ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isum GIF version

Theorem isum 11186
Description: Series sum with an upper integer index set (i.e. an infinite series). (Contributed by Mario Carneiro, 15-Jul-2013.) (Revised by Mario Carneiro, 7-Apr-2014.)
Hypotheses
Ref Expression
zsum.1 𝑍 = (ℤ𝑀)
zsum.2 (𝜑𝑀 ∈ ℤ)
isum.3 ((𝜑𝑘𝑍) → (𝐹𝑘) = 𝐵)
isum.4 ((𝜑𝑘𝑍) → 𝐵 ∈ ℂ)
Assertion
Ref Expression
isum (𝜑 → Σ𝑘𝑍 𝐵 = ( ⇝ ‘seq𝑀( + , 𝐹)))
Distinct variable groups:   𝜑,𝑘   𝑘,𝑍   𝑘,𝑀   𝑘,𝐹
Allowed substitution hint:   𝐵(𝑘)

Proof of Theorem isum
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 zsum.1 . 2 𝑍 = (ℤ𝑀)
2 zsum.2 . 2 (𝜑𝑀 ∈ ℤ)
3 ssidd 3123 . 2 (𝜑𝑍𝑍)
4 isum.3 . . 3 ((𝜑𝑘𝑍) → (𝐹𝑘) = 𝐵)
5 simpr 109 . . . 4 ((𝜑𝑘𝑍) → 𝑘𝑍)
65iftrued 3486 . . 3 ((𝜑𝑘𝑍) → if(𝑘𝑍, 𝐵, 0) = 𝐵)
74, 6eqtr4d 2176 . 2 ((𝜑𝑘𝑍) → (𝐹𝑘) = if(𝑘𝑍, 𝐵, 0))
8 orc 702 . . . . 5 (𝑥𝑍 → (𝑥𝑍 ∨ ¬ 𝑥𝑍))
9 df-dc 821 . . . . 5 (DECID 𝑥𝑍 ↔ (𝑥𝑍 ∨ ¬ 𝑥𝑍))
108, 9sylibr 133 . . . 4 (𝑥𝑍DECID 𝑥𝑍)
1110adantl 275 . . 3 ((𝜑𝑥𝑍) → DECID 𝑥𝑍)
1211ralrimiva 2508 . 2 (𝜑 → ∀𝑥𝑍 DECID 𝑥𝑍)
13 isum.4 . 2 ((𝜑𝑘𝑍) → 𝐵 ∈ ℂ)
141, 2, 3, 7, 12, 13zsumdc 11185 1 (𝜑 → Σ𝑘𝑍 𝐵 = ( ⇝ ‘seq𝑀( + , 𝐹)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wo 698  DECID wdc 820   = wceq 1332  wcel 1481  ifcif 3479  cfv 5131  cc 7642  0cc0 7644   + caddc 7647  cz 9078  cuz 9350  seqcseq 10249  cli 11079  Σcsu 11154
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4051  ax-sep 4054  ax-nul 4062  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-iinf 4510  ax-cnex 7735  ax-resscn 7736  ax-1cn 7737  ax-1re 7738  ax-icn 7739  ax-addcl 7740  ax-addrcl 7741  ax-mulcl 7742  ax-mulrcl 7743  ax-addcom 7744  ax-mulcom 7745  ax-addass 7746  ax-mulass 7747  ax-distr 7748  ax-i2m1 7749  ax-0lt1 7750  ax-1rid 7751  ax-0id 7752  ax-rnegex 7753  ax-precex 7754  ax-cnre 7755  ax-pre-ltirr 7756  ax-pre-ltwlin 7757  ax-pre-lttrn 7758  ax-pre-apti 7759  ax-pre-ltadd 7760  ax-pre-mulgt0 7761  ax-pre-mulext 7762
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-reu 2424  df-rmo 2425  df-rab 2426  df-v 2691  df-sbc 2914  df-csb 3008  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-nul 3369  df-if 3480  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-iun 3823  df-br 3938  df-opab 3998  df-mpt 3999  df-tr 4035  df-id 4223  df-po 4226  df-iso 4227  df-iord 4296  df-on 4298  df-ilim 4299  df-suc 4301  df-iom 4513  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-f1 5136  df-fo 5137  df-f1o 5138  df-fv 5139  df-isom 5140  df-riota 5738  df-ov 5785  df-oprab 5786  df-mpo 5787  df-1st 6046  df-2nd 6047  df-recs 6210  df-irdg 6275  df-frec 6296  df-1o 6321  df-oadd 6325  df-er 6437  df-en 6643  df-dom 6644  df-fin 6645  df-pnf 7826  df-mnf 7827  df-xr 7828  df-ltxr 7829  df-le 7830  df-sub 7959  df-neg 7960  df-reap 8361  df-ap 8368  df-div 8457  df-inn 8745  df-2 8803  df-n0 9002  df-z 9079  df-uz 9351  df-q 9439  df-rp 9471  df-fz 9822  df-fzo 9951  df-seqfrec 10250  df-exp 10324  df-ihash 10554  df-cj 10646  df-rsqrt 10802  df-abs 10803  df-clim 11080  df-sumdc 11155
This theorem is referenced by:  isumclim  11222  isumclim2  11223  isumclim3  11224  sumnul  11225  isumcl  11226  isumshft  11291  isumle  11296
  Copyright terms: Public domain W3C validator