![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ringressid | GIF version |
Description: A ring restricted to its base set is a ring. It will usually be the original ring exactly, of course, but to show that needs additional conditions such as those in strressid 12533. (Contributed by Jim Kingdon, 28-Feb-2025.) |
Ref | Expression |
---|---|
ringressid.b | ⊢ 𝐵 = (Base‘𝐺) |
Ref | Expression |
---|---|
ringressid | ⊢ (𝐺 ∈ Ring → (𝐺 ↾s 𝐵) ∈ Ring) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqidd 2178 | . . 3 ⊢ (𝐺 ∈ Ring → (𝐺 ↾s 𝐵) = (𝐺 ↾s 𝐵)) | |
2 | ringressid.b | . . . 4 ⊢ 𝐵 = (Base‘𝐺) | |
3 | 2 | a1i 9 | . . 3 ⊢ (𝐺 ∈ Ring → 𝐵 = (Base‘𝐺)) |
4 | id 19 | . . 3 ⊢ (𝐺 ∈ Ring → 𝐺 ∈ Ring) | |
5 | ssidd 3178 | . . 3 ⊢ (𝐺 ∈ Ring → 𝐵 ⊆ 𝐵) | |
6 | 1, 3, 4, 5 | ressbas2d 12531 | . 2 ⊢ (𝐺 ∈ Ring → 𝐵 = (Base‘(𝐺 ↾s 𝐵))) |
7 | eqidd 2178 | . . 3 ⊢ (𝐺 ∈ Ring → (+g‘𝐺) = (+g‘𝐺)) | |
8 | basfn 12523 | . . . . 5 ⊢ Base Fn V | |
9 | elex 2750 | . . . . 5 ⊢ (𝐺 ∈ Ring → 𝐺 ∈ V) | |
10 | funfvex 5534 | . . . . . 6 ⊢ ((Fun Base ∧ 𝐺 ∈ dom Base) → (Base‘𝐺) ∈ V) | |
11 | 10 | funfni 5318 | . . . . 5 ⊢ ((Base Fn V ∧ 𝐺 ∈ V) → (Base‘𝐺) ∈ V) |
12 | 8, 9, 11 | sylancr 414 | . . . 4 ⊢ (𝐺 ∈ Ring → (Base‘𝐺) ∈ V) |
13 | 2, 12 | eqeltrid 2264 | . . 3 ⊢ (𝐺 ∈ Ring → 𝐵 ∈ V) |
14 | 1, 7, 13, 4 | ressplusgd 12590 | . 2 ⊢ (𝐺 ∈ Ring → (+g‘𝐺) = (+g‘(𝐺 ↾s 𝐵))) |
15 | eqid 2177 | . . . 4 ⊢ (𝐺 ↾s 𝐵) = (𝐺 ↾s 𝐵) | |
16 | eqid 2177 | . . . 4 ⊢ (.r‘𝐺) = (.r‘𝐺) | |
17 | 15, 16 | ressmulrg 12606 | . . 3 ⊢ ((𝐵 ∈ V ∧ 𝐺 ∈ Ring) → (.r‘𝐺) = (.r‘(𝐺 ↾s 𝐵))) |
18 | 13, 17 | mpancom 422 | . 2 ⊢ (𝐺 ∈ Ring → (.r‘𝐺) = (.r‘(𝐺 ↾s 𝐵))) |
19 | ringgrp 13195 | . . 3 ⊢ (𝐺 ∈ Ring → 𝐺 ∈ Grp) | |
20 | 2 | grpressid 12938 | . . 3 ⊢ (𝐺 ∈ Grp → (𝐺 ↾s 𝐵) ∈ Grp) |
21 | 19, 20 | syl 14 | . 2 ⊢ (𝐺 ∈ Ring → (𝐺 ↾s 𝐵) ∈ Grp) |
22 | 2, 16 | ringcl 13207 | . 2 ⊢ ((𝐺 ∈ Ring ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥(.r‘𝐺)𝑦) ∈ 𝐵) |
23 | 2, 16 | ringass 13210 | . 2 ⊢ ((𝐺 ∈ Ring ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → ((𝑥(.r‘𝐺)𝑦)(.r‘𝐺)𝑧) = (𝑥(.r‘𝐺)(𝑦(.r‘𝐺)𝑧))) |
24 | eqid 2177 | . . 3 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
25 | 2, 24, 16 | ringdi 13212 | . 2 ⊢ ((𝐺 ∈ Ring ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → (𝑥(.r‘𝐺)(𝑦(+g‘𝐺)𝑧)) = ((𝑥(.r‘𝐺)𝑦)(+g‘𝐺)(𝑥(.r‘𝐺)𝑧))) |
26 | 2, 24, 16 | ringdir 13213 | . 2 ⊢ ((𝐺 ∈ Ring ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → ((𝑥(+g‘𝐺)𝑦)(.r‘𝐺)𝑧) = ((𝑥(.r‘𝐺)𝑧)(+g‘𝐺)(𝑦(.r‘𝐺)𝑧))) |
27 | eqid 2177 | . . 3 ⊢ (1r‘𝐺) = (1r‘𝐺) | |
28 | 2, 27 | ringidcl 13214 | . 2 ⊢ (𝐺 ∈ Ring → (1r‘𝐺) ∈ 𝐵) |
29 | 2, 16, 27 | ringlidm 13217 | . 2 ⊢ ((𝐺 ∈ Ring ∧ 𝑥 ∈ 𝐵) → ((1r‘𝐺)(.r‘𝐺)𝑥) = 𝑥) |
30 | 2, 16, 27 | ringridm 13218 | . 2 ⊢ ((𝐺 ∈ Ring ∧ 𝑥 ∈ 𝐵) → (𝑥(.r‘𝐺)(1r‘𝐺)) = 𝑥) |
31 | 6, 14, 18, 21, 22, 23, 25, 26, 28, 29, 30 | isringd 13231 | 1 ⊢ (𝐺 ∈ Ring → (𝐺 ↾s 𝐵) ∈ Ring) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1353 ∈ wcel 2148 Vcvv 2739 Fn wfn 5213 ‘cfv 5218 (class class class)co 5878 Basecbs 12465 ↾s cress 12466 +gcplusg 12539 .rcmulr 12540 Grpcgrp 12884 1rcur 13153 Ringcrg 13190 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-coll 4120 ax-sep 4123 ax-pow 4176 ax-pr 4211 ax-un 4435 ax-setind 4538 ax-cnex 7905 ax-resscn 7906 ax-1cn 7907 ax-1re 7908 ax-icn 7909 ax-addcl 7910 ax-addrcl 7911 ax-mulcl 7912 ax-addcom 7914 ax-addass 7916 ax-i2m1 7919 ax-0lt1 7920 ax-0id 7922 ax-rnegex 7923 ax-pre-ltirr 7926 ax-pre-lttrn 7928 ax-pre-ltadd 7930 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-nel 2443 df-ral 2460 df-rex 2461 df-reu 2462 df-rmo 2463 df-rab 2464 df-v 2741 df-sbc 2965 df-csb 3060 df-dif 3133 df-un 3135 df-in 3137 df-ss 3144 df-nul 3425 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-int 3847 df-iun 3890 df-br 4006 df-opab 4067 df-mpt 4068 df-id 4295 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-rn 4639 df-res 4640 df-ima 4641 df-iota 5180 df-fun 5220 df-fn 5221 df-f 5222 df-f1 5223 df-fo 5224 df-f1o 5225 df-fv 5226 df-riota 5834 df-ov 5881 df-oprab 5882 df-mpo 5883 df-pnf 7997 df-mnf 7998 df-ltxr 8000 df-inn 8923 df-2 8981 df-3 8982 df-ndx 12468 df-slot 12469 df-base 12471 df-sets 12472 df-iress 12473 df-plusg 12552 df-mulr 12553 df-0g 12713 df-mgm 12782 df-sgrp 12815 df-mnd 12825 df-grp 12887 df-minusg 12888 df-mgp 13142 df-ur 13154 df-ring 13192 |
This theorem is referenced by: subrgid 13355 |
Copyright terms: Public domain | W3C validator |