ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ringressid GIF version

Theorem ringressid 13559
Description: A ring restricted to its base set is a ring. It will usually be the original ring exactly, of course, but to show that needs additional conditions such as those in strressid 12689. (Contributed by Jim Kingdon, 28-Feb-2025.)
Hypothesis
Ref Expression
ringressid.b 𝐵 = (Base‘𝐺)
Assertion
Ref Expression
ringressid (𝐺 ∈ Ring → (𝐺s 𝐵) ∈ Ring)

Proof of Theorem ringressid
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqidd 2194 . . 3 (𝐺 ∈ Ring → (𝐺s 𝐵) = (𝐺s 𝐵))
2 ringressid.b . . . 4 𝐵 = (Base‘𝐺)
32a1i 9 . . 3 (𝐺 ∈ Ring → 𝐵 = (Base‘𝐺))
4 id 19 . . 3 (𝐺 ∈ Ring → 𝐺 ∈ Ring)
5 ssidd 3200 . . 3 (𝐺 ∈ Ring → 𝐵𝐵)
61, 3, 4, 5ressbas2d 12686 . 2 (𝐺 ∈ Ring → 𝐵 = (Base‘(𝐺s 𝐵)))
7 eqidd 2194 . . 3 (𝐺 ∈ Ring → (+g𝐺) = (+g𝐺))
8 basfn 12676 . . . . 5 Base Fn V
9 elex 2771 . . . . 5 (𝐺 ∈ Ring → 𝐺 ∈ V)
10 funfvex 5571 . . . . . 6 ((Fun Base ∧ 𝐺 ∈ dom Base) → (Base‘𝐺) ∈ V)
1110funfni 5354 . . . . 5 ((Base Fn V ∧ 𝐺 ∈ V) → (Base‘𝐺) ∈ V)
128, 9, 11sylancr 414 . . . 4 (𝐺 ∈ Ring → (Base‘𝐺) ∈ V)
132, 12eqeltrid 2280 . . 3 (𝐺 ∈ Ring → 𝐵 ∈ V)
141, 7, 13, 4ressplusgd 12746 . 2 (𝐺 ∈ Ring → (+g𝐺) = (+g‘(𝐺s 𝐵)))
15 eqid 2193 . . . 4 (𝐺s 𝐵) = (𝐺s 𝐵)
16 eqid 2193 . . . 4 (.r𝐺) = (.r𝐺)
1715, 16ressmulrg 12762 . . 3 ((𝐵 ∈ V ∧ 𝐺 ∈ Ring) → (.r𝐺) = (.r‘(𝐺s 𝐵)))
1813, 17mpancom 422 . 2 (𝐺 ∈ Ring → (.r𝐺) = (.r‘(𝐺s 𝐵)))
19 ringgrp 13497 . . 3 (𝐺 ∈ Ring → 𝐺 ∈ Grp)
202grpressid 13133 . . 3 (𝐺 ∈ Grp → (𝐺s 𝐵) ∈ Grp)
2119, 20syl 14 . 2 (𝐺 ∈ Ring → (𝐺s 𝐵) ∈ Grp)
222, 16ringcl 13509 . 2 ((𝐺 ∈ Ring ∧ 𝑥𝐵𝑦𝐵) → (𝑥(.r𝐺)𝑦) ∈ 𝐵)
232, 16ringass 13512 . 2 ((𝐺 ∈ Ring ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → ((𝑥(.r𝐺)𝑦)(.r𝐺)𝑧) = (𝑥(.r𝐺)(𝑦(.r𝐺)𝑧)))
24 eqid 2193 . . 3 (+g𝐺) = (+g𝐺)
252, 24, 16ringdi 13514 . 2 ((𝐺 ∈ Ring ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → (𝑥(.r𝐺)(𝑦(+g𝐺)𝑧)) = ((𝑥(.r𝐺)𝑦)(+g𝐺)(𝑥(.r𝐺)𝑧)))
262, 24, 16ringdir 13515 . 2 ((𝐺 ∈ Ring ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → ((𝑥(+g𝐺)𝑦)(.r𝐺)𝑧) = ((𝑥(.r𝐺)𝑧)(+g𝐺)(𝑦(.r𝐺)𝑧)))
27 eqid 2193 . . 3 (1r𝐺) = (1r𝐺)
282, 27ringidcl 13516 . 2 (𝐺 ∈ Ring → (1r𝐺) ∈ 𝐵)
292, 16, 27ringlidm 13519 . 2 ((𝐺 ∈ Ring ∧ 𝑥𝐵) → ((1r𝐺)(.r𝐺)𝑥) = 𝑥)
302, 16, 27ringridm 13520 . 2 ((𝐺 ∈ Ring ∧ 𝑥𝐵) → (𝑥(.r𝐺)(1r𝐺)) = 𝑥)
316, 14, 18, 21, 22, 23, 25, 26, 28, 29, 30isringd 13537 1 (𝐺 ∈ Ring → (𝐺s 𝐵) ∈ Ring)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1364  wcel 2164  Vcvv 2760   Fn wfn 5249  cfv 5254  (class class class)co 5918  Basecbs 12618  s cress 12619  +gcplusg 12695  .rcmulr 12696  Grpcgrp 13072  1rcur 13455  Ringcrg 13492
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-addcom 7972  ax-addass 7974  ax-i2m1 7977  ax-0lt1 7978  ax-0id 7980  ax-rnegex 7981  ax-pre-ltirr 7984  ax-pre-lttrn 7986  ax-pre-ltadd 7988
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-pnf 8056  df-mnf 8057  df-ltxr 8059  df-inn 8983  df-2 9041  df-3 9042  df-ndx 12621  df-slot 12622  df-base 12624  df-sets 12625  df-iress 12626  df-plusg 12708  df-mulr 12709  df-0g 12869  df-mgm 12939  df-sgrp 12985  df-mnd 12998  df-grp 13075  df-minusg 13076  df-mgp 13417  df-ur 13456  df-ring 13494
This theorem is referenced by:  subrgid  13719
  Copyright terms: Public domain W3C validator