| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mulgnn0cl | GIF version | ||
| Description: Closure of the group multiple (exponentiation) operation for a nonnegative multiplier in a monoid. (Contributed by Mario Carneiro, 11-Dec-2014.) |
| Ref | Expression |
|---|---|
| mulgnncl.b | ⊢ 𝐵 = (Base‘𝐺) |
| mulgnncl.t | ⊢ · = (.g‘𝐺) |
| Ref | Expression |
|---|---|
| mulgnn0cl | ⊢ ((𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵) → (𝑁 · 𝑋) ∈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mulgnncl.b | . 2 ⊢ 𝐵 = (Base‘𝐺) | |
| 2 | mulgnncl.t | . 2 ⊢ · = (.g‘𝐺) | |
| 3 | eqid 2206 | . 2 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
| 4 | id 19 | . 2 ⊢ (𝐺 ∈ Mnd → 𝐺 ∈ Mnd) | |
| 5 | ssidd 3218 | . 2 ⊢ (𝐺 ∈ Mnd → 𝐵 ⊆ 𝐵) | |
| 6 | 1, 3 | mndcl 13340 | . 2 ⊢ ((𝐺 ∈ Mnd ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥(+g‘𝐺)𝑦) ∈ 𝐵) |
| 7 | eqid 2206 | . 2 ⊢ (0g‘𝐺) = (0g‘𝐺) | |
| 8 | 1, 7 | mndidcl 13347 | . 2 ⊢ (𝐺 ∈ Mnd → (0g‘𝐺) ∈ 𝐵) |
| 9 | 1, 2, 3, 4, 5, 6, 7, 8 | mulgnn0subcl 13556 | 1 ⊢ ((𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵) → (𝑁 · 𝑋) ∈ 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ w3a 981 = wceq 1373 ∈ wcel 2177 ‘cfv 5285 (class class class)co 5962 ℕ0cn0 9325 Basecbs 12917 +gcplusg 12994 0gc0g 13173 Mndcmnd 13333 .gcmg 13540 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4170 ax-sep 4173 ax-nul 4181 ax-pow 4229 ax-pr 4264 ax-un 4493 ax-setind 4598 ax-iinf 4649 ax-cnex 8046 ax-resscn 8047 ax-1cn 8048 ax-1re 8049 ax-icn 8050 ax-addcl 8051 ax-addrcl 8052 ax-mulcl 8053 ax-addcom 8055 ax-addass 8057 ax-distr 8059 ax-i2m1 8060 ax-0lt1 8061 ax-0id 8063 ax-rnegex 8064 ax-cnre 8066 ax-pre-ltirr 8067 ax-pre-ltwlin 8068 ax-pre-lttrn 8069 ax-pre-ltadd 8071 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rmo 2493 df-rab 2494 df-v 2775 df-sbc 3003 df-csb 3098 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-nul 3465 df-if 3576 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3860 df-int 3895 df-iun 3938 df-br 4055 df-opab 4117 df-mpt 4118 df-tr 4154 df-id 4353 df-iord 4426 df-on 4428 df-ilim 4429 df-suc 4431 df-iom 4652 df-xp 4694 df-rel 4695 df-cnv 4696 df-co 4697 df-dm 4698 df-rn 4699 df-res 4700 df-ima 4701 df-iota 5246 df-fun 5287 df-fn 5288 df-f 5289 df-f1 5290 df-fo 5291 df-f1o 5292 df-fv 5293 df-riota 5917 df-ov 5965 df-oprab 5966 df-mpo 5967 df-1st 6244 df-2nd 6245 df-recs 6409 df-frec 6495 df-pnf 8139 df-mnf 8140 df-xr 8141 df-ltxr 8142 df-le 8143 df-sub 8275 df-neg 8276 df-inn 9067 df-2 9125 df-n0 9326 df-z 9403 df-uz 9679 df-seqfrec 10625 df-ndx 12920 df-slot 12921 df-base 12923 df-plusg 13007 df-0g 13175 df-mgm 13273 df-sgrp 13319 df-mnd 13334 df-minusg 13421 df-mulg 13541 |
| This theorem is referenced by: mulgnn0cld 13564 mulgnn0dir 13573 mulgnn0ass 13579 mhmmulg 13584 srgmulgass 13836 srgpcomp 13837 srgpcompp 13838 srgpcomppsc 13839 |
| Copyright terms: Public domain | W3C validator |