ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ivthdec GIF version

Theorem ivthdec 15326
Description: The intermediate value theorem, decreasing case, for a strictly monotonic function. (Contributed by Jim Kingdon, 20-Feb-2024.)
Hypotheses
Ref Expression
ivth.1 (𝜑𝐴 ∈ ℝ)
ivth.2 (𝜑𝐵 ∈ ℝ)
ivth.3 (𝜑𝑈 ∈ ℝ)
ivth.4 (𝜑𝐴 < 𝐵)
ivth.5 (𝜑 → (𝐴[,]𝐵) ⊆ 𝐷)
ivth.7 (𝜑𝐹 ∈ (𝐷cn→ℂ))
ivth.8 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝐹𝑥) ∈ ℝ)
ivthdec.9 (𝜑 → ((𝐹𝐵) < 𝑈𝑈 < (𝐹𝐴)))
ivthdec.i (((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑥 < 𝑦)) → (𝐹𝑦) < (𝐹𝑥))
Assertion
Ref Expression
ivthdec (𝜑 → ∃𝑐 ∈ (𝐴(,)𝐵)(𝐹𝑐) = 𝑈)
Distinct variable groups:   𝐴,𝑐,𝑥   𝑦,𝐴,𝑥   𝐵,𝑐,𝑥   𝑦,𝐵   𝐷,𝑐,𝑥   𝑦,𝐷   𝐹,𝑐,𝑥   𝑦,𝐹   𝑈,𝑐,𝑥   𝑦,𝑈   𝜑,𝑐,𝑥   𝜑,𝑦

Proof of Theorem ivthdec
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 ivth.1 . . 3 (𝜑𝐴 ∈ ℝ)
2 ivth.2 . . 3 (𝜑𝐵 ∈ ℝ)
3 ivth.3 . . . 4 (𝜑𝑈 ∈ ℝ)
43renegcld 8534 . . 3 (𝜑 → -𝑈 ∈ ℝ)
5 ivth.4 . . 3 (𝜑𝐴 < 𝐵)
6 ivth.5 . . 3 (𝜑 → (𝐴[,]𝐵) ⊆ 𝐷)
7 ivth.7 . . . 4 (𝜑𝐹 ∈ (𝐷cn→ℂ))
8 eqid 2229 . . . . 5 (𝑤𝐷 ↦ -(𝐹𝑤)) = (𝑤𝐷 ↦ -(𝐹𝑤))
98negfcncf 15288 . . . 4 (𝐹 ∈ (𝐷cn→ℂ) → (𝑤𝐷 ↦ -(𝐹𝑤)) ∈ (𝐷cn→ℂ))
107, 9syl 14 . . 3 (𝜑 → (𝑤𝐷 ↦ -(𝐹𝑤)) ∈ (𝐷cn→ℂ))
11 fveq2 5629 . . . . . 6 (𝑤 = 𝑥 → (𝐹𝑤) = (𝐹𝑥))
1211negeqd 8349 . . . . 5 (𝑤 = 𝑥 → -(𝐹𝑤) = -(𝐹𝑥))
136sselda 3224 . . . . 5 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → 𝑥𝐷)
14 ivth.8 . . . . . 6 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝐹𝑥) ∈ ℝ)
1514renegcld 8534 . . . . 5 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → -(𝐹𝑥) ∈ ℝ)
168, 12, 13, 15fvmptd3 5730 . . . 4 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → ((𝑤𝐷 ↦ -(𝐹𝑤))‘𝑥) = -(𝐹𝑥))
1716, 15eqeltrd 2306 . . 3 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → ((𝑤𝐷 ↦ -(𝐹𝑤))‘𝑥) ∈ ℝ)
18 fveq2 5629 . . . . . . 7 (𝑤 = 𝐴 → (𝐹𝑤) = (𝐹𝐴))
1918negeqd 8349 . . . . . 6 (𝑤 = 𝐴 → -(𝐹𝑤) = -(𝐹𝐴))
201rexrd 8204 . . . . . . . 8 (𝜑𝐴 ∈ ℝ*)
212rexrd 8204 . . . . . . . 8 (𝜑𝐵 ∈ ℝ*)
221, 2, 5ltled 8273 . . . . . . . 8 (𝜑𝐴𝐵)
23 lbicc2 10188 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → 𝐴 ∈ (𝐴[,]𝐵))
2420, 21, 22, 23syl3anc 1271 . . . . . . 7 (𝜑𝐴 ∈ (𝐴[,]𝐵))
256, 24sseldd 3225 . . . . . 6 (𝜑𝐴𝐷)
26 fveq2 5629 . . . . . . . . 9 (𝑥 = 𝐴 → (𝐹𝑥) = (𝐹𝐴))
2726eleq1d 2298 . . . . . . . 8 (𝑥 = 𝐴 → ((𝐹𝑥) ∈ ℝ ↔ (𝐹𝐴) ∈ ℝ))
2814ralrimiva 2603 . . . . . . . 8 (𝜑 → ∀𝑥 ∈ (𝐴[,]𝐵)(𝐹𝑥) ∈ ℝ)
2927, 28, 24rspcdva 2912 . . . . . . 7 (𝜑 → (𝐹𝐴) ∈ ℝ)
3029renegcld 8534 . . . . . 6 (𝜑 → -(𝐹𝐴) ∈ ℝ)
318, 19, 25, 30fvmptd3 5730 . . . . 5 (𝜑 → ((𝑤𝐷 ↦ -(𝐹𝑤))‘𝐴) = -(𝐹𝐴))
32 ivthdec.9 . . . . . . 7 (𝜑 → ((𝐹𝐵) < 𝑈𝑈 < (𝐹𝐴)))
3332simprd 114 . . . . . 6 (𝜑𝑈 < (𝐹𝐴))
343, 29ltnegd 8678 . . . . . 6 (𝜑 → (𝑈 < (𝐹𝐴) ↔ -(𝐹𝐴) < -𝑈))
3533, 34mpbid 147 . . . . 5 (𝜑 → -(𝐹𝐴) < -𝑈)
3631, 35eqbrtrd 4105 . . . 4 (𝜑 → ((𝑤𝐷 ↦ -(𝐹𝑤))‘𝐴) < -𝑈)
3732simpld 112 . . . . . 6 (𝜑 → (𝐹𝐵) < 𝑈)
38 fveq2 5629 . . . . . . . . 9 (𝑥 = 𝐵 → (𝐹𝑥) = (𝐹𝐵))
3938eleq1d 2298 . . . . . . . 8 (𝑥 = 𝐵 → ((𝐹𝑥) ∈ ℝ ↔ (𝐹𝐵) ∈ ℝ))
40 ubicc2 10189 . . . . . . . . 9 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → 𝐵 ∈ (𝐴[,]𝐵))
4120, 21, 22, 40syl3anc 1271 . . . . . . . 8 (𝜑𝐵 ∈ (𝐴[,]𝐵))
4239, 28, 41rspcdva 2912 . . . . . . 7 (𝜑 → (𝐹𝐵) ∈ ℝ)
4342, 3ltnegd 8678 . . . . . 6 (𝜑 → ((𝐹𝐵) < 𝑈 ↔ -𝑈 < -(𝐹𝐵)))
4437, 43mpbid 147 . . . . 5 (𝜑 → -𝑈 < -(𝐹𝐵))
45 fveq2 5629 . . . . . . 7 (𝑤 = 𝐵 → (𝐹𝑤) = (𝐹𝐵))
4645negeqd 8349 . . . . . 6 (𝑤 = 𝐵 → -(𝐹𝑤) = -(𝐹𝐵))
476, 41sseldd 3225 . . . . . 6 (𝜑𝐵𝐷)
4842renegcld 8534 . . . . . 6 (𝜑 → -(𝐹𝐵) ∈ ℝ)
498, 46, 47, 48fvmptd3 5730 . . . . 5 (𝜑 → ((𝑤𝐷 ↦ -(𝐹𝑤))‘𝐵) = -(𝐹𝐵))
5044, 49breqtrrd 4111 . . . 4 (𝜑 → -𝑈 < ((𝑤𝐷 ↦ -(𝐹𝑤))‘𝐵))
5136, 50jca 306 . . 3 (𝜑 → (((𝑤𝐷 ↦ -(𝐹𝑤))‘𝐴) < -𝑈 ∧ -𝑈 < ((𝑤𝐷 ↦ -(𝐹𝑤))‘𝐵)))
52 ivthdec.i . . . . 5 (((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑥 < 𝑦)) → (𝐹𝑦) < (𝐹𝑥))
53 fveq2 5629 . . . . . . . 8 (𝑥 = 𝑦 → (𝐹𝑥) = (𝐹𝑦))
5453eleq1d 2298 . . . . . . 7 (𝑥 = 𝑦 → ((𝐹𝑥) ∈ ℝ ↔ (𝐹𝑦) ∈ ℝ))
55 simpll 527 . . . . . . . 8 (((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑥 < 𝑦)) → 𝜑)
5655, 28syl 14 . . . . . . 7 (((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑥 < 𝑦)) → ∀𝑥 ∈ (𝐴[,]𝐵)(𝐹𝑥) ∈ ℝ)
57 simprl 529 . . . . . . 7 (((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑥 < 𝑦)) → 𝑦 ∈ (𝐴[,]𝐵))
5854, 56, 57rspcdva 2912 . . . . . 6 (((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑥 < 𝑦)) → (𝐹𝑦) ∈ ℝ)
5914adantr 276 . . . . . 6 (((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑥 < 𝑦)) → (𝐹𝑥) ∈ ℝ)
6058, 59ltnegd 8678 . . . . 5 (((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑥 < 𝑦)) → ((𝐹𝑦) < (𝐹𝑥) ↔ -(𝐹𝑥) < -(𝐹𝑦)))
6152, 60mpbid 147 . . . 4 (((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑥 < 𝑦)) → -(𝐹𝑥) < -(𝐹𝑦))
6213adantr 276 . . . . 5 (((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑥 < 𝑦)) → 𝑥𝐷)
6315adantr 276 . . . . 5 (((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑥 < 𝑦)) → -(𝐹𝑥) ∈ ℝ)
648, 12, 62, 63fvmptd3 5730 . . . 4 (((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑥 < 𝑦)) → ((𝑤𝐷 ↦ -(𝐹𝑤))‘𝑥) = -(𝐹𝑥))
65 fveq2 5629 . . . . . 6 (𝑤 = 𝑦 → (𝐹𝑤) = (𝐹𝑦))
6665negeqd 8349 . . . . 5 (𝑤 = 𝑦 → -(𝐹𝑤) = -(𝐹𝑦))
676sseld 3223 . . . . . 6 (𝜑 → (𝑦 ∈ (𝐴[,]𝐵) → 𝑦𝐷))
6855, 57, 67sylc 62 . . . . 5 (((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑥 < 𝑦)) → 𝑦𝐷)
6958renegcld 8534 . . . . 5 (((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑥 < 𝑦)) → -(𝐹𝑦) ∈ ℝ)
708, 66, 68, 69fvmptd3 5730 . . . 4 (((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑥 < 𝑦)) → ((𝑤𝐷 ↦ -(𝐹𝑤))‘𝑦) = -(𝐹𝑦))
7161, 64, 703brtr4d 4115 . . 3 (((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑥 < 𝑦)) → ((𝑤𝐷 ↦ -(𝐹𝑤))‘𝑥) < ((𝑤𝐷 ↦ -(𝐹𝑤))‘𝑦))
721, 2, 4, 5, 6, 10, 17, 51, 71ivthinc 15325 . 2 (𝜑 → ∃𝑐 ∈ (𝐴(,)𝐵)((𝑤𝐷 ↦ -(𝐹𝑤))‘𝑐) = -𝑈)
73 fveq2 5629 . . . . . . 7 (𝑤 = 𝑐 → (𝐹𝑤) = (𝐹𝑐))
7473negeqd 8349 . . . . . 6 (𝑤 = 𝑐 → -(𝐹𝑤) = -(𝐹𝑐))
75 ioossicc 10163 . . . . . . . 8 (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵)
7675, 6sstrid 3235 . . . . . . 7 (𝜑 → (𝐴(,)𝐵) ⊆ 𝐷)
7776sselda 3224 . . . . . 6 ((𝜑𝑐 ∈ (𝐴(,)𝐵)) → 𝑐𝐷)
78 fveq2 5629 . . . . . . . . 9 (𝑥 = 𝑐 → (𝐹𝑥) = (𝐹𝑐))
7978eleq1d 2298 . . . . . . . 8 (𝑥 = 𝑐 → ((𝐹𝑥) ∈ ℝ ↔ (𝐹𝑐) ∈ ℝ))
8028adantr 276 . . . . . . . 8 ((𝜑𝑐 ∈ (𝐴(,)𝐵)) → ∀𝑥 ∈ (𝐴[,]𝐵)(𝐹𝑥) ∈ ℝ)
8175sseli 3220 . . . . . . . . 9 (𝑐 ∈ (𝐴(,)𝐵) → 𝑐 ∈ (𝐴[,]𝐵))
8281adantl 277 . . . . . . . 8 ((𝜑𝑐 ∈ (𝐴(,)𝐵)) → 𝑐 ∈ (𝐴[,]𝐵))
8379, 80, 82rspcdva 2912 . . . . . . 7 ((𝜑𝑐 ∈ (𝐴(,)𝐵)) → (𝐹𝑐) ∈ ℝ)
8483renegcld 8534 . . . . . 6 ((𝜑𝑐 ∈ (𝐴(,)𝐵)) → -(𝐹𝑐) ∈ ℝ)
858, 74, 77, 84fvmptd3 5730 . . . . 5 ((𝜑𝑐 ∈ (𝐴(,)𝐵)) → ((𝑤𝐷 ↦ -(𝐹𝑤))‘𝑐) = -(𝐹𝑐))
8685eqeq1d 2238 . . . 4 ((𝜑𝑐 ∈ (𝐴(,)𝐵)) → (((𝑤𝐷 ↦ -(𝐹𝑤))‘𝑐) = -𝑈 ↔ -(𝐹𝑐) = -𝑈))
87 cncff 15259 . . . . . . . 8 (𝐹 ∈ (𝐷cn→ℂ) → 𝐹:𝐷⟶ℂ)
887, 87syl 14 . . . . . . 7 (𝜑𝐹:𝐷⟶ℂ)
8988ffvelcdmda 5772 . . . . . 6 ((𝜑𝑐𝐷) → (𝐹𝑐) ∈ ℂ)
9077, 89syldan 282 . . . . 5 ((𝜑𝑐 ∈ (𝐴(,)𝐵)) → (𝐹𝑐) ∈ ℂ)
913recnd 8183 . . . . . 6 (𝜑𝑈 ∈ ℂ)
9291adantr 276 . . . . 5 ((𝜑𝑐 ∈ (𝐴(,)𝐵)) → 𝑈 ∈ ℂ)
9390, 92neg11ad 8461 . . . 4 ((𝜑𝑐 ∈ (𝐴(,)𝐵)) → (-(𝐹𝑐) = -𝑈 ↔ (𝐹𝑐) = 𝑈))
9486, 93bitrd 188 . . 3 ((𝜑𝑐 ∈ (𝐴(,)𝐵)) → (((𝑤𝐷 ↦ -(𝐹𝑤))‘𝑐) = -𝑈 ↔ (𝐹𝑐) = 𝑈))
9594rexbidva 2527 . 2 (𝜑 → (∃𝑐 ∈ (𝐴(,)𝐵)((𝑤𝐷 ↦ -(𝐹𝑤))‘𝑐) = -𝑈 ↔ ∃𝑐 ∈ (𝐴(,)𝐵)(𝐹𝑐) = 𝑈))
9672, 95mpbid 147 1 (𝜑 → ∃𝑐 ∈ (𝐴(,)𝐵)(𝐹𝑐) = 𝑈)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1395  wcel 2200  wral 2508  wrex 2509  wss 3197   class class class wbr 4083  cmpt 4145  wf 5314  cfv 5318  (class class class)co 6007  cc 8005  cr 8006  *cxr 8188   < clt 8189  cle 8190  -cneg 8326  (,)cioo 10092  [,]cicc 10095  cnccncf 15252
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680  ax-cnex 8098  ax-resscn 8099  ax-1cn 8100  ax-1re 8101  ax-icn 8102  ax-addcl 8103  ax-addrcl 8104  ax-mulcl 8105  ax-mulrcl 8106  ax-addcom 8107  ax-mulcom 8108  ax-addass 8109  ax-mulass 8110  ax-distr 8111  ax-i2m1 8112  ax-0lt1 8113  ax-1rid 8114  ax-0id 8115  ax-rnegex 8116  ax-precex 8117  ax-cnre 8118  ax-pre-ltirr 8119  ax-pre-ltwlin 8120  ax-pre-lttrn 8121  ax-pre-apti 8122  ax-pre-ltadd 8123  ax-pre-mulgt0 8124  ax-pre-mulext 8125  ax-arch 8126  ax-caucvg 8127  ax-pre-suploc 8128
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-id 4384  df-po 4387  df-iso 4388  df-iord 4457  df-on 4459  df-ilim 4460  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-isom 5327  df-riota 5960  df-ov 6010  df-oprab 6011  df-mpo 6012  df-1st 6292  df-2nd 6293  df-recs 6457  df-frec 6543  df-map 6805  df-sup 7159  df-inf 7160  df-pnf 8191  df-mnf 8192  df-xr 8193  df-ltxr 8194  df-le 8195  df-sub 8327  df-neg 8328  df-reap 8730  df-ap 8737  df-div 8828  df-inn 9119  df-2 9177  df-3 9178  df-4 9179  df-n0 9378  df-z 9455  df-uz 9731  df-rp 9858  df-ioo 10096  df-icc 10099  df-seqfrec 10678  df-exp 10769  df-cj 11361  df-re 11362  df-im 11363  df-rsqrt 11517  df-abs 11518  df-cncf 15253
This theorem is referenced by:  cosz12  15462  ioocosf1o  15536
  Copyright terms: Public domain W3C validator