| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mulgcl | GIF version | ||
| Description: Closure of the group multiple (exponentiation) operation. (Contributed by Mario Carneiro, 11-Dec-2014.) |
| Ref | Expression |
|---|---|
| mulgnncl.b | ⊢ 𝐵 = (Base‘𝐺) |
| mulgnncl.t | ⊢ · = (.g‘𝐺) |
| Ref | Expression |
|---|---|
| mulgcl | ⊢ ((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵) → (𝑁 · 𝑋) ∈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mulgnncl.b | . 2 ⊢ 𝐵 = (Base‘𝐺) | |
| 2 | mulgnncl.t | . 2 ⊢ · = (.g‘𝐺) | |
| 3 | eqid 2206 | . 2 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
| 4 | id 19 | . 2 ⊢ (𝐺 ∈ Grp → 𝐺 ∈ Grp) | |
| 5 | ssidd 3216 | . 2 ⊢ (𝐺 ∈ Grp → 𝐵 ⊆ 𝐵) | |
| 6 | 1, 3 | grpcl 13390 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥(+g‘𝐺)𝑦) ∈ 𝐵) |
| 7 | eqid 2206 | . 2 ⊢ (0g‘𝐺) = (0g‘𝐺) | |
| 8 | 1, 7 | grpidcl 13411 | . 2 ⊢ (𝐺 ∈ Grp → (0g‘𝐺) ∈ 𝐵) |
| 9 | eqid 2206 | . 2 ⊢ (invg‘𝐺) = (invg‘𝐺) | |
| 10 | 1, 9 | grpinvcl 13430 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝐵) → ((invg‘𝐺)‘𝑥) ∈ 𝐵) |
| 11 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 | mulgsubcl 13522 | 1 ⊢ ((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵) → (𝑁 · 𝑋) ∈ 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ w3a 981 = wceq 1373 ∈ wcel 2177 ‘cfv 5277 (class class class)co 5954 ℤcz 9385 Basecbs 12882 +gcplusg 12959 0gc0g 13138 Grpcgrp 13382 invgcminusg 13383 .gcmg 13505 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4164 ax-sep 4167 ax-nul 4175 ax-pow 4223 ax-pr 4258 ax-un 4485 ax-setind 4590 ax-iinf 4641 ax-cnex 8029 ax-resscn 8030 ax-1cn 8031 ax-1re 8032 ax-icn 8033 ax-addcl 8034 ax-addrcl 8035 ax-mulcl 8036 ax-addcom 8038 ax-addass 8040 ax-distr 8042 ax-i2m1 8043 ax-0lt1 8044 ax-0id 8046 ax-rnegex 8047 ax-cnre 8049 ax-pre-ltirr 8050 ax-pre-ltwlin 8051 ax-pre-lttrn 8052 ax-pre-ltadd 8054 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rmo 2493 df-rab 2494 df-v 2775 df-sbc 3001 df-csb 3096 df-dif 3170 df-un 3172 df-in 3174 df-ss 3181 df-nul 3463 df-if 3574 df-pw 3620 df-sn 3641 df-pr 3642 df-op 3644 df-uni 3854 df-int 3889 df-iun 3932 df-br 4049 df-opab 4111 df-mpt 4112 df-tr 4148 df-id 4345 df-iord 4418 df-on 4420 df-ilim 4421 df-suc 4423 df-iom 4644 df-xp 4686 df-rel 4687 df-cnv 4688 df-co 4689 df-dm 4690 df-rn 4691 df-res 4692 df-ima 4693 df-iota 5238 df-fun 5279 df-fn 5280 df-f 5281 df-f1 5282 df-fo 5283 df-f1o 5284 df-fv 5285 df-riota 5909 df-ov 5957 df-oprab 5958 df-mpo 5959 df-1st 6236 df-2nd 6237 df-recs 6401 df-frec 6487 df-pnf 8122 df-mnf 8123 df-xr 8124 df-ltxr 8125 df-le 8126 df-sub 8258 df-neg 8259 df-inn 9050 df-2 9108 df-n0 9309 df-z 9386 df-uz 9662 df-seqfrec 10606 df-ndx 12885 df-slot 12886 df-base 12888 df-plusg 12972 df-0g 13140 df-mgm 13238 df-sgrp 13284 df-mnd 13299 df-grp 13385 df-minusg 13386 df-mulg 13506 |
| This theorem is referenced by: mulgneg 13526 mulgnegneg 13527 mulgcld 13530 mulgaddcomlem 13531 mulgaddcom 13532 mulginvcom 13533 mulgdirlem 13539 mulgdir 13540 mulgass 13545 mulgmodid 13547 mulgsubdir 13548 ghmmulg 13642 mulgass2 13870 mulgghm2 14420 |
| Copyright terms: Public domain | W3C validator |