ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ivthdec GIF version

Theorem ivthdec 14262
Description: The intermediate value theorem, decreasing case, for a strictly monotonic function. (Contributed by Jim Kingdon, 20-Feb-2024.)
Hypotheses
Ref Expression
ivth.1 (𝜑𝐴 ∈ ℝ)
ivth.2 (𝜑𝐵 ∈ ℝ)
ivth.3 (𝜑𝑈 ∈ ℝ)
ivth.4 (𝜑𝐴 < 𝐵)
ivth.5 (𝜑 → (𝐴[,]𝐵) ⊆ 𝐷)
ivth.7 (𝜑𝐹 ∈ (𝐷cn→ℂ))
ivth.8 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝐹𝑥) ∈ ℝ)
ivthdec.9 (𝜑 → ((𝐹𝐵) < 𝑈𝑈 < (𝐹𝐴)))
ivthdec.i (((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑥 < 𝑦)) → (𝐹𝑦) < (𝐹𝑥))
Assertion
Ref Expression
ivthdec (𝜑 → ∃𝑐 ∈ (𝐴(,)𝐵)(𝐹𝑐) = 𝑈)
Distinct variable groups:   𝐴,𝑐,𝑥   𝑦,𝐴,𝑥   𝐵,𝑐,𝑥   𝑦,𝐵   𝐷,𝑐,𝑥   𝑦,𝐷   𝐹,𝑐,𝑥   𝑦,𝐹   𝑈,𝑐,𝑥   𝑦,𝑈   𝜑,𝑐,𝑥   𝜑,𝑦

Proof of Theorem ivthdec
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 ivth.1 . . 3 (𝜑𝐴 ∈ ℝ)
2 ivth.2 . . 3 (𝜑𝐵 ∈ ℝ)
3 ivth.3 . . . 4 (𝜑𝑈 ∈ ℝ)
43renegcld 8340 . . 3 (𝜑 → -𝑈 ∈ ℝ)
5 ivth.4 . . 3 (𝜑𝐴 < 𝐵)
6 ivth.5 . . 3 (𝜑 → (𝐴[,]𝐵) ⊆ 𝐷)
7 ivth.7 . . . 4 (𝜑𝐹 ∈ (𝐷cn→ℂ))
8 eqid 2177 . . . . 5 (𝑤𝐷 ↦ -(𝐹𝑤)) = (𝑤𝐷 ↦ -(𝐹𝑤))
98negfcncf 14229 . . . 4 (𝐹 ∈ (𝐷cn→ℂ) → (𝑤𝐷 ↦ -(𝐹𝑤)) ∈ (𝐷cn→ℂ))
107, 9syl 14 . . 3 (𝜑 → (𝑤𝐷 ↦ -(𝐹𝑤)) ∈ (𝐷cn→ℂ))
11 fveq2 5517 . . . . . 6 (𝑤 = 𝑥 → (𝐹𝑤) = (𝐹𝑥))
1211negeqd 8155 . . . . 5 (𝑤 = 𝑥 → -(𝐹𝑤) = -(𝐹𝑥))
136sselda 3157 . . . . 5 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → 𝑥𝐷)
14 ivth.8 . . . . . 6 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝐹𝑥) ∈ ℝ)
1514renegcld 8340 . . . . 5 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → -(𝐹𝑥) ∈ ℝ)
168, 12, 13, 15fvmptd3 5612 . . . 4 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → ((𝑤𝐷 ↦ -(𝐹𝑤))‘𝑥) = -(𝐹𝑥))
1716, 15eqeltrd 2254 . . 3 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → ((𝑤𝐷 ↦ -(𝐹𝑤))‘𝑥) ∈ ℝ)
18 fveq2 5517 . . . . . . 7 (𝑤 = 𝐴 → (𝐹𝑤) = (𝐹𝐴))
1918negeqd 8155 . . . . . 6 (𝑤 = 𝐴 → -(𝐹𝑤) = -(𝐹𝐴))
201rexrd 8010 . . . . . . . 8 (𝜑𝐴 ∈ ℝ*)
212rexrd 8010 . . . . . . . 8 (𝜑𝐵 ∈ ℝ*)
221, 2, 5ltled 8079 . . . . . . . 8 (𝜑𝐴𝐵)
23 lbicc2 9987 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → 𝐴 ∈ (𝐴[,]𝐵))
2420, 21, 22, 23syl3anc 1238 . . . . . . 7 (𝜑𝐴 ∈ (𝐴[,]𝐵))
256, 24sseldd 3158 . . . . . 6 (𝜑𝐴𝐷)
26 fveq2 5517 . . . . . . . . 9 (𝑥 = 𝐴 → (𝐹𝑥) = (𝐹𝐴))
2726eleq1d 2246 . . . . . . . 8 (𝑥 = 𝐴 → ((𝐹𝑥) ∈ ℝ ↔ (𝐹𝐴) ∈ ℝ))
2814ralrimiva 2550 . . . . . . . 8 (𝜑 → ∀𝑥 ∈ (𝐴[,]𝐵)(𝐹𝑥) ∈ ℝ)
2927, 28, 24rspcdva 2848 . . . . . . 7 (𝜑 → (𝐹𝐴) ∈ ℝ)
3029renegcld 8340 . . . . . 6 (𝜑 → -(𝐹𝐴) ∈ ℝ)
318, 19, 25, 30fvmptd3 5612 . . . . 5 (𝜑 → ((𝑤𝐷 ↦ -(𝐹𝑤))‘𝐴) = -(𝐹𝐴))
32 ivthdec.9 . . . . . . 7 (𝜑 → ((𝐹𝐵) < 𝑈𝑈 < (𝐹𝐴)))
3332simprd 114 . . . . . 6 (𝜑𝑈 < (𝐹𝐴))
343, 29ltnegd 8483 . . . . . 6 (𝜑 → (𝑈 < (𝐹𝐴) ↔ -(𝐹𝐴) < -𝑈))
3533, 34mpbid 147 . . . . 5 (𝜑 → -(𝐹𝐴) < -𝑈)
3631, 35eqbrtrd 4027 . . . 4 (𝜑 → ((𝑤𝐷 ↦ -(𝐹𝑤))‘𝐴) < -𝑈)
3732simpld 112 . . . . . 6 (𝜑 → (𝐹𝐵) < 𝑈)
38 fveq2 5517 . . . . . . . . 9 (𝑥 = 𝐵 → (𝐹𝑥) = (𝐹𝐵))
3938eleq1d 2246 . . . . . . . 8 (𝑥 = 𝐵 → ((𝐹𝑥) ∈ ℝ ↔ (𝐹𝐵) ∈ ℝ))
40 ubicc2 9988 . . . . . . . . 9 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → 𝐵 ∈ (𝐴[,]𝐵))
4120, 21, 22, 40syl3anc 1238 . . . . . . . 8 (𝜑𝐵 ∈ (𝐴[,]𝐵))
4239, 28, 41rspcdva 2848 . . . . . . 7 (𝜑 → (𝐹𝐵) ∈ ℝ)
4342, 3ltnegd 8483 . . . . . 6 (𝜑 → ((𝐹𝐵) < 𝑈 ↔ -𝑈 < -(𝐹𝐵)))
4437, 43mpbid 147 . . . . 5 (𝜑 → -𝑈 < -(𝐹𝐵))
45 fveq2 5517 . . . . . . 7 (𝑤 = 𝐵 → (𝐹𝑤) = (𝐹𝐵))
4645negeqd 8155 . . . . . 6 (𝑤 = 𝐵 → -(𝐹𝑤) = -(𝐹𝐵))
476, 41sseldd 3158 . . . . . 6 (𝜑𝐵𝐷)
4842renegcld 8340 . . . . . 6 (𝜑 → -(𝐹𝐵) ∈ ℝ)
498, 46, 47, 48fvmptd3 5612 . . . . 5 (𝜑 → ((𝑤𝐷 ↦ -(𝐹𝑤))‘𝐵) = -(𝐹𝐵))
5044, 49breqtrrd 4033 . . . 4 (𝜑 → -𝑈 < ((𝑤𝐷 ↦ -(𝐹𝑤))‘𝐵))
5136, 50jca 306 . . 3 (𝜑 → (((𝑤𝐷 ↦ -(𝐹𝑤))‘𝐴) < -𝑈 ∧ -𝑈 < ((𝑤𝐷 ↦ -(𝐹𝑤))‘𝐵)))
52 ivthdec.i . . . . 5 (((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑥 < 𝑦)) → (𝐹𝑦) < (𝐹𝑥))
53 fveq2 5517 . . . . . . . 8 (𝑥 = 𝑦 → (𝐹𝑥) = (𝐹𝑦))
5453eleq1d 2246 . . . . . . 7 (𝑥 = 𝑦 → ((𝐹𝑥) ∈ ℝ ↔ (𝐹𝑦) ∈ ℝ))
55 simpll 527 . . . . . . . 8 (((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑥 < 𝑦)) → 𝜑)
5655, 28syl 14 . . . . . . 7 (((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑥 < 𝑦)) → ∀𝑥 ∈ (𝐴[,]𝐵)(𝐹𝑥) ∈ ℝ)
57 simprl 529 . . . . . . 7 (((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑥 < 𝑦)) → 𝑦 ∈ (𝐴[,]𝐵))
5854, 56, 57rspcdva 2848 . . . . . 6 (((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑥 < 𝑦)) → (𝐹𝑦) ∈ ℝ)
5914adantr 276 . . . . . 6 (((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑥 < 𝑦)) → (𝐹𝑥) ∈ ℝ)
6058, 59ltnegd 8483 . . . . 5 (((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑥 < 𝑦)) → ((𝐹𝑦) < (𝐹𝑥) ↔ -(𝐹𝑥) < -(𝐹𝑦)))
6152, 60mpbid 147 . . . 4 (((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑥 < 𝑦)) → -(𝐹𝑥) < -(𝐹𝑦))
6213adantr 276 . . . . 5 (((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑥 < 𝑦)) → 𝑥𝐷)
6315adantr 276 . . . . 5 (((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑥 < 𝑦)) → -(𝐹𝑥) ∈ ℝ)
648, 12, 62, 63fvmptd3 5612 . . . 4 (((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑥 < 𝑦)) → ((𝑤𝐷 ↦ -(𝐹𝑤))‘𝑥) = -(𝐹𝑥))
65 fveq2 5517 . . . . . 6 (𝑤 = 𝑦 → (𝐹𝑤) = (𝐹𝑦))
6665negeqd 8155 . . . . 5 (𝑤 = 𝑦 → -(𝐹𝑤) = -(𝐹𝑦))
676sseld 3156 . . . . . 6 (𝜑 → (𝑦 ∈ (𝐴[,]𝐵) → 𝑦𝐷))
6855, 57, 67sylc 62 . . . . 5 (((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑥 < 𝑦)) → 𝑦𝐷)
6958renegcld 8340 . . . . 5 (((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑥 < 𝑦)) → -(𝐹𝑦) ∈ ℝ)
708, 66, 68, 69fvmptd3 5612 . . . 4 (((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑥 < 𝑦)) → ((𝑤𝐷 ↦ -(𝐹𝑤))‘𝑦) = -(𝐹𝑦))
7161, 64, 703brtr4d 4037 . . 3 (((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑥 < 𝑦)) → ((𝑤𝐷 ↦ -(𝐹𝑤))‘𝑥) < ((𝑤𝐷 ↦ -(𝐹𝑤))‘𝑦))
721, 2, 4, 5, 6, 10, 17, 51, 71ivthinc 14261 . 2 (𝜑 → ∃𝑐 ∈ (𝐴(,)𝐵)((𝑤𝐷 ↦ -(𝐹𝑤))‘𝑐) = -𝑈)
73 fveq2 5517 . . . . . . 7 (𝑤 = 𝑐 → (𝐹𝑤) = (𝐹𝑐))
7473negeqd 8155 . . . . . 6 (𝑤 = 𝑐 → -(𝐹𝑤) = -(𝐹𝑐))
75 ioossicc 9962 . . . . . . . 8 (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵)
7675, 6sstrid 3168 . . . . . . 7 (𝜑 → (𝐴(,)𝐵) ⊆ 𝐷)
7776sselda 3157 . . . . . 6 ((𝜑𝑐 ∈ (𝐴(,)𝐵)) → 𝑐𝐷)
78 fveq2 5517 . . . . . . . . 9 (𝑥 = 𝑐 → (𝐹𝑥) = (𝐹𝑐))
7978eleq1d 2246 . . . . . . . 8 (𝑥 = 𝑐 → ((𝐹𝑥) ∈ ℝ ↔ (𝐹𝑐) ∈ ℝ))
8028adantr 276 . . . . . . . 8 ((𝜑𝑐 ∈ (𝐴(,)𝐵)) → ∀𝑥 ∈ (𝐴[,]𝐵)(𝐹𝑥) ∈ ℝ)
8175sseli 3153 . . . . . . . . 9 (𝑐 ∈ (𝐴(,)𝐵) → 𝑐 ∈ (𝐴[,]𝐵))
8281adantl 277 . . . . . . . 8 ((𝜑𝑐 ∈ (𝐴(,)𝐵)) → 𝑐 ∈ (𝐴[,]𝐵))
8379, 80, 82rspcdva 2848 . . . . . . 7 ((𝜑𝑐 ∈ (𝐴(,)𝐵)) → (𝐹𝑐) ∈ ℝ)
8483renegcld 8340 . . . . . 6 ((𝜑𝑐 ∈ (𝐴(,)𝐵)) → -(𝐹𝑐) ∈ ℝ)
858, 74, 77, 84fvmptd3 5612 . . . . 5 ((𝜑𝑐 ∈ (𝐴(,)𝐵)) → ((𝑤𝐷 ↦ -(𝐹𝑤))‘𝑐) = -(𝐹𝑐))
8685eqeq1d 2186 . . . 4 ((𝜑𝑐 ∈ (𝐴(,)𝐵)) → (((𝑤𝐷 ↦ -(𝐹𝑤))‘𝑐) = -𝑈 ↔ -(𝐹𝑐) = -𝑈))
87 cncff 14204 . . . . . . . 8 (𝐹 ∈ (𝐷cn→ℂ) → 𝐹:𝐷⟶ℂ)
887, 87syl 14 . . . . . . 7 (𝜑𝐹:𝐷⟶ℂ)
8988ffvelcdmda 5654 . . . . . 6 ((𝜑𝑐𝐷) → (𝐹𝑐) ∈ ℂ)
9077, 89syldan 282 . . . . 5 ((𝜑𝑐 ∈ (𝐴(,)𝐵)) → (𝐹𝑐) ∈ ℂ)
913recnd 7989 . . . . . 6 (𝜑𝑈 ∈ ℂ)
9291adantr 276 . . . . 5 ((𝜑𝑐 ∈ (𝐴(,)𝐵)) → 𝑈 ∈ ℂ)
9390, 92neg11ad 8267 . . . 4 ((𝜑𝑐 ∈ (𝐴(,)𝐵)) → (-(𝐹𝑐) = -𝑈 ↔ (𝐹𝑐) = 𝑈))
9486, 93bitrd 188 . . 3 ((𝜑𝑐 ∈ (𝐴(,)𝐵)) → (((𝑤𝐷 ↦ -(𝐹𝑤))‘𝑐) = -𝑈 ↔ (𝐹𝑐) = 𝑈))
9594rexbidva 2474 . 2 (𝜑 → (∃𝑐 ∈ (𝐴(,)𝐵)((𝑤𝐷 ↦ -(𝐹𝑤))‘𝑐) = -𝑈 ↔ ∃𝑐 ∈ (𝐴(,)𝐵)(𝐹𝑐) = 𝑈))
9672, 95mpbid 147 1 (𝜑 → ∃𝑐 ∈ (𝐴(,)𝐵)(𝐹𝑐) = 𝑈)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1353  wcel 2148  wral 2455  wrex 2456  wss 3131   class class class wbr 4005  cmpt 4066  wf 5214  cfv 5218  (class class class)co 5878  cc 7812  cr 7813  *cxr 7994   < clt 7995  cle 7996  -cneg 8132  (,)cioo 9891  [,]cicc 9894  cnccncf 14197
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4120  ax-sep 4123  ax-nul 4131  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-iinf 4589  ax-cnex 7905  ax-resscn 7906  ax-1cn 7907  ax-1re 7908  ax-icn 7909  ax-addcl 7910  ax-addrcl 7911  ax-mulcl 7912  ax-mulrcl 7913  ax-addcom 7914  ax-mulcom 7915  ax-addass 7916  ax-mulass 7917  ax-distr 7918  ax-i2m1 7919  ax-0lt1 7920  ax-1rid 7921  ax-0id 7922  ax-rnegex 7923  ax-precex 7924  ax-cnre 7925  ax-pre-ltirr 7926  ax-pre-ltwlin 7927  ax-pre-lttrn 7928  ax-pre-apti 7929  ax-pre-ltadd 7930  ax-pre-mulgt0 7931  ax-pre-mulext 7932  ax-arch 7933  ax-caucvg 7934  ax-pre-suploc 7935
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-if 3537  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-tr 4104  df-id 4295  df-po 4298  df-iso 4299  df-iord 4368  df-on 4370  df-ilim 4371  df-suc 4373  df-iom 4592  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-isom 5227  df-riota 5834  df-ov 5881  df-oprab 5882  df-mpo 5883  df-1st 6144  df-2nd 6145  df-recs 6309  df-frec 6395  df-map 6653  df-sup 6986  df-inf 6987  df-pnf 7997  df-mnf 7998  df-xr 7999  df-ltxr 8000  df-le 8001  df-sub 8133  df-neg 8134  df-reap 8535  df-ap 8542  df-div 8633  df-inn 8923  df-2 8981  df-3 8982  df-4 8983  df-n0 9180  df-z 9257  df-uz 9532  df-rp 9657  df-ioo 9895  df-icc 9898  df-seqfrec 10449  df-exp 10523  df-cj 10854  df-re 10855  df-im 10856  df-rsqrt 11010  df-abs 11011  df-cncf 14198
This theorem is referenced by:  cosz12  14341  ioocosf1o  14415
  Copyright terms: Public domain W3C validator