ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ivthdec GIF version

Theorem ivthdec 14880
Description: The intermediate value theorem, decreasing case, for a strictly monotonic function. (Contributed by Jim Kingdon, 20-Feb-2024.)
Hypotheses
Ref Expression
ivth.1 (𝜑𝐴 ∈ ℝ)
ivth.2 (𝜑𝐵 ∈ ℝ)
ivth.3 (𝜑𝑈 ∈ ℝ)
ivth.4 (𝜑𝐴 < 𝐵)
ivth.5 (𝜑 → (𝐴[,]𝐵) ⊆ 𝐷)
ivth.7 (𝜑𝐹 ∈ (𝐷cn→ℂ))
ivth.8 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝐹𝑥) ∈ ℝ)
ivthdec.9 (𝜑 → ((𝐹𝐵) < 𝑈𝑈 < (𝐹𝐴)))
ivthdec.i (((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑥 < 𝑦)) → (𝐹𝑦) < (𝐹𝑥))
Assertion
Ref Expression
ivthdec (𝜑 → ∃𝑐 ∈ (𝐴(,)𝐵)(𝐹𝑐) = 𝑈)
Distinct variable groups:   𝐴,𝑐,𝑥   𝑦,𝐴,𝑥   𝐵,𝑐,𝑥   𝑦,𝐵   𝐷,𝑐,𝑥   𝑦,𝐷   𝐹,𝑐,𝑥   𝑦,𝐹   𝑈,𝑐,𝑥   𝑦,𝑈   𝜑,𝑐,𝑥   𝜑,𝑦

Proof of Theorem ivthdec
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 ivth.1 . . 3 (𝜑𝐴 ∈ ℝ)
2 ivth.2 . . 3 (𝜑𝐵 ∈ ℝ)
3 ivth.3 . . . 4 (𝜑𝑈 ∈ ℝ)
43renegcld 8406 . . 3 (𝜑 → -𝑈 ∈ ℝ)
5 ivth.4 . . 3 (𝜑𝐴 < 𝐵)
6 ivth.5 . . 3 (𝜑 → (𝐴[,]𝐵) ⊆ 𝐷)
7 ivth.7 . . . 4 (𝜑𝐹 ∈ (𝐷cn→ℂ))
8 eqid 2196 . . . . 5 (𝑤𝐷 ↦ -(𝐹𝑤)) = (𝑤𝐷 ↦ -(𝐹𝑤))
98negfcncf 14842 . . . 4 (𝐹 ∈ (𝐷cn→ℂ) → (𝑤𝐷 ↦ -(𝐹𝑤)) ∈ (𝐷cn→ℂ))
107, 9syl 14 . . 3 (𝜑 → (𝑤𝐷 ↦ -(𝐹𝑤)) ∈ (𝐷cn→ℂ))
11 fveq2 5558 . . . . . 6 (𝑤 = 𝑥 → (𝐹𝑤) = (𝐹𝑥))
1211negeqd 8221 . . . . 5 (𝑤 = 𝑥 → -(𝐹𝑤) = -(𝐹𝑥))
136sselda 3183 . . . . 5 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → 𝑥𝐷)
14 ivth.8 . . . . . 6 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝐹𝑥) ∈ ℝ)
1514renegcld 8406 . . . . 5 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → -(𝐹𝑥) ∈ ℝ)
168, 12, 13, 15fvmptd3 5655 . . . 4 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → ((𝑤𝐷 ↦ -(𝐹𝑤))‘𝑥) = -(𝐹𝑥))
1716, 15eqeltrd 2273 . . 3 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → ((𝑤𝐷 ↦ -(𝐹𝑤))‘𝑥) ∈ ℝ)
18 fveq2 5558 . . . . . . 7 (𝑤 = 𝐴 → (𝐹𝑤) = (𝐹𝐴))
1918negeqd 8221 . . . . . 6 (𝑤 = 𝐴 → -(𝐹𝑤) = -(𝐹𝐴))
201rexrd 8076 . . . . . . . 8 (𝜑𝐴 ∈ ℝ*)
212rexrd 8076 . . . . . . . 8 (𝜑𝐵 ∈ ℝ*)
221, 2, 5ltled 8145 . . . . . . . 8 (𝜑𝐴𝐵)
23 lbicc2 10059 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → 𝐴 ∈ (𝐴[,]𝐵))
2420, 21, 22, 23syl3anc 1249 . . . . . . 7 (𝜑𝐴 ∈ (𝐴[,]𝐵))
256, 24sseldd 3184 . . . . . 6 (𝜑𝐴𝐷)
26 fveq2 5558 . . . . . . . . 9 (𝑥 = 𝐴 → (𝐹𝑥) = (𝐹𝐴))
2726eleq1d 2265 . . . . . . . 8 (𝑥 = 𝐴 → ((𝐹𝑥) ∈ ℝ ↔ (𝐹𝐴) ∈ ℝ))
2814ralrimiva 2570 . . . . . . . 8 (𝜑 → ∀𝑥 ∈ (𝐴[,]𝐵)(𝐹𝑥) ∈ ℝ)
2927, 28, 24rspcdva 2873 . . . . . . 7 (𝜑 → (𝐹𝐴) ∈ ℝ)
3029renegcld 8406 . . . . . 6 (𝜑 → -(𝐹𝐴) ∈ ℝ)
318, 19, 25, 30fvmptd3 5655 . . . . 5 (𝜑 → ((𝑤𝐷 ↦ -(𝐹𝑤))‘𝐴) = -(𝐹𝐴))
32 ivthdec.9 . . . . . . 7 (𝜑 → ((𝐹𝐵) < 𝑈𝑈 < (𝐹𝐴)))
3332simprd 114 . . . . . 6 (𝜑𝑈 < (𝐹𝐴))
343, 29ltnegd 8550 . . . . . 6 (𝜑 → (𝑈 < (𝐹𝐴) ↔ -(𝐹𝐴) < -𝑈))
3533, 34mpbid 147 . . . . 5 (𝜑 → -(𝐹𝐴) < -𝑈)
3631, 35eqbrtrd 4055 . . . 4 (𝜑 → ((𝑤𝐷 ↦ -(𝐹𝑤))‘𝐴) < -𝑈)
3732simpld 112 . . . . . 6 (𝜑 → (𝐹𝐵) < 𝑈)
38 fveq2 5558 . . . . . . . . 9 (𝑥 = 𝐵 → (𝐹𝑥) = (𝐹𝐵))
3938eleq1d 2265 . . . . . . . 8 (𝑥 = 𝐵 → ((𝐹𝑥) ∈ ℝ ↔ (𝐹𝐵) ∈ ℝ))
40 ubicc2 10060 . . . . . . . . 9 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → 𝐵 ∈ (𝐴[,]𝐵))
4120, 21, 22, 40syl3anc 1249 . . . . . . . 8 (𝜑𝐵 ∈ (𝐴[,]𝐵))
4239, 28, 41rspcdva 2873 . . . . . . 7 (𝜑 → (𝐹𝐵) ∈ ℝ)
4342, 3ltnegd 8550 . . . . . 6 (𝜑 → ((𝐹𝐵) < 𝑈 ↔ -𝑈 < -(𝐹𝐵)))
4437, 43mpbid 147 . . . . 5 (𝜑 → -𝑈 < -(𝐹𝐵))
45 fveq2 5558 . . . . . . 7 (𝑤 = 𝐵 → (𝐹𝑤) = (𝐹𝐵))
4645negeqd 8221 . . . . . 6 (𝑤 = 𝐵 → -(𝐹𝑤) = -(𝐹𝐵))
476, 41sseldd 3184 . . . . . 6 (𝜑𝐵𝐷)
4842renegcld 8406 . . . . . 6 (𝜑 → -(𝐹𝐵) ∈ ℝ)
498, 46, 47, 48fvmptd3 5655 . . . . 5 (𝜑 → ((𝑤𝐷 ↦ -(𝐹𝑤))‘𝐵) = -(𝐹𝐵))
5044, 49breqtrrd 4061 . . . 4 (𝜑 → -𝑈 < ((𝑤𝐷 ↦ -(𝐹𝑤))‘𝐵))
5136, 50jca 306 . . 3 (𝜑 → (((𝑤𝐷 ↦ -(𝐹𝑤))‘𝐴) < -𝑈 ∧ -𝑈 < ((𝑤𝐷 ↦ -(𝐹𝑤))‘𝐵)))
52 ivthdec.i . . . . 5 (((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑥 < 𝑦)) → (𝐹𝑦) < (𝐹𝑥))
53 fveq2 5558 . . . . . . . 8 (𝑥 = 𝑦 → (𝐹𝑥) = (𝐹𝑦))
5453eleq1d 2265 . . . . . . 7 (𝑥 = 𝑦 → ((𝐹𝑥) ∈ ℝ ↔ (𝐹𝑦) ∈ ℝ))
55 simpll 527 . . . . . . . 8 (((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑥 < 𝑦)) → 𝜑)
5655, 28syl 14 . . . . . . 7 (((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑥 < 𝑦)) → ∀𝑥 ∈ (𝐴[,]𝐵)(𝐹𝑥) ∈ ℝ)
57 simprl 529 . . . . . . 7 (((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑥 < 𝑦)) → 𝑦 ∈ (𝐴[,]𝐵))
5854, 56, 57rspcdva 2873 . . . . . 6 (((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑥 < 𝑦)) → (𝐹𝑦) ∈ ℝ)
5914adantr 276 . . . . . 6 (((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑥 < 𝑦)) → (𝐹𝑥) ∈ ℝ)
6058, 59ltnegd 8550 . . . . 5 (((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑥 < 𝑦)) → ((𝐹𝑦) < (𝐹𝑥) ↔ -(𝐹𝑥) < -(𝐹𝑦)))
6152, 60mpbid 147 . . . 4 (((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑥 < 𝑦)) → -(𝐹𝑥) < -(𝐹𝑦))
6213adantr 276 . . . . 5 (((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑥 < 𝑦)) → 𝑥𝐷)
6315adantr 276 . . . . 5 (((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑥 < 𝑦)) → -(𝐹𝑥) ∈ ℝ)
648, 12, 62, 63fvmptd3 5655 . . . 4 (((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑥 < 𝑦)) → ((𝑤𝐷 ↦ -(𝐹𝑤))‘𝑥) = -(𝐹𝑥))
65 fveq2 5558 . . . . . 6 (𝑤 = 𝑦 → (𝐹𝑤) = (𝐹𝑦))
6665negeqd 8221 . . . . 5 (𝑤 = 𝑦 → -(𝐹𝑤) = -(𝐹𝑦))
676sseld 3182 . . . . . 6 (𝜑 → (𝑦 ∈ (𝐴[,]𝐵) → 𝑦𝐷))
6855, 57, 67sylc 62 . . . . 5 (((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑥 < 𝑦)) → 𝑦𝐷)
6958renegcld 8406 . . . . 5 (((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑥 < 𝑦)) → -(𝐹𝑦) ∈ ℝ)
708, 66, 68, 69fvmptd3 5655 . . . 4 (((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑥 < 𝑦)) → ((𝑤𝐷 ↦ -(𝐹𝑤))‘𝑦) = -(𝐹𝑦))
7161, 64, 703brtr4d 4065 . . 3 (((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑥 < 𝑦)) → ((𝑤𝐷 ↦ -(𝐹𝑤))‘𝑥) < ((𝑤𝐷 ↦ -(𝐹𝑤))‘𝑦))
721, 2, 4, 5, 6, 10, 17, 51, 71ivthinc 14879 . 2 (𝜑 → ∃𝑐 ∈ (𝐴(,)𝐵)((𝑤𝐷 ↦ -(𝐹𝑤))‘𝑐) = -𝑈)
73 fveq2 5558 . . . . . . 7 (𝑤 = 𝑐 → (𝐹𝑤) = (𝐹𝑐))
7473negeqd 8221 . . . . . 6 (𝑤 = 𝑐 → -(𝐹𝑤) = -(𝐹𝑐))
75 ioossicc 10034 . . . . . . . 8 (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵)
7675, 6sstrid 3194 . . . . . . 7 (𝜑 → (𝐴(,)𝐵) ⊆ 𝐷)
7776sselda 3183 . . . . . 6 ((𝜑𝑐 ∈ (𝐴(,)𝐵)) → 𝑐𝐷)
78 fveq2 5558 . . . . . . . . 9 (𝑥 = 𝑐 → (𝐹𝑥) = (𝐹𝑐))
7978eleq1d 2265 . . . . . . . 8 (𝑥 = 𝑐 → ((𝐹𝑥) ∈ ℝ ↔ (𝐹𝑐) ∈ ℝ))
8028adantr 276 . . . . . . . 8 ((𝜑𝑐 ∈ (𝐴(,)𝐵)) → ∀𝑥 ∈ (𝐴[,]𝐵)(𝐹𝑥) ∈ ℝ)
8175sseli 3179 . . . . . . . . 9 (𝑐 ∈ (𝐴(,)𝐵) → 𝑐 ∈ (𝐴[,]𝐵))
8281adantl 277 . . . . . . . 8 ((𝜑𝑐 ∈ (𝐴(,)𝐵)) → 𝑐 ∈ (𝐴[,]𝐵))
8379, 80, 82rspcdva 2873 . . . . . . 7 ((𝜑𝑐 ∈ (𝐴(,)𝐵)) → (𝐹𝑐) ∈ ℝ)
8483renegcld 8406 . . . . . 6 ((𝜑𝑐 ∈ (𝐴(,)𝐵)) → -(𝐹𝑐) ∈ ℝ)
858, 74, 77, 84fvmptd3 5655 . . . . 5 ((𝜑𝑐 ∈ (𝐴(,)𝐵)) → ((𝑤𝐷 ↦ -(𝐹𝑤))‘𝑐) = -(𝐹𝑐))
8685eqeq1d 2205 . . . 4 ((𝜑𝑐 ∈ (𝐴(,)𝐵)) → (((𝑤𝐷 ↦ -(𝐹𝑤))‘𝑐) = -𝑈 ↔ -(𝐹𝑐) = -𝑈))
87 cncff 14813 . . . . . . . 8 (𝐹 ∈ (𝐷cn→ℂ) → 𝐹:𝐷⟶ℂ)
887, 87syl 14 . . . . . . 7 (𝜑𝐹:𝐷⟶ℂ)
8988ffvelcdmda 5697 . . . . . 6 ((𝜑𝑐𝐷) → (𝐹𝑐) ∈ ℂ)
9077, 89syldan 282 . . . . 5 ((𝜑𝑐 ∈ (𝐴(,)𝐵)) → (𝐹𝑐) ∈ ℂ)
913recnd 8055 . . . . . 6 (𝜑𝑈 ∈ ℂ)
9291adantr 276 . . . . 5 ((𝜑𝑐 ∈ (𝐴(,)𝐵)) → 𝑈 ∈ ℂ)
9390, 92neg11ad 8333 . . . 4 ((𝜑𝑐 ∈ (𝐴(,)𝐵)) → (-(𝐹𝑐) = -𝑈 ↔ (𝐹𝑐) = 𝑈))
9486, 93bitrd 188 . . 3 ((𝜑𝑐 ∈ (𝐴(,)𝐵)) → (((𝑤𝐷 ↦ -(𝐹𝑤))‘𝑐) = -𝑈 ↔ (𝐹𝑐) = 𝑈))
9594rexbidva 2494 . 2 (𝜑 → (∃𝑐 ∈ (𝐴(,)𝐵)((𝑤𝐷 ↦ -(𝐹𝑤))‘𝑐) = -𝑈 ↔ ∃𝑐 ∈ (𝐴(,)𝐵)(𝐹𝑐) = 𝑈))
9672, 95mpbid 147 1 (𝜑 → ∃𝑐 ∈ (𝐴(,)𝐵)(𝐹𝑐) = 𝑈)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2167  wral 2475  wrex 2476  wss 3157   class class class wbr 4033  cmpt 4094  wf 5254  cfv 5258  (class class class)co 5922  cc 7877  cr 7878  *cxr 8060   < clt 8061  cle 8062  -cneg 8198  (,)cioo 9963  [,]cicc 9966  cnccncf 14806
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-mulrcl 7978  ax-addcom 7979  ax-mulcom 7980  ax-addass 7981  ax-mulass 7982  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-1rid 7986  ax-0id 7987  ax-rnegex 7988  ax-precex 7989  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-apti 7994  ax-pre-ltadd 7995  ax-pre-mulgt0 7996  ax-pre-mulext 7997  ax-arch 7998  ax-caucvg 7999  ax-pre-suploc 8000
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-if 3562  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-po 4331  df-iso 4332  df-iord 4401  df-on 4403  df-ilim 4404  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-isom 5267  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-recs 6363  df-frec 6449  df-map 6709  df-sup 7050  df-inf 7051  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-reap 8602  df-ap 8609  df-div 8700  df-inn 8991  df-2 9049  df-3 9050  df-4 9051  df-n0 9250  df-z 9327  df-uz 9602  df-rp 9729  df-ioo 9967  df-icc 9970  df-seqfrec 10540  df-exp 10631  df-cj 11007  df-re 11008  df-im 11009  df-rsqrt 11163  df-abs 11164  df-cncf 14807
This theorem is referenced by:  cosz12  15016  ioocosf1o  15090
  Copyright terms: Public domain W3C validator