| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ringressid | GIF version | ||
| Description: A ring restricted to its base set is a ring. It will usually be the original ring exactly, of course, but to show that needs additional conditions such as those in strressid 12822. (Contributed by Jim Kingdon, 28-Feb-2025.) |
| Ref | Expression |
|---|---|
| ringressid.b | ⊢ 𝐵 = (Base‘𝐺) |
| Ref | Expression |
|---|---|
| ringressid | ⊢ (𝐺 ∈ Ring → (𝐺 ↾s 𝐵) ∈ Ring) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqidd 2205 | . . 3 ⊢ (𝐺 ∈ Ring → (𝐺 ↾s 𝐵) = (𝐺 ↾s 𝐵)) | |
| 2 | ringressid.b | . . . 4 ⊢ 𝐵 = (Base‘𝐺) | |
| 3 | 2 | a1i 9 | . . 3 ⊢ (𝐺 ∈ Ring → 𝐵 = (Base‘𝐺)) |
| 4 | id 19 | . . 3 ⊢ (𝐺 ∈ Ring → 𝐺 ∈ Ring) | |
| 5 | ssidd 3213 | . . 3 ⊢ (𝐺 ∈ Ring → 𝐵 ⊆ 𝐵) | |
| 6 | 1, 3, 4, 5 | ressbas2d 12819 | . 2 ⊢ (𝐺 ∈ Ring → 𝐵 = (Base‘(𝐺 ↾s 𝐵))) |
| 7 | eqidd 2205 | . . 3 ⊢ (𝐺 ∈ Ring → (+g‘𝐺) = (+g‘𝐺)) | |
| 8 | basfn 12809 | . . . . 5 ⊢ Base Fn V | |
| 9 | elex 2782 | . . . . 5 ⊢ (𝐺 ∈ Ring → 𝐺 ∈ V) | |
| 10 | funfvex 5587 | . . . . . 6 ⊢ ((Fun Base ∧ 𝐺 ∈ dom Base) → (Base‘𝐺) ∈ V) | |
| 11 | 10 | funfni 5370 | . . . . 5 ⊢ ((Base Fn V ∧ 𝐺 ∈ V) → (Base‘𝐺) ∈ V) |
| 12 | 8, 9, 11 | sylancr 414 | . . . 4 ⊢ (𝐺 ∈ Ring → (Base‘𝐺) ∈ V) |
| 13 | 2, 12 | eqeltrid 2291 | . . 3 ⊢ (𝐺 ∈ Ring → 𝐵 ∈ V) |
| 14 | 1, 7, 13, 4 | ressplusgd 12879 | . 2 ⊢ (𝐺 ∈ Ring → (+g‘𝐺) = (+g‘(𝐺 ↾s 𝐵))) |
| 15 | eqid 2204 | . . . 4 ⊢ (𝐺 ↾s 𝐵) = (𝐺 ↾s 𝐵) | |
| 16 | eqid 2204 | . . . 4 ⊢ (.r‘𝐺) = (.r‘𝐺) | |
| 17 | 15, 16 | ressmulrg 12895 | . . 3 ⊢ ((𝐵 ∈ V ∧ 𝐺 ∈ Ring) → (.r‘𝐺) = (.r‘(𝐺 ↾s 𝐵))) |
| 18 | 13, 17 | mpancom 422 | . 2 ⊢ (𝐺 ∈ Ring → (.r‘𝐺) = (.r‘(𝐺 ↾s 𝐵))) |
| 19 | ringgrp 13681 | . . 3 ⊢ (𝐺 ∈ Ring → 𝐺 ∈ Grp) | |
| 20 | 2 | grpressid 13311 | . . 3 ⊢ (𝐺 ∈ Grp → (𝐺 ↾s 𝐵) ∈ Grp) |
| 21 | 19, 20 | syl 14 | . 2 ⊢ (𝐺 ∈ Ring → (𝐺 ↾s 𝐵) ∈ Grp) |
| 22 | 2, 16 | ringcl 13693 | . 2 ⊢ ((𝐺 ∈ Ring ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥(.r‘𝐺)𝑦) ∈ 𝐵) |
| 23 | 2, 16 | ringass 13696 | . 2 ⊢ ((𝐺 ∈ Ring ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → ((𝑥(.r‘𝐺)𝑦)(.r‘𝐺)𝑧) = (𝑥(.r‘𝐺)(𝑦(.r‘𝐺)𝑧))) |
| 24 | eqid 2204 | . . 3 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
| 25 | 2, 24, 16 | ringdi 13698 | . 2 ⊢ ((𝐺 ∈ Ring ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → (𝑥(.r‘𝐺)(𝑦(+g‘𝐺)𝑧)) = ((𝑥(.r‘𝐺)𝑦)(+g‘𝐺)(𝑥(.r‘𝐺)𝑧))) |
| 26 | 2, 24, 16 | ringdir 13699 | . 2 ⊢ ((𝐺 ∈ Ring ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → ((𝑥(+g‘𝐺)𝑦)(.r‘𝐺)𝑧) = ((𝑥(.r‘𝐺)𝑧)(+g‘𝐺)(𝑦(.r‘𝐺)𝑧))) |
| 27 | eqid 2204 | . . 3 ⊢ (1r‘𝐺) = (1r‘𝐺) | |
| 28 | 2, 27 | ringidcl 13700 | . 2 ⊢ (𝐺 ∈ Ring → (1r‘𝐺) ∈ 𝐵) |
| 29 | 2, 16, 27 | ringlidm 13703 | . 2 ⊢ ((𝐺 ∈ Ring ∧ 𝑥 ∈ 𝐵) → ((1r‘𝐺)(.r‘𝐺)𝑥) = 𝑥) |
| 30 | 2, 16, 27 | ringridm 13704 | . 2 ⊢ ((𝐺 ∈ Ring ∧ 𝑥 ∈ 𝐵) → (𝑥(.r‘𝐺)(1r‘𝐺)) = 𝑥) |
| 31 | 6, 14, 18, 21, 22, 23, 25, 26, 28, 29, 30 | isringd 13721 | 1 ⊢ (𝐺 ∈ Ring → (𝐺 ↾s 𝐵) ∈ Ring) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1372 ∈ wcel 2175 Vcvv 2771 Fn wfn 5263 ‘cfv 5268 (class class class)co 5934 Basecbs 12751 ↾s cress 12752 +gcplusg 12828 .rcmulr 12829 Grpcgrp 13250 1rcur 13639 Ringcrg 13676 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-coll 4158 ax-sep 4161 ax-pow 4217 ax-pr 4252 ax-un 4478 ax-setind 4583 ax-cnex 7998 ax-resscn 7999 ax-1cn 8000 ax-1re 8001 ax-icn 8002 ax-addcl 8003 ax-addrcl 8004 ax-mulcl 8005 ax-addcom 8007 ax-addass 8009 ax-i2m1 8012 ax-0lt1 8013 ax-0id 8015 ax-rnegex 8016 ax-pre-ltirr 8019 ax-pre-lttrn 8021 ax-pre-ltadd 8023 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-nel 2471 df-ral 2488 df-rex 2489 df-reu 2490 df-rmo 2491 df-rab 2492 df-v 2773 df-sbc 2998 df-csb 3093 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-nul 3460 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-int 3885 df-iun 3928 df-br 4044 df-opab 4105 df-mpt 4106 df-id 4338 df-xp 4679 df-rel 4680 df-cnv 4681 df-co 4682 df-dm 4683 df-rn 4684 df-res 4685 df-ima 4686 df-iota 5229 df-fun 5270 df-fn 5271 df-f 5272 df-f1 5273 df-fo 5274 df-f1o 5275 df-fv 5276 df-riota 5889 df-ov 5937 df-oprab 5938 df-mpo 5939 df-pnf 8091 df-mnf 8092 df-ltxr 8094 df-inn 9019 df-2 9077 df-3 9078 df-ndx 12754 df-slot 12755 df-base 12757 df-sets 12758 df-iress 12759 df-plusg 12841 df-mulr 12842 df-0g 13008 df-mgm 13106 df-sgrp 13152 df-mnd 13167 df-grp 13253 df-minusg 13254 df-mgp 13601 df-ur 13640 df-ring 13678 |
| This theorem is referenced by: subrgid 13903 |
| Copyright terms: Public domain | W3C validator |