Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > iprodap | GIF version |
Description: Series product with an upper integer index set (i.e. an infinite product.) (Contributed by Scott Fenton, 5-Dec-2017.) |
Ref | Expression |
---|---|
zprod.1 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
zprod.2 | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
zproddc.3 | ⊢ (𝜑 → ∃𝑛 ∈ 𝑍 ∃𝑦(𝑦 # 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦)) |
iprod.4 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = 𝐵) |
iprod.5 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐵 ∈ ℂ) |
Ref | Expression |
---|---|
iprodap | ⊢ (𝜑 → ∏𝑘 ∈ 𝑍 𝐵 = ( ⇝ ‘seq𝑀( · , 𝐹))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zprod.1 | . 2 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
2 | zprod.2 | . 2 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
3 | zproddc.3 | . 2 ⊢ (𝜑 → ∃𝑛 ∈ 𝑍 ∃𝑦(𝑦 # 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦)) | |
4 | ssidd 3149 | . 2 ⊢ (𝜑 → 𝑍 ⊆ 𝑍) | |
5 | orc 702 | . . . . 5 ⊢ (𝑗 ∈ 𝑍 → (𝑗 ∈ 𝑍 ∨ ¬ 𝑗 ∈ 𝑍)) | |
6 | 5 | adantl 275 | . . . 4 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (𝑗 ∈ 𝑍 ∨ ¬ 𝑗 ∈ 𝑍)) |
7 | df-dc 821 | . . . 4 ⊢ (DECID 𝑗 ∈ 𝑍 ↔ (𝑗 ∈ 𝑍 ∨ ¬ 𝑗 ∈ 𝑍)) | |
8 | 6, 7 | sylibr 133 | . . 3 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → DECID 𝑗 ∈ 𝑍) |
9 | 8 | ralrimiva 2530 | . 2 ⊢ (𝜑 → ∀𝑗 ∈ 𝑍 DECID 𝑗 ∈ 𝑍) |
10 | iprod.4 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = 𝐵) | |
11 | iftrue 3510 | . . . 4 ⊢ (𝑘 ∈ 𝑍 → if(𝑘 ∈ 𝑍, 𝐵, 1) = 𝐵) | |
12 | 11 | adantl 275 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → if(𝑘 ∈ 𝑍, 𝐵, 1) = 𝐵) |
13 | 10, 12 | eqtr4d 2193 | . 2 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = if(𝑘 ∈ 𝑍, 𝐵, 1)) |
14 | iprod.5 | . 2 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐵 ∈ ℂ) | |
15 | 1, 2, 3, 4, 9, 13, 14 | zproddc 11469 | 1 ⊢ (𝜑 → ∏𝑘 ∈ 𝑍 𝐵 = ( ⇝ ‘seq𝑀( · , 𝐹))) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 103 ∨ wo 698 DECID wdc 820 = wceq 1335 ∃wex 1472 ∈ wcel 2128 ∃wrex 2436 ifcif 3505 class class class wbr 3965 ‘cfv 5169 ℂcc 7724 0cc0 7726 1c1 7727 · cmul 7731 # cap 8450 ℤcz 9161 ℤ≥cuz 9433 seqcseq 10337 ⇝ cli 11168 ∏cprod 11440 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-13 2130 ax-14 2131 ax-ext 2139 ax-coll 4079 ax-sep 4082 ax-nul 4090 ax-pow 4135 ax-pr 4169 ax-un 4393 ax-setind 4495 ax-iinf 4546 ax-cnex 7817 ax-resscn 7818 ax-1cn 7819 ax-1re 7820 ax-icn 7821 ax-addcl 7822 ax-addrcl 7823 ax-mulcl 7824 ax-mulrcl 7825 ax-addcom 7826 ax-mulcom 7827 ax-addass 7828 ax-mulass 7829 ax-distr 7830 ax-i2m1 7831 ax-0lt1 7832 ax-1rid 7833 ax-0id 7834 ax-rnegex 7835 ax-precex 7836 ax-cnre 7837 ax-pre-ltirr 7838 ax-pre-ltwlin 7839 ax-pre-lttrn 7840 ax-pre-apti 7841 ax-pre-ltadd 7842 ax-pre-mulgt0 7843 ax-pre-mulext 7844 |
This theorem depends on definitions: df-bi 116 df-dc 821 df-3or 964 df-3an 965 df-tru 1338 df-fal 1341 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ne 2328 df-nel 2423 df-ral 2440 df-rex 2441 df-reu 2442 df-rmo 2443 df-rab 2444 df-v 2714 df-sbc 2938 df-csb 3032 df-dif 3104 df-un 3106 df-in 3108 df-ss 3115 df-nul 3395 df-if 3506 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 df-uni 3773 df-int 3808 df-iun 3851 df-br 3966 df-opab 4026 df-mpt 4027 df-tr 4063 df-id 4253 df-po 4256 df-iso 4257 df-iord 4326 df-on 4328 df-ilim 4329 df-suc 4331 df-iom 4549 df-xp 4591 df-rel 4592 df-cnv 4593 df-co 4594 df-dm 4595 df-rn 4596 df-res 4597 df-ima 4598 df-iota 5134 df-fun 5171 df-fn 5172 df-f 5173 df-f1 5174 df-fo 5175 df-f1o 5176 df-fv 5177 df-isom 5178 df-riota 5777 df-ov 5824 df-oprab 5825 df-mpo 5826 df-1st 6085 df-2nd 6086 df-recs 6249 df-irdg 6314 df-frec 6335 df-1o 6360 df-oadd 6364 df-er 6477 df-en 6683 df-dom 6684 df-fin 6685 df-pnf 7908 df-mnf 7909 df-xr 7910 df-ltxr 7911 df-le 7912 df-sub 8042 df-neg 8043 df-reap 8444 df-ap 8451 df-div 8540 df-inn 8828 df-2 8886 df-n0 9085 df-z 9162 df-uz 9434 df-q 9522 df-rp 9554 df-fz 9906 df-fzo 10035 df-seqfrec 10338 df-exp 10412 df-ihash 10643 df-cj 10735 df-rsqrt 10891 df-abs 10892 df-clim 11169 df-proddc 11441 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |