ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ringressid GIF version

Theorem ringressid 13743
Description: A ring restricted to its base set is a ring. It will usually be the original ring exactly, of course, but to show that needs additional conditions such as those in strressid 12822. (Contributed by Jim Kingdon, 28-Feb-2025.)
Hypothesis
Ref Expression
ringressid.b 𝐵 = (Base‘𝐺)
Assertion
Ref Expression
ringressid (𝐺 ∈ Ring → (𝐺s 𝐵) ∈ Ring)

Proof of Theorem ringressid
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqidd 2205 . . 3 (𝐺 ∈ Ring → (𝐺s 𝐵) = (𝐺s 𝐵))
2 ringressid.b . . . 4 𝐵 = (Base‘𝐺)
32a1i 9 . . 3 (𝐺 ∈ Ring → 𝐵 = (Base‘𝐺))
4 id 19 . . 3 (𝐺 ∈ Ring → 𝐺 ∈ Ring)
5 ssidd 3213 . . 3 (𝐺 ∈ Ring → 𝐵𝐵)
61, 3, 4, 5ressbas2d 12819 . 2 (𝐺 ∈ Ring → 𝐵 = (Base‘(𝐺s 𝐵)))
7 eqidd 2205 . . 3 (𝐺 ∈ Ring → (+g𝐺) = (+g𝐺))
8 basfn 12809 . . . . 5 Base Fn V
9 elex 2782 . . . . 5 (𝐺 ∈ Ring → 𝐺 ∈ V)
10 funfvex 5587 . . . . . 6 ((Fun Base ∧ 𝐺 ∈ dom Base) → (Base‘𝐺) ∈ V)
1110funfni 5370 . . . . 5 ((Base Fn V ∧ 𝐺 ∈ V) → (Base‘𝐺) ∈ V)
128, 9, 11sylancr 414 . . . 4 (𝐺 ∈ Ring → (Base‘𝐺) ∈ V)
132, 12eqeltrid 2291 . . 3 (𝐺 ∈ Ring → 𝐵 ∈ V)
141, 7, 13, 4ressplusgd 12879 . 2 (𝐺 ∈ Ring → (+g𝐺) = (+g‘(𝐺s 𝐵)))
15 eqid 2204 . . . 4 (𝐺s 𝐵) = (𝐺s 𝐵)
16 eqid 2204 . . . 4 (.r𝐺) = (.r𝐺)
1715, 16ressmulrg 12895 . . 3 ((𝐵 ∈ V ∧ 𝐺 ∈ Ring) → (.r𝐺) = (.r‘(𝐺s 𝐵)))
1813, 17mpancom 422 . 2 (𝐺 ∈ Ring → (.r𝐺) = (.r‘(𝐺s 𝐵)))
19 ringgrp 13681 . . 3 (𝐺 ∈ Ring → 𝐺 ∈ Grp)
202grpressid 13311 . . 3 (𝐺 ∈ Grp → (𝐺s 𝐵) ∈ Grp)
2119, 20syl 14 . 2 (𝐺 ∈ Ring → (𝐺s 𝐵) ∈ Grp)
222, 16ringcl 13693 . 2 ((𝐺 ∈ Ring ∧ 𝑥𝐵𝑦𝐵) → (𝑥(.r𝐺)𝑦) ∈ 𝐵)
232, 16ringass 13696 . 2 ((𝐺 ∈ Ring ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → ((𝑥(.r𝐺)𝑦)(.r𝐺)𝑧) = (𝑥(.r𝐺)(𝑦(.r𝐺)𝑧)))
24 eqid 2204 . . 3 (+g𝐺) = (+g𝐺)
252, 24, 16ringdi 13698 . 2 ((𝐺 ∈ Ring ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → (𝑥(.r𝐺)(𝑦(+g𝐺)𝑧)) = ((𝑥(.r𝐺)𝑦)(+g𝐺)(𝑥(.r𝐺)𝑧)))
262, 24, 16ringdir 13699 . 2 ((𝐺 ∈ Ring ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → ((𝑥(+g𝐺)𝑦)(.r𝐺)𝑧) = ((𝑥(.r𝐺)𝑧)(+g𝐺)(𝑦(.r𝐺)𝑧)))
27 eqid 2204 . . 3 (1r𝐺) = (1r𝐺)
282, 27ringidcl 13700 . 2 (𝐺 ∈ Ring → (1r𝐺) ∈ 𝐵)
292, 16, 27ringlidm 13703 . 2 ((𝐺 ∈ Ring ∧ 𝑥𝐵) → ((1r𝐺)(.r𝐺)𝑥) = 𝑥)
302, 16, 27ringridm 13704 . 2 ((𝐺 ∈ Ring ∧ 𝑥𝐵) → (𝑥(.r𝐺)(1r𝐺)) = 𝑥)
316, 14, 18, 21, 22, 23, 25, 26, 28, 29, 30isringd 13721 1 (𝐺 ∈ Ring → (𝐺s 𝐵) ∈ Ring)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1372  wcel 2175  Vcvv 2771   Fn wfn 5263  cfv 5268  (class class class)co 5934  Basecbs 12751  s cress 12752  +gcplusg 12828  .rcmulr 12829  Grpcgrp 13250  1rcur 13639  Ringcrg 13676
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-coll 4158  ax-sep 4161  ax-pow 4217  ax-pr 4252  ax-un 4478  ax-setind 4583  ax-cnex 7998  ax-resscn 7999  ax-1cn 8000  ax-1re 8001  ax-icn 8002  ax-addcl 8003  ax-addrcl 8004  ax-mulcl 8005  ax-addcom 8007  ax-addass 8009  ax-i2m1 8012  ax-0lt1 8013  ax-0id 8015  ax-rnegex 8016  ax-pre-ltirr 8019  ax-pre-lttrn 8021  ax-pre-ltadd 8023
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-nel 2471  df-ral 2488  df-rex 2489  df-reu 2490  df-rmo 2491  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-iun 3928  df-br 4044  df-opab 4105  df-mpt 4106  df-id 4338  df-xp 4679  df-rel 4680  df-cnv 4681  df-co 4682  df-dm 4683  df-rn 4684  df-res 4685  df-ima 4686  df-iota 5229  df-fun 5270  df-fn 5271  df-f 5272  df-f1 5273  df-fo 5274  df-f1o 5275  df-fv 5276  df-riota 5889  df-ov 5937  df-oprab 5938  df-mpo 5939  df-pnf 8091  df-mnf 8092  df-ltxr 8094  df-inn 9019  df-2 9077  df-3 9078  df-ndx 12754  df-slot 12755  df-base 12757  df-sets 12758  df-iress 12759  df-plusg 12841  df-mulr 12842  df-0g 13008  df-mgm 13106  df-sgrp 13152  df-mnd 13167  df-grp 13253  df-minusg 13254  df-mgp 13601  df-ur 13640  df-ring 13678
This theorem is referenced by:  subrgid  13903
  Copyright terms: Public domain W3C validator