (𝐽 ×t 𝐽) ∈ (TopOn‘(ℂ × ℂ)))
3413, 13, 33mp2an 426 . . . . 5 (𝐽 ×t 𝐽) ∈ (TopOn‘(ℂ × ℂ))
3534toponrestid 14257 . . . 4 (𝐽 ×t 𝐽) = ((𝐽 ×t 𝐽) ↾t (ℂ × ℂ))
3627simprd 114 . . . 4 (𝜑𝐾 ∈ ((𝑧 ∈ {𝑤𝑋𝑤 # 𝐶} ↦ (((𝐹𝑧) − (𝐹𝐶)) / (𝑧𝐶))) lim 𝐶))
379simprd 114 . . . 4 (𝜑𝐿 ∈ ((𝑧 ∈ {𝑤𝑋𝑤 # 𝐶} ↦ (((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶))) lim 𝐶))
383addcncntop 14798 . . . . 5 + ∈ ((𝐽 ×t 𝐽) Cn 𝐽)
395, 11, 7dvcl 14919 . . . . . . 7 ((𝜑𝐶(𝑆 D 𝐹)𝐾) → 𝐾 ∈ ℂ)
4024, 39mpdan 421 . . . . . 6 (𝜑𝐾 ∈ ℂ)
415, 6, 7dvcl 14919 . . . . . . 7 ((𝜑𝐶(𝑆 D 𝐺)𝐿) → 𝐿 ∈ ℂ)
421, 41mpdan 421 . . . . . 6 (𝜑𝐿 ∈ ℂ)
4340, 42opelxpd 4696 . . . . 5 (𝜑 → ⟨𝐾, 𝐿⟩ ∈ (ℂ × ℂ))
4434toponunii 14253 . . . . . 6 (ℂ × ℂ) = (𝐽 ×t 𝐽)
4544cncnpi 14464 . . . . 5 (( + ∈ ((𝐽 ×t 𝐽) Cn 𝐽) ∧ ⟨𝐾, 𝐿⟩ ∈ (ℂ × ℂ)) → + ∈ (((𝐽 ×t 𝐽) CnP 𝐽)‘⟨𝐾, 𝐿⟩))
4638, 43, 45sylancr 414 . . . 4 (𝜑 → + ∈ (((𝐽 ×t 𝐽) CnP 𝐽)‘⟨𝐾, 𝐿⟩))
4730, 31, 32, 32, 3, 35, 36, 37, 46limccnp2cntop 14913 . . 3 (𝜑 → (𝐾 + 𝐿) ∈ ((𝑧 ∈ {𝑤𝑋𝑤 # 𝐶} ↦ ((((𝐹𝑧) − (𝐹𝐶)) / (𝑧𝐶)) + (((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶)))) lim 𝐶))
48 elrabi 2917 . . . . . . . . . . 11 (𝑧 ∈ {𝑤𝑋𝑤 # 𝐶} → 𝑧𝑋)
4948adantl 277 . . . . . . . . . 10 ((𝜑𝑧 ∈ {𝑤𝑋𝑤 # 𝐶}) → 𝑧𝑋)
5011ffnd 5408 . . . . . . . . . . . 12 (𝜑𝐹 Fn 𝑋)
5150adantr 276 . . . . . . . . . . 11 ((𝜑𝑧 ∈ {𝑤𝑋𝑤 # 𝐶}) → 𝐹 Fn 𝑋)
526ffnd 5408 . . . . . . . . . . . 12 (𝜑𝐺 Fn 𝑋)
5352adantr 276 . . . . . . . . . . 11 ((𝜑𝑧 ∈ {𝑤𝑋𝑤 # 𝐶}) → 𝐺 Fn 𝑋)
54 cnex 8003 . . . . . . . . . . . . 13 ℂ ∈ V
55 ssexg 4172 . . . . . . . . . . . . 13 ((𝑋 ⊆ ℂ ∧ ℂ ∈ V) → 𝑋 ∈ V)
5612, 54, 55sylancl 413 . . . . . . . . . . . 12 (𝜑𝑋 ∈ V)
5756adantr 276 . . . . . . . . . . 11 ((𝜑𝑧 ∈ {𝑤𝑋𝑤 # 𝐶}) → 𝑋 ∈ V)
58 inidm 3372 . . . . . . . . . . 11 (𝑋𝑋) = 𝑋
59 eqidd 2197 . . . . . . . . . . 11 (((𝜑𝑧 ∈ {𝑤𝑋𝑤 # 𝐶}) ∧ 𝑧𝑋) → (𝐹𝑧) = (𝐹𝑧))
60 eqidd 2197 . . . . . . . . . . 11 (((𝜑𝑧 ∈ {𝑤𝑋𝑤 # 𝐶}) ∧ 𝑧𝑋) → (𝐺𝑧) = (𝐺𝑧))
6111adantr 276 . . . . . . . . . . . . 13 ((𝜑𝑧 ∈ {𝑤𝑋𝑤 # 𝐶}) → 𝐹:𝑋⟶ℂ)
6261ffvelcdmda 5697 . . . . . . . . . . . 12 (((𝜑𝑧 ∈ {𝑤𝑋𝑤 # 𝐶}) ∧ 𝑧𝑋) → (𝐹𝑧) ∈ ℂ)
636adantr 276 . . . . . . . . . . . . 13 ((𝜑𝑧 ∈ {𝑤𝑋𝑤 # 𝐶}) → 𝐺:𝑋⟶ℂ)
6463ffvelcdmda 5697 . . . . . . . . . . . 12 (((𝜑𝑧 ∈ {𝑤𝑋𝑤 # 𝐶}) ∧ 𝑧𝑋) → (𝐺𝑧) ∈ ℂ)
6562, 64addcld 8046 . . . . . . . . . . 11 (((𝜑𝑧 ∈ {𝑤𝑋𝑤 # 𝐶}) ∧ 𝑧𝑋) → ((𝐹𝑧) + (𝐺𝑧)) ∈ ℂ)
6651, 53, 57, 57, 58, 59, 60, 65ofvalg 6145 . . . . . . . . . 10 (((𝜑𝑧 ∈ {𝑤𝑋𝑤 # 𝐶}) ∧ 𝑧𝑋) → ((𝐹𝑓 + 𝐺)‘𝑧) = ((𝐹𝑧) + (𝐺𝑧)))
6749, 66mpdan 421 . . . . . . . . 9 ((𝜑𝑧 ∈ {𝑤𝑋𝑤 # 𝐶}) → ((𝐹𝑓 + 𝐺)‘𝑧) = ((𝐹𝑧) + (𝐺𝑧)))
68 eqidd 2197 . . . . . . . . . . 11 (((𝜑𝑧 ∈ {𝑤𝑋𝑤 # 𝐶}) ∧ 𝐶𝑋) → (𝐹𝐶) = (𝐹𝐶))
69 eqidd 2197 . . . . . . . . . . 11 (((𝜑𝑧 ∈ {𝑤𝑋𝑤 # 𝐶}) ∧ 𝐶𝑋) → (𝐺𝐶) = (𝐺𝐶))
7061ffvelcdmda 5697 . . . . . . . . . . . 12 (((𝜑𝑧 ∈ {𝑤𝑋𝑤 # 𝐶}) ∧ 𝐶𝑋) → (𝐹𝐶) ∈ ℂ)
7163ffvelcdmda 5697 . . . . . . . . . . . 12 (((𝜑𝑧 ∈ {𝑤𝑋𝑤 # 𝐶}) ∧ 𝐶𝑋) → (𝐺𝐶) ∈ ℂ)
7270, 71addcld 8046 . . . . . . . . . . 11 (((𝜑𝑧 ∈ {𝑤𝑋𝑤 # 𝐶}) ∧ 𝐶𝑋) → ((𝐹𝐶) + (𝐺𝐶)) ∈ ℂ)
7351, 53, 57, 57, 58, 68, 69, 72ofvalg 6145 . . . . . . . . . 10 (((𝜑𝑧 ∈ {𝑤𝑋𝑤 # 𝐶}) ∧ 𝐶𝑋) → ((𝐹𝑓 + 𝐺)‘𝐶) = ((𝐹𝐶) + (𝐺𝐶)))
7429, 73mpidan 423 . . . . . . . . 9 ((𝜑𝑧 ∈ {𝑤𝑋𝑤 # 𝐶}) → ((𝐹𝑓 + 𝐺)‘𝐶) = ((𝐹𝐶) + (𝐺𝐶)))
7567, 74oveq12d 5940 . . . . . . . 8 ((𝜑𝑧 ∈ {𝑤𝑋𝑤 # 𝐶}) → (((𝐹𝑓 + 𝐺)‘𝑧) − ((𝐹𝑓 + 𝐺)‘𝐶)) = (((𝐹𝑧) + (𝐺𝑧)) − ((𝐹𝐶) + (𝐺𝐶))))
76 ffvelcdm 5695 . . . . . . . . . 10 ((𝐹:𝑋⟶ℂ ∧ 𝑧𝑋) → (𝐹𝑧) ∈ ℂ)
7711, 48, 76syl2an 289 . . . . . . . . 9 ((𝜑𝑧 ∈ {𝑤𝑋𝑤 # 𝐶}) → (𝐹𝑧) ∈ ℂ)
7863, 49ffvelcdmd 5698 . . . . . . . . 9 ((𝜑𝑧 ∈ {𝑤𝑋𝑤 # 𝐶}) → (𝐺𝑧) ∈ ℂ)
7911, 29ffvelcdmd 5698 . . . . . . . . . 10 (𝜑 → (𝐹𝐶) ∈ ℂ)
8079adantr 276 . . . . . . . . 9 ((𝜑𝑧 ∈ {𝑤𝑋𝑤 # 𝐶}) → (𝐹𝐶) ∈ ℂ)
816, 29ffvelcdmd 5698 . . . . . . . . . 10 (𝜑 → (𝐺𝐶) ∈ ℂ)
8281adantr 276 . . . . . . . . 9 ((𝜑𝑧 ∈ {𝑤𝑋𝑤 # 𝐶}) → (𝐺𝐶) ∈ ℂ)
8377, 78, 80, 82addsub4d 8384 . . . . . . . 8 ((𝜑𝑧 ∈ {𝑤𝑋𝑤 # 𝐶}) → (((𝐹𝑧) + (𝐺𝑧)) − ((𝐹𝐶) + (𝐺𝐶))) = (((𝐹𝑧) − (𝐹𝐶)) + ((𝐺𝑧) − (𝐺𝐶))))
8475, 83eqtrd 2229 . . . . . . 7 ((𝜑𝑧 ∈ {𝑤𝑋𝑤 # 𝐶}) → (((𝐹𝑓 + 𝐺)‘𝑧) − ((𝐹𝑓 + 𝐺)‘𝐶)) = (((𝐹𝑧) − (𝐹𝐶)) + ((𝐺𝑧) − (𝐺𝐶))))
8584oveq1d 5937 . . . . . 6 ((𝜑𝑧 ∈ {𝑤𝑋𝑤 # 𝐶}) → ((((𝐹𝑓 + 𝐺)‘𝑧) − ((𝐹𝑓 + 𝐺)‘𝐶)) / (𝑧𝐶)) = ((((𝐹𝑧) − (𝐹𝐶)) + ((𝐺𝑧) − (𝐺𝐶))) / (𝑧𝐶)))
8661, 49ffvelcdmd 5698 . . . . . . . 8 ((𝜑𝑧 ∈ {𝑤𝑋𝑤 # 𝐶}) → (𝐹𝑧) ∈ ℂ)
8786, 80subcld 8337 . . . . . . 7 ((𝜑𝑧 ∈ {𝑤𝑋𝑤 # 𝐶}) → ((𝐹𝑧) − (𝐹𝐶)) ∈ ℂ)
8878, 82subcld 8337 . . . . . . 7 ((𝜑𝑧 ∈ {𝑤𝑋𝑤 # 𝐶}) → ((𝐺𝑧) − (𝐺𝐶)) ∈ ℂ)
89 ssrab2 3268 . . . . . . . . . 10 {𝑤𝑋𝑤 # 𝐶} ⊆ 𝑋
9089, 12sstrid 3194 . . . . . . . . 9 (𝜑 → {𝑤𝑋𝑤 # 𝐶} ⊆ ℂ)
9190sselda 3183 . . . . . . . 8 ((𝜑𝑧 ∈ {𝑤𝑋𝑤 # 𝐶}) → 𝑧 ∈ ℂ)
9212, 29sseldd 3184 . . . . . . . . 9 (𝜑𝐶 ∈ ℂ)
9392adantr 276 . . . . . . . 8 ((𝜑𝑧 ∈ {𝑤𝑋𝑤 # 𝐶}) → 𝐶 ∈ ℂ)
9491, 93subcld 8337 . . . . . . 7 ((𝜑𝑧 ∈ {𝑤𝑋𝑤 # 𝐶}) → (𝑧𝐶) ∈ ℂ)
95 breq1 4036 . . . . . . . . . . 11 (𝑤 = 𝑧 → (𝑤 # 𝐶𝑧 # 𝐶))
9695elrab 2920 . . . . . . . . . 10 (𝑧 ∈ {𝑤𝑋𝑤 # 𝐶} ↔ (𝑧𝑋𝑧 # 𝐶))
9796simprbi 275 . . . . . . . . 9 (𝑧 ∈ {𝑤𝑋𝑤 # 𝐶} → 𝑧 # 𝐶)
9897adantl 277 . . . . . . . 8 ((𝜑𝑧 ∈ {𝑤𝑋𝑤 # 𝐶}) → 𝑧 # 𝐶)
9991, 93, 98subap0d 8671 . . . . . . 7 ((𝜑𝑧 ∈ {𝑤𝑋𝑤 # 𝐶}) → (𝑧𝐶) # 0)
10087, 88, 94, 99divdirapd 8856 . . . . . 6 ((𝜑𝑧 ∈ {𝑤𝑋𝑤 # 𝐶}) → ((((𝐹𝑧) − (𝐹𝐶)) + ((𝐺𝑧) − (𝐺𝐶))) / (𝑧𝐶)) = ((((𝐹𝑧) − (𝐹𝐶)) / (𝑧𝐶)) + (((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶))))
10185, 100eqtrd 2229 . . . . 5 ((𝜑𝑧 ∈ {𝑤𝑋𝑤 # 𝐶}) → ((((𝐹𝑓 + 𝐺)‘𝑧) − ((𝐹𝑓 + 𝐺)‘𝐶)) / (𝑧𝐶)) = ((((𝐹𝑧) − (𝐹𝐶)) / (𝑧𝐶)) + (((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶))))
102101mpteq2dva 4123 . . . 4 (𝜑 → (𝑧 ∈ {𝑤𝑋𝑤 # 𝐶} ↦ ((((𝐹𝑓 + 𝐺)‘𝑧) − ((𝐹𝑓 + 𝐺)‘𝐶)) / (𝑧𝐶))) = (𝑧 ∈ {𝑤𝑋𝑤 # 𝐶} ↦ ((((𝐹𝑧) − (𝐹𝐶)) / (𝑧𝐶)) + (((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶)))))
103102oveq1d 5937 . . 3 (𝜑 → ((𝑧 ∈ {𝑤𝑋𝑤 # 𝐶} ↦ ((((𝐹𝑓 + 𝐺)‘𝑧) − ((𝐹𝑓 + 𝐺)‘𝐶)) / (𝑧𝐶))) lim 𝐶) = ((𝑧 ∈ {𝑤𝑋𝑤 # 𝐶} ↦ ((((𝐹𝑧) − (𝐹𝐶)) / (𝑧𝐶)) + (((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶)))) lim 𝐶))
10447, 103eleqtrrd 2276 . 2 (𝜑 → (𝐾 + 𝐿) ∈ ((𝑧 ∈ {𝑤𝑋𝑤 # 𝐶} ↦ ((((𝐹𝑓 + 𝐺)‘𝑧) − ((𝐹𝑓 + 𝐺)‘𝐶)) / (𝑧𝐶))) lim 𝐶))
105 eqid 2196 . . 3 (𝑧 ∈ {𝑤𝑋𝑤 # 𝐶} ↦ ((((𝐹𝑓 + 𝐺)‘𝑧) − ((𝐹𝑓 + 𝐺)‘𝐶)) / (𝑧𝐶))) = (𝑧 ∈ {𝑤𝑋𝑤 # 𝐶} ↦ ((((𝐹𝑓 + 𝐺)‘𝑧) − ((𝐹𝑓 + 𝐺)‘𝐶)) / (𝑧𝐶)))
106 addcl 8004 . . . . 5 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 + 𝑦) ∈ ℂ)
107106adantl 277 . . . 4 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → (𝑥 + 𝑦) ∈ ℂ)
108107, 11, 6, 56, 56, 58off 6148 . . 3 (𝜑 → (𝐹𝑓 + 𝐺):𝑋⟶ℂ)
1092, 3, 105, 5, 108, 7eldvap 14918 . 2 (𝜑 → (𝐶(𝑆 D (𝐹𝑓 + 𝐺))(𝐾 + 𝐿) ↔ (𝐶 ∈ ((int‘(𝐽t 𝑆))‘𝑋) ∧ (𝐾 + 𝐿) ∈ ((𝑧 ∈ {𝑤𝑋𝑤 # 𝐶} ↦ ((((𝐹𝑓 + 𝐺)‘𝑧) − ((𝐹𝑓 + 𝐺)‘𝐶)) / (𝑧𝐶))) lim 𝐶))))
11010, 104, 109mpbir2and 946 1 (𝜑𝐶(𝑆 D (𝐹𝑓 + 𝐺))(𝐾 + 𝐿))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2167  {crab 2479  Vcvv 2763  wss 3157  cop 3625   cuni 3839   class class class wbr 4033  cmpt 4094   × cxp 4661  ccom 4667   Fn wfn 5253  wf 5254  cfv 5258  (class class class)co 5922  𝑓 cof 6133  cc 7877   + caddc 7882  cmin 8197   # cap 8608   / cdiv 8699  abscabs 11162  t crest 12910  MetOpencmopn 14097  Topctop 14233  TopOnctopon 14246  intcnt 14329   Cn ccn 14421   CnP ccnp 14422   ×t ctx 14488   lim climc 14890   D cdv 14891
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-mulrcl 7978  ax-addcom 7979  ax-mulcom 7980  ax-addass 7981  ax-mulass 7982  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-1rid 7986  ax-0id 7987  ax-rnegex 7988  ax-precex 7989  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-apti 7994  ax-pre-ltadd 7995  ax-pre-mulgt0 7996  ax-pre-mulext 7997  ax-arch 7998  ax-caucvg 7999  ax-addf 8001
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-if 3562  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-po 4331  df-iso 4332  df-iord 4401  df-on 4403  df-ilim 4404  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-isom 5267  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-of 6135  df-1st 6198  df-2nd 6199  df-recs 6363  df-frec 6449  df-map 6709  df-pm 6710  df-sup 7050  df-inf 7051  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-reap 8602  df-ap 8609  df-div 8700  df-inn 8991  df-2 9049  df-3 9050  df-4 9051  df-n0 9250  df-z 9327  df-uz 9602  df-q 9694  df-rp 9729  df-xneg 9847  df-xadd 9848  df-seqfrec 10540  df-exp 10631  df-cj 11007  df-re 11008  df-im 11009  df-rsqrt 11163  df-abs 11164  df-rest 12912  df-topgen 12931  df-psmet 14099  df-xmet 14100  df-met 14101  df-bl 14102  df-mopn 14103  df-top 14234  df-topon 14247  df-bases 14279  df-ntr 14332  df-cn 14424  df-cnp 14425  df-tx 14489  df-limced 14892  df-dvap 14893
This theorem is referenced by:  dvaddxx  14939  dviaddf  14941
  Copyright terms: Public domain W3C validator