![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > iprodap | GIF version |
Description: Series product with an upper integer index set (i.e. an infinite product.) (Contributed by Scott Fenton, 5-Dec-2017.) |
Ref | Expression |
---|---|
zprod.1 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
zprod.2 | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
zproddc.3 | ⊢ (𝜑 → ∃𝑛 ∈ 𝑍 ∃𝑦(𝑦 # 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦)) |
iprod.4 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = 𝐵) |
iprod.5 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐵 ∈ ℂ) |
Ref | Expression |
---|---|
iprodap | ⊢ (𝜑 → ∏𝑘 ∈ 𝑍 𝐵 = ( ⇝ ‘seq𝑀( · , 𝐹))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zprod.1 | . 2 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
2 | zprod.2 | . 2 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
3 | zproddc.3 | . 2 ⊢ (𝜑 → ∃𝑛 ∈ 𝑍 ∃𝑦(𝑦 # 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦)) | |
4 | ssidd 3176 | . 2 ⊢ (𝜑 → 𝑍 ⊆ 𝑍) | |
5 | orc 712 | . . . . 5 ⊢ (𝑗 ∈ 𝑍 → (𝑗 ∈ 𝑍 ∨ ¬ 𝑗 ∈ 𝑍)) | |
6 | 5 | adantl 277 | . . . 4 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (𝑗 ∈ 𝑍 ∨ ¬ 𝑗 ∈ 𝑍)) |
7 | df-dc 835 | . . . 4 ⊢ (DECID 𝑗 ∈ 𝑍 ↔ (𝑗 ∈ 𝑍 ∨ ¬ 𝑗 ∈ 𝑍)) | |
8 | 6, 7 | sylibr 134 | . . 3 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → DECID 𝑗 ∈ 𝑍) |
9 | 8 | ralrimiva 2550 | . 2 ⊢ (𝜑 → ∀𝑗 ∈ 𝑍 DECID 𝑗 ∈ 𝑍) |
10 | iprod.4 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = 𝐵) | |
11 | iftrue 3539 | . . . 4 ⊢ (𝑘 ∈ 𝑍 → if(𝑘 ∈ 𝑍, 𝐵, 1) = 𝐵) | |
12 | 11 | adantl 277 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → if(𝑘 ∈ 𝑍, 𝐵, 1) = 𝐵) |
13 | 10, 12 | eqtr4d 2213 | . 2 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = if(𝑘 ∈ 𝑍, 𝐵, 1)) |
14 | iprod.5 | . 2 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐵 ∈ ℂ) | |
15 | 1, 2, 3, 4, 9, 13, 14 | zproddc 11571 | 1 ⊢ (𝜑 → ∏𝑘 ∈ 𝑍 𝐵 = ( ⇝ ‘seq𝑀( · , 𝐹))) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ∨ wo 708 DECID wdc 834 = wceq 1353 ∃wex 1492 ∈ wcel 2148 ∃wrex 2456 ifcif 3534 class class class wbr 4000 ‘cfv 5212 ℂcc 7800 0cc0 7802 1c1 7803 · cmul 7807 # cap 8528 ℤcz 9242 ℤ≥cuz 9517 seqcseq 10431 ⇝ cli 11270 ∏cprod 11542 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-coll 4115 ax-sep 4118 ax-nul 4126 ax-pow 4171 ax-pr 4206 ax-un 4430 ax-setind 4533 ax-iinf 4584 ax-cnex 7893 ax-resscn 7894 ax-1cn 7895 ax-1re 7896 ax-icn 7897 ax-addcl 7898 ax-addrcl 7899 ax-mulcl 7900 ax-mulrcl 7901 ax-addcom 7902 ax-mulcom 7903 ax-addass 7904 ax-mulass 7905 ax-distr 7906 ax-i2m1 7907 ax-0lt1 7908 ax-1rid 7909 ax-0id 7910 ax-rnegex 7911 ax-precex 7912 ax-cnre 7913 ax-pre-ltirr 7914 ax-pre-ltwlin 7915 ax-pre-lttrn 7916 ax-pre-apti 7917 ax-pre-ltadd 7918 ax-pre-mulgt0 7919 ax-pre-mulext 7920 |
This theorem depends on definitions: df-bi 117 df-dc 835 df-3or 979 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-nel 2443 df-ral 2460 df-rex 2461 df-reu 2462 df-rmo 2463 df-rab 2464 df-v 2739 df-sbc 2963 df-csb 3058 df-dif 3131 df-un 3133 df-in 3135 df-ss 3142 df-nul 3423 df-if 3535 df-pw 3576 df-sn 3597 df-pr 3598 df-op 3600 df-uni 3808 df-int 3843 df-iun 3886 df-br 4001 df-opab 4062 df-mpt 4063 df-tr 4099 df-id 4290 df-po 4293 df-iso 4294 df-iord 4363 df-on 4365 df-ilim 4366 df-suc 4368 df-iom 4587 df-xp 4629 df-rel 4630 df-cnv 4631 df-co 4632 df-dm 4633 df-rn 4634 df-res 4635 df-ima 4636 df-iota 5174 df-fun 5214 df-fn 5215 df-f 5216 df-f1 5217 df-fo 5218 df-f1o 5219 df-fv 5220 df-isom 5221 df-riota 5825 df-ov 5872 df-oprab 5873 df-mpo 5874 df-1st 6135 df-2nd 6136 df-recs 6300 df-irdg 6365 df-frec 6386 df-1o 6411 df-oadd 6415 df-er 6529 df-en 6735 df-dom 6736 df-fin 6737 df-pnf 7984 df-mnf 7985 df-xr 7986 df-ltxr 7987 df-le 7988 df-sub 8120 df-neg 8121 df-reap 8522 df-ap 8529 df-div 8619 df-inn 8909 df-2 8967 df-n0 9166 df-z 9243 df-uz 9518 df-q 9609 df-rp 9641 df-fz 9996 df-fzo 10129 df-seqfrec 10432 df-exp 10506 df-ihash 10740 df-cj 10835 df-rsqrt 10991 df-abs 10992 df-clim 11271 df-proddc 11543 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |