![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > isum | GIF version |
Description: Series sum with an upper integer index set (i.e. an infinite series). (Contributed by Mario Carneiro, 15-Jul-2013.) (Revised by Mario Carneiro, 7-Apr-2014.) |
Ref | Expression |
---|---|
zsum.1 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
zsum.2 | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
isum.3 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = 𝐵) |
isum.4 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐵 ∈ ℂ) |
Ref | Expression |
---|---|
isum | ⊢ (𝜑 → Σ𝑘 ∈ 𝑍 𝐵 = ( ⇝ ‘seq𝑀( + , 𝐹))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zsum.1 | . 2 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
2 | zsum.2 | . 2 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
3 | ssidd 3177 | . 2 ⊢ (𝜑 → 𝑍 ⊆ 𝑍) | |
4 | isum.3 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = 𝐵) | |
5 | simpr 110 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝑘 ∈ 𝑍) | |
6 | 5 | iftrued 3542 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → if(𝑘 ∈ 𝑍, 𝐵, 0) = 𝐵) |
7 | 4, 6 | eqtr4d 2213 | . 2 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = if(𝑘 ∈ 𝑍, 𝐵, 0)) |
8 | orc 712 | . . . . 5 ⊢ (𝑥 ∈ 𝑍 → (𝑥 ∈ 𝑍 ∨ ¬ 𝑥 ∈ 𝑍)) | |
9 | df-dc 835 | . . . . 5 ⊢ (DECID 𝑥 ∈ 𝑍 ↔ (𝑥 ∈ 𝑍 ∨ ¬ 𝑥 ∈ 𝑍)) | |
10 | 8, 9 | sylibr 134 | . . . 4 ⊢ (𝑥 ∈ 𝑍 → DECID 𝑥 ∈ 𝑍) |
11 | 10 | adantl 277 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑍) → DECID 𝑥 ∈ 𝑍) |
12 | 11 | ralrimiva 2550 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝑍 DECID 𝑥 ∈ 𝑍) |
13 | isum.4 | . 2 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐵 ∈ ℂ) | |
14 | 1, 2, 3, 7, 12, 13 | zsumdc 11392 | 1 ⊢ (𝜑 → Σ𝑘 ∈ 𝑍 𝐵 = ( ⇝ ‘seq𝑀( + , 𝐹))) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ∨ wo 708 DECID wdc 834 = wceq 1353 ∈ wcel 2148 ifcif 3535 ‘cfv 5217 ℂcc 7809 0cc0 7811 + caddc 7814 ℤcz 9253 ℤ≥cuz 9528 seqcseq 10445 ⇝ cli 11286 Σcsu 11361 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-coll 4119 ax-sep 4122 ax-nul 4130 ax-pow 4175 ax-pr 4210 ax-un 4434 ax-setind 4537 ax-iinf 4588 ax-cnex 7902 ax-resscn 7903 ax-1cn 7904 ax-1re 7905 ax-icn 7906 ax-addcl 7907 ax-addrcl 7908 ax-mulcl 7909 ax-mulrcl 7910 ax-addcom 7911 ax-mulcom 7912 ax-addass 7913 ax-mulass 7914 ax-distr 7915 ax-i2m1 7916 ax-0lt1 7917 ax-1rid 7918 ax-0id 7919 ax-rnegex 7920 ax-precex 7921 ax-cnre 7922 ax-pre-ltirr 7923 ax-pre-ltwlin 7924 ax-pre-lttrn 7925 ax-pre-apti 7926 ax-pre-ltadd 7927 ax-pre-mulgt0 7928 ax-pre-mulext 7929 |
This theorem depends on definitions: df-bi 117 df-dc 835 df-3or 979 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-nel 2443 df-ral 2460 df-rex 2461 df-reu 2462 df-rmo 2463 df-rab 2464 df-v 2740 df-sbc 2964 df-csb 3059 df-dif 3132 df-un 3134 df-in 3136 df-ss 3143 df-nul 3424 df-if 3536 df-pw 3578 df-sn 3599 df-pr 3600 df-op 3602 df-uni 3811 df-int 3846 df-iun 3889 df-br 4005 df-opab 4066 df-mpt 4067 df-tr 4103 df-id 4294 df-po 4297 df-iso 4298 df-iord 4367 df-on 4369 df-ilim 4370 df-suc 4372 df-iom 4591 df-xp 4633 df-rel 4634 df-cnv 4635 df-co 4636 df-dm 4637 df-rn 4638 df-res 4639 df-ima 4640 df-iota 5179 df-fun 5219 df-fn 5220 df-f 5221 df-f1 5222 df-fo 5223 df-f1o 5224 df-fv 5225 df-isom 5226 df-riota 5831 df-ov 5878 df-oprab 5879 df-mpo 5880 df-1st 6141 df-2nd 6142 df-recs 6306 df-irdg 6371 df-frec 6392 df-1o 6417 df-oadd 6421 df-er 6535 df-en 6741 df-dom 6742 df-fin 6743 df-pnf 7994 df-mnf 7995 df-xr 7996 df-ltxr 7997 df-le 7998 df-sub 8130 df-neg 8131 df-reap 8532 df-ap 8539 df-div 8630 df-inn 8920 df-2 8978 df-n0 9177 df-z 9254 df-uz 9529 df-q 9620 df-rp 9654 df-fz 10009 df-fzo 10143 df-seqfrec 10446 df-exp 10520 df-ihash 10756 df-cj 10851 df-rsqrt 11007 df-abs 11008 df-clim 11287 df-sumdc 11362 |
This theorem is referenced by: isumclim 11429 isumclim2 11430 isumclim3 11431 sumnul 11432 isumcl 11433 isumshft 11498 isumle 11503 |
Copyright terms: Public domain | W3C validator |