ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ivthdec GIF version

Theorem ivthdec 13416
Description: The intermediate value theorem, decreasing case, for a strictly monotonic function. (Contributed by Jim Kingdon, 20-Feb-2024.)
Hypotheses
Ref Expression
ivth.1 (𝜑𝐴 ∈ ℝ)
ivth.2 (𝜑𝐵 ∈ ℝ)
ivth.3 (𝜑𝑈 ∈ ℝ)
ivth.4 (𝜑𝐴 < 𝐵)
ivth.5 (𝜑 → (𝐴[,]𝐵) ⊆ 𝐷)
ivth.7 (𝜑𝐹 ∈ (𝐷cn→ℂ))
ivth.8 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝐹𝑥) ∈ ℝ)
ivthdec.9 (𝜑 → ((𝐹𝐵) < 𝑈𝑈 < (𝐹𝐴)))
ivthdec.i (((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑥 < 𝑦)) → (𝐹𝑦) < (𝐹𝑥))
Assertion
Ref Expression
ivthdec (𝜑 → ∃𝑐 ∈ (𝐴(,)𝐵)(𝐹𝑐) = 𝑈)
Distinct variable groups:   𝐴,𝑐,𝑥   𝑦,𝐴,𝑥   𝐵,𝑐,𝑥   𝑦,𝐵   𝐷,𝑐,𝑥   𝑦,𝐷   𝐹,𝑐,𝑥   𝑦,𝐹   𝑈,𝑐,𝑥   𝑦,𝑈   𝜑,𝑐,𝑥   𝜑,𝑦

Proof of Theorem ivthdec
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 ivth.1 . . 3 (𝜑𝐴 ∈ ℝ)
2 ivth.2 . . 3 (𝜑𝐵 ∈ ℝ)
3 ivth.3 . . . 4 (𝜑𝑈 ∈ ℝ)
43renegcld 8299 . . 3 (𝜑 → -𝑈 ∈ ℝ)
5 ivth.4 . . 3 (𝜑𝐴 < 𝐵)
6 ivth.5 . . 3 (𝜑 → (𝐴[,]𝐵) ⊆ 𝐷)
7 ivth.7 . . . 4 (𝜑𝐹 ∈ (𝐷cn→ℂ))
8 eqid 2170 . . . . 5 (𝑤𝐷 ↦ -(𝐹𝑤)) = (𝑤𝐷 ↦ -(𝐹𝑤))
98negfcncf 13383 . . . 4 (𝐹 ∈ (𝐷cn→ℂ) → (𝑤𝐷 ↦ -(𝐹𝑤)) ∈ (𝐷cn→ℂ))
107, 9syl 14 . . 3 (𝜑 → (𝑤𝐷 ↦ -(𝐹𝑤)) ∈ (𝐷cn→ℂ))
11 fveq2 5496 . . . . . 6 (𝑤 = 𝑥 → (𝐹𝑤) = (𝐹𝑥))
1211negeqd 8114 . . . . 5 (𝑤 = 𝑥 → -(𝐹𝑤) = -(𝐹𝑥))
136sselda 3147 . . . . 5 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → 𝑥𝐷)
14 ivth.8 . . . . . 6 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝐹𝑥) ∈ ℝ)
1514renegcld 8299 . . . . 5 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → -(𝐹𝑥) ∈ ℝ)
168, 12, 13, 15fvmptd3 5589 . . . 4 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → ((𝑤𝐷 ↦ -(𝐹𝑤))‘𝑥) = -(𝐹𝑥))
1716, 15eqeltrd 2247 . . 3 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → ((𝑤𝐷 ↦ -(𝐹𝑤))‘𝑥) ∈ ℝ)
18 fveq2 5496 . . . . . . 7 (𝑤 = 𝐴 → (𝐹𝑤) = (𝐹𝐴))
1918negeqd 8114 . . . . . 6 (𝑤 = 𝐴 → -(𝐹𝑤) = -(𝐹𝐴))
201rexrd 7969 . . . . . . . 8 (𝜑𝐴 ∈ ℝ*)
212rexrd 7969 . . . . . . . 8 (𝜑𝐵 ∈ ℝ*)
221, 2, 5ltled 8038 . . . . . . . 8 (𝜑𝐴𝐵)
23 lbicc2 9941 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → 𝐴 ∈ (𝐴[,]𝐵))
2420, 21, 22, 23syl3anc 1233 . . . . . . 7 (𝜑𝐴 ∈ (𝐴[,]𝐵))
256, 24sseldd 3148 . . . . . 6 (𝜑𝐴𝐷)
26 fveq2 5496 . . . . . . . . 9 (𝑥 = 𝐴 → (𝐹𝑥) = (𝐹𝐴))
2726eleq1d 2239 . . . . . . . 8 (𝑥 = 𝐴 → ((𝐹𝑥) ∈ ℝ ↔ (𝐹𝐴) ∈ ℝ))
2814ralrimiva 2543 . . . . . . . 8 (𝜑 → ∀𝑥 ∈ (𝐴[,]𝐵)(𝐹𝑥) ∈ ℝ)
2927, 28, 24rspcdva 2839 . . . . . . 7 (𝜑 → (𝐹𝐴) ∈ ℝ)
3029renegcld 8299 . . . . . 6 (𝜑 → -(𝐹𝐴) ∈ ℝ)
318, 19, 25, 30fvmptd3 5589 . . . . 5 (𝜑 → ((𝑤𝐷 ↦ -(𝐹𝑤))‘𝐴) = -(𝐹𝐴))
32 ivthdec.9 . . . . . . 7 (𝜑 → ((𝐹𝐵) < 𝑈𝑈 < (𝐹𝐴)))
3332simprd 113 . . . . . 6 (𝜑𝑈 < (𝐹𝐴))
343, 29ltnegd 8442 . . . . . 6 (𝜑 → (𝑈 < (𝐹𝐴) ↔ -(𝐹𝐴) < -𝑈))
3533, 34mpbid 146 . . . . 5 (𝜑 → -(𝐹𝐴) < -𝑈)
3631, 35eqbrtrd 4011 . . . 4 (𝜑 → ((𝑤𝐷 ↦ -(𝐹𝑤))‘𝐴) < -𝑈)
3732simpld 111 . . . . . 6 (𝜑 → (𝐹𝐵) < 𝑈)
38 fveq2 5496 . . . . . . . . 9 (𝑥 = 𝐵 → (𝐹𝑥) = (𝐹𝐵))
3938eleq1d 2239 . . . . . . . 8 (𝑥 = 𝐵 → ((𝐹𝑥) ∈ ℝ ↔ (𝐹𝐵) ∈ ℝ))
40 ubicc2 9942 . . . . . . . . 9 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → 𝐵 ∈ (𝐴[,]𝐵))
4120, 21, 22, 40syl3anc 1233 . . . . . . . 8 (𝜑𝐵 ∈ (𝐴[,]𝐵))
4239, 28, 41rspcdva 2839 . . . . . . 7 (𝜑 → (𝐹𝐵) ∈ ℝ)
4342, 3ltnegd 8442 . . . . . 6 (𝜑 → ((𝐹𝐵) < 𝑈 ↔ -𝑈 < -(𝐹𝐵)))
4437, 43mpbid 146 . . . . 5 (𝜑 → -𝑈 < -(𝐹𝐵))
45 fveq2 5496 . . . . . . 7 (𝑤 = 𝐵 → (𝐹𝑤) = (𝐹𝐵))
4645negeqd 8114 . . . . . 6 (𝑤 = 𝐵 → -(𝐹𝑤) = -(𝐹𝐵))
476, 41sseldd 3148 . . . . . 6 (𝜑𝐵𝐷)
4842renegcld 8299 . . . . . 6 (𝜑 → -(𝐹𝐵) ∈ ℝ)
498, 46, 47, 48fvmptd3 5589 . . . . 5 (𝜑 → ((𝑤𝐷 ↦ -(𝐹𝑤))‘𝐵) = -(𝐹𝐵))
5044, 49breqtrrd 4017 . . . 4 (𝜑 → -𝑈 < ((𝑤𝐷 ↦ -(𝐹𝑤))‘𝐵))
5136, 50jca 304 . . 3 (𝜑 → (((𝑤𝐷 ↦ -(𝐹𝑤))‘𝐴) < -𝑈 ∧ -𝑈 < ((𝑤𝐷 ↦ -(𝐹𝑤))‘𝐵)))
52 ivthdec.i . . . . 5 (((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑥 < 𝑦)) → (𝐹𝑦) < (𝐹𝑥))
53 fveq2 5496 . . . . . . . 8 (𝑥 = 𝑦 → (𝐹𝑥) = (𝐹𝑦))
5453eleq1d 2239 . . . . . . 7 (𝑥 = 𝑦 → ((𝐹𝑥) ∈ ℝ ↔ (𝐹𝑦) ∈ ℝ))
55 simpll 524 . . . . . . . 8 (((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑥 < 𝑦)) → 𝜑)
5655, 28syl 14 . . . . . . 7 (((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑥 < 𝑦)) → ∀𝑥 ∈ (𝐴[,]𝐵)(𝐹𝑥) ∈ ℝ)
57 simprl 526 . . . . . . 7 (((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑥 < 𝑦)) → 𝑦 ∈ (𝐴[,]𝐵))
5854, 56, 57rspcdva 2839 . . . . . 6 (((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑥 < 𝑦)) → (𝐹𝑦) ∈ ℝ)
5914adantr 274 . . . . . 6 (((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑥 < 𝑦)) → (𝐹𝑥) ∈ ℝ)
6058, 59ltnegd 8442 . . . . 5 (((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑥 < 𝑦)) → ((𝐹𝑦) < (𝐹𝑥) ↔ -(𝐹𝑥) < -(𝐹𝑦)))
6152, 60mpbid 146 . . . 4 (((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑥 < 𝑦)) → -(𝐹𝑥) < -(𝐹𝑦))
6213adantr 274 . . . . 5 (((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑥 < 𝑦)) → 𝑥𝐷)
6315adantr 274 . . . . 5 (((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑥 < 𝑦)) → -(𝐹𝑥) ∈ ℝ)
648, 12, 62, 63fvmptd3 5589 . . . 4 (((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑥 < 𝑦)) → ((𝑤𝐷 ↦ -(𝐹𝑤))‘𝑥) = -(𝐹𝑥))
65 fveq2 5496 . . . . . 6 (𝑤 = 𝑦 → (𝐹𝑤) = (𝐹𝑦))
6665negeqd 8114 . . . . 5 (𝑤 = 𝑦 → -(𝐹𝑤) = -(𝐹𝑦))
676sseld 3146 . . . . . 6 (𝜑 → (𝑦 ∈ (𝐴[,]𝐵) → 𝑦𝐷))
6855, 57, 67sylc 62 . . . . 5 (((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑥 < 𝑦)) → 𝑦𝐷)
6958renegcld 8299 . . . . 5 (((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑥 < 𝑦)) → -(𝐹𝑦) ∈ ℝ)
708, 66, 68, 69fvmptd3 5589 . . . 4 (((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑥 < 𝑦)) → ((𝑤𝐷 ↦ -(𝐹𝑤))‘𝑦) = -(𝐹𝑦))
7161, 64, 703brtr4d 4021 . . 3 (((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑥 < 𝑦)) → ((𝑤𝐷 ↦ -(𝐹𝑤))‘𝑥) < ((𝑤𝐷 ↦ -(𝐹𝑤))‘𝑦))
721, 2, 4, 5, 6, 10, 17, 51, 71ivthinc 13415 . 2 (𝜑 → ∃𝑐 ∈ (𝐴(,)𝐵)((𝑤𝐷 ↦ -(𝐹𝑤))‘𝑐) = -𝑈)
73 fveq2 5496 . . . . . . 7 (𝑤 = 𝑐 → (𝐹𝑤) = (𝐹𝑐))
7473negeqd 8114 . . . . . 6 (𝑤 = 𝑐 → -(𝐹𝑤) = -(𝐹𝑐))
75 ioossicc 9916 . . . . . . . 8 (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵)
7675, 6sstrid 3158 . . . . . . 7 (𝜑 → (𝐴(,)𝐵) ⊆ 𝐷)
7776sselda 3147 . . . . . 6 ((𝜑𝑐 ∈ (𝐴(,)𝐵)) → 𝑐𝐷)
78 fveq2 5496 . . . . . . . . 9 (𝑥 = 𝑐 → (𝐹𝑥) = (𝐹𝑐))
7978eleq1d 2239 . . . . . . . 8 (𝑥 = 𝑐 → ((𝐹𝑥) ∈ ℝ ↔ (𝐹𝑐) ∈ ℝ))
8028adantr 274 . . . . . . . 8 ((𝜑𝑐 ∈ (𝐴(,)𝐵)) → ∀𝑥 ∈ (𝐴[,]𝐵)(𝐹𝑥) ∈ ℝ)
8175sseli 3143 . . . . . . . . 9 (𝑐 ∈ (𝐴(,)𝐵) → 𝑐 ∈ (𝐴[,]𝐵))
8281adantl 275 . . . . . . . 8 ((𝜑𝑐 ∈ (𝐴(,)𝐵)) → 𝑐 ∈ (𝐴[,]𝐵))
8379, 80, 82rspcdva 2839 . . . . . . 7 ((𝜑𝑐 ∈ (𝐴(,)𝐵)) → (𝐹𝑐) ∈ ℝ)
8483renegcld 8299 . . . . . 6 ((𝜑𝑐 ∈ (𝐴(,)𝐵)) → -(𝐹𝑐) ∈ ℝ)
858, 74, 77, 84fvmptd3 5589 . . . . 5 ((𝜑𝑐 ∈ (𝐴(,)𝐵)) → ((𝑤𝐷 ↦ -(𝐹𝑤))‘𝑐) = -(𝐹𝑐))
8685eqeq1d 2179 . . . 4 ((𝜑𝑐 ∈ (𝐴(,)𝐵)) → (((𝑤𝐷 ↦ -(𝐹𝑤))‘𝑐) = -𝑈 ↔ -(𝐹𝑐) = -𝑈))
87 cncff 13358 . . . . . . . 8 (𝐹 ∈ (𝐷cn→ℂ) → 𝐹:𝐷⟶ℂ)
887, 87syl 14 . . . . . . 7 (𝜑𝐹:𝐷⟶ℂ)
8988ffvelrnda 5631 . . . . . 6 ((𝜑𝑐𝐷) → (𝐹𝑐) ∈ ℂ)
9077, 89syldan 280 . . . . 5 ((𝜑𝑐 ∈ (𝐴(,)𝐵)) → (𝐹𝑐) ∈ ℂ)
913recnd 7948 . . . . . 6 (𝜑𝑈 ∈ ℂ)
9291adantr 274 . . . . 5 ((𝜑𝑐 ∈ (𝐴(,)𝐵)) → 𝑈 ∈ ℂ)
9390, 92neg11ad 8226 . . . 4 ((𝜑𝑐 ∈ (𝐴(,)𝐵)) → (-(𝐹𝑐) = -𝑈 ↔ (𝐹𝑐) = 𝑈))
9486, 93bitrd 187 . . 3 ((𝜑𝑐 ∈ (𝐴(,)𝐵)) → (((𝑤𝐷 ↦ -(𝐹𝑤))‘𝑐) = -𝑈 ↔ (𝐹𝑐) = 𝑈))
9594rexbidva 2467 . 2 (𝜑 → (∃𝑐 ∈ (𝐴(,)𝐵)((𝑤𝐷 ↦ -(𝐹𝑤))‘𝑐) = -𝑈 ↔ ∃𝑐 ∈ (𝐴(,)𝐵)(𝐹𝑐) = 𝑈))
9672, 95mpbid 146 1 (𝜑 → ∃𝑐 ∈ (𝐴(,)𝐵)(𝐹𝑐) = 𝑈)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1348  wcel 2141  wral 2448  wrex 2449  wss 3121   class class class wbr 3989  cmpt 4050  wf 5194  cfv 5198  (class class class)co 5853  cc 7772  cr 7773  *cxr 7953   < clt 7954  cle 7955  -cneg 8091  (,)cioo 9845  [,]cicc 9848  cnccncf 13351
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-mulrcl 7873  ax-addcom 7874  ax-mulcom 7875  ax-addass 7876  ax-mulass 7877  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-1rid 7881  ax-0id 7882  ax-rnegex 7883  ax-precex 7884  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-apti 7889  ax-pre-ltadd 7890  ax-pre-mulgt0 7891  ax-pre-mulext 7892  ax-arch 7893  ax-caucvg 7894  ax-pre-suploc 7895
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-if 3527  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-id 4278  df-po 4281  df-iso 4282  df-iord 4351  df-on 4353  df-ilim 4354  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-isom 5207  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-recs 6284  df-frec 6370  df-map 6628  df-sup 6961  df-inf 6962  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-reap 8494  df-ap 8501  df-div 8590  df-inn 8879  df-2 8937  df-3 8938  df-4 8939  df-n0 9136  df-z 9213  df-uz 9488  df-rp 9611  df-ioo 9849  df-icc 9852  df-seqfrec 10402  df-exp 10476  df-cj 10806  df-re 10807  df-im 10808  df-rsqrt 10962  df-abs 10963  df-cncf 13352
This theorem is referenced by:  cosz12  13495  ioocosf1o  13569
  Copyright terms: Public domain W3C validator