ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ivthdec GIF version

Theorem ivthdec 14798
Description: The intermediate value theorem, decreasing case, for a strictly monotonic function. (Contributed by Jim Kingdon, 20-Feb-2024.)
Hypotheses
Ref Expression
ivth.1 (𝜑𝐴 ∈ ℝ)
ivth.2 (𝜑𝐵 ∈ ℝ)
ivth.3 (𝜑𝑈 ∈ ℝ)
ivth.4 (𝜑𝐴 < 𝐵)
ivth.5 (𝜑 → (𝐴[,]𝐵) ⊆ 𝐷)
ivth.7 (𝜑𝐹 ∈ (𝐷cn→ℂ))
ivth.8 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝐹𝑥) ∈ ℝ)
ivthdec.9 (𝜑 → ((𝐹𝐵) < 𝑈𝑈 < (𝐹𝐴)))
ivthdec.i (((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑥 < 𝑦)) → (𝐹𝑦) < (𝐹𝑥))
Assertion
Ref Expression
ivthdec (𝜑 → ∃𝑐 ∈ (𝐴(,)𝐵)(𝐹𝑐) = 𝑈)
Distinct variable groups:   𝐴,𝑐,𝑥   𝑦,𝐴,𝑥   𝐵,𝑐,𝑥   𝑦,𝐵   𝐷,𝑐,𝑥   𝑦,𝐷   𝐹,𝑐,𝑥   𝑦,𝐹   𝑈,𝑐,𝑥   𝑦,𝑈   𝜑,𝑐,𝑥   𝜑,𝑦

Proof of Theorem ivthdec
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 ivth.1 . . 3 (𝜑𝐴 ∈ ℝ)
2 ivth.2 . . 3 (𝜑𝐵 ∈ ℝ)
3 ivth.3 . . . 4 (𝜑𝑈 ∈ ℝ)
43renegcld 8399 . . 3 (𝜑 → -𝑈 ∈ ℝ)
5 ivth.4 . . 3 (𝜑𝐴 < 𝐵)
6 ivth.5 . . 3 (𝜑 → (𝐴[,]𝐵) ⊆ 𝐷)
7 ivth.7 . . . 4 (𝜑𝐹 ∈ (𝐷cn→ℂ))
8 eqid 2193 . . . . 5 (𝑤𝐷 ↦ -(𝐹𝑤)) = (𝑤𝐷 ↦ -(𝐹𝑤))
98negfcncf 14760 . . . 4 (𝐹 ∈ (𝐷cn→ℂ) → (𝑤𝐷 ↦ -(𝐹𝑤)) ∈ (𝐷cn→ℂ))
107, 9syl 14 . . 3 (𝜑 → (𝑤𝐷 ↦ -(𝐹𝑤)) ∈ (𝐷cn→ℂ))
11 fveq2 5554 . . . . . 6 (𝑤 = 𝑥 → (𝐹𝑤) = (𝐹𝑥))
1211negeqd 8214 . . . . 5 (𝑤 = 𝑥 → -(𝐹𝑤) = -(𝐹𝑥))
136sselda 3179 . . . . 5 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → 𝑥𝐷)
14 ivth.8 . . . . . 6 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝐹𝑥) ∈ ℝ)
1514renegcld 8399 . . . . 5 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → -(𝐹𝑥) ∈ ℝ)
168, 12, 13, 15fvmptd3 5651 . . . 4 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → ((𝑤𝐷 ↦ -(𝐹𝑤))‘𝑥) = -(𝐹𝑥))
1716, 15eqeltrd 2270 . . 3 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → ((𝑤𝐷 ↦ -(𝐹𝑤))‘𝑥) ∈ ℝ)
18 fveq2 5554 . . . . . . 7 (𝑤 = 𝐴 → (𝐹𝑤) = (𝐹𝐴))
1918negeqd 8214 . . . . . 6 (𝑤 = 𝐴 → -(𝐹𝑤) = -(𝐹𝐴))
201rexrd 8069 . . . . . . . 8 (𝜑𝐴 ∈ ℝ*)
212rexrd 8069 . . . . . . . 8 (𝜑𝐵 ∈ ℝ*)
221, 2, 5ltled 8138 . . . . . . . 8 (𝜑𝐴𝐵)
23 lbicc2 10050 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → 𝐴 ∈ (𝐴[,]𝐵))
2420, 21, 22, 23syl3anc 1249 . . . . . . 7 (𝜑𝐴 ∈ (𝐴[,]𝐵))
256, 24sseldd 3180 . . . . . 6 (𝜑𝐴𝐷)
26 fveq2 5554 . . . . . . . . 9 (𝑥 = 𝐴 → (𝐹𝑥) = (𝐹𝐴))
2726eleq1d 2262 . . . . . . . 8 (𝑥 = 𝐴 → ((𝐹𝑥) ∈ ℝ ↔ (𝐹𝐴) ∈ ℝ))
2814ralrimiva 2567 . . . . . . . 8 (𝜑 → ∀𝑥 ∈ (𝐴[,]𝐵)(𝐹𝑥) ∈ ℝ)
2927, 28, 24rspcdva 2869 . . . . . . 7 (𝜑 → (𝐹𝐴) ∈ ℝ)
3029renegcld 8399 . . . . . 6 (𝜑 → -(𝐹𝐴) ∈ ℝ)
318, 19, 25, 30fvmptd3 5651 . . . . 5 (𝜑 → ((𝑤𝐷 ↦ -(𝐹𝑤))‘𝐴) = -(𝐹𝐴))
32 ivthdec.9 . . . . . . 7 (𝜑 → ((𝐹𝐵) < 𝑈𝑈 < (𝐹𝐴)))
3332simprd 114 . . . . . 6 (𝜑𝑈 < (𝐹𝐴))
343, 29ltnegd 8542 . . . . . 6 (𝜑 → (𝑈 < (𝐹𝐴) ↔ -(𝐹𝐴) < -𝑈))
3533, 34mpbid 147 . . . . 5 (𝜑 → -(𝐹𝐴) < -𝑈)
3631, 35eqbrtrd 4051 . . . 4 (𝜑 → ((𝑤𝐷 ↦ -(𝐹𝑤))‘𝐴) < -𝑈)
3732simpld 112 . . . . . 6 (𝜑 → (𝐹𝐵) < 𝑈)
38 fveq2 5554 . . . . . . . . 9 (𝑥 = 𝐵 → (𝐹𝑥) = (𝐹𝐵))
3938eleq1d 2262 . . . . . . . 8 (𝑥 = 𝐵 → ((𝐹𝑥) ∈ ℝ ↔ (𝐹𝐵) ∈ ℝ))
40 ubicc2 10051 . . . . . . . . 9 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → 𝐵 ∈ (𝐴[,]𝐵))
4120, 21, 22, 40syl3anc 1249 . . . . . . . 8 (𝜑𝐵 ∈ (𝐴[,]𝐵))
4239, 28, 41rspcdva 2869 . . . . . . 7 (𝜑 → (𝐹𝐵) ∈ ℝ)
4342, 3ltnegd 8542 . . . . . 6 (𝜑 → ((𝐹𝐵) < 𝑈 ↔ -𝑈 < -(𝐹𝐵)))
4437, 43mpbid 147 . . . . 5 (𝜑 → -𝑈 < -(𝐹𝐵))
45 fveq2 5554 . . . . . . 7 (𝑤 = 𝐵 → (𝐹𝑤) = (𝐹𝐵))
4645negeqd 8214 . . . . . 6 (𝑤 = 𝐵 → -(𝐹𝑤) = -(𝐹𝐵))
476, 41sseldd 3180 . . . . . 6 (𝜑𝐵𝐷)
4842renegcld 8399 . . . . . 6 (𝜑 → -(𝐹𝐵) ∈ ℝ)
498, 46, 47, 48fvmptd3 5651 . . . . 5 (𝜑 → ((𝑤𝐷 ↦ -(𝐹𝑤))‘𝐵) = -(𝐹𝐵))
5044, 49breqtrrd 4057 . . . 4 (𝜑 → -𝑈 < ((𝑤𝐷 ↦ -(𝐹𝑤))‘𝐵))
5136, 50jca 306 . . 3 (𝜑 → (((𝑤𝐷 ↦ -(𝐹𝑤))‘𝐴) < -𝑈 ∧ -𝑈 < ((𝑤𝐷 ↦ -(𝐹𝑤))‘𝐵)))
52 ivthdec.i . . . . 5 (((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑥 < 𝑦)) → (𝐹𝑦) < (𝐹𝑥))
53 fveq2 5554 . . . . . . . 8 (𝑥 = 𝑦 → (𝐹𝑥) = (𝐹𝑦))
5453eleq1d 2262 . . . . . . 7 (𝑥 = 𝑦 → ((𝐹𝑥) ∈ ℝ ↔ (𝐹𝑦) ∈ ℝ))
55 simpll 527 . . . . . . . 8 (((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑥 < 𝑦)) → 𝜑)
5655, 28syl 14 . . . . . . 7 (((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑥 < 𝑦)) → ∀𝑥 ∈ (𝐴[,]𝐵)(𝐹𝑥) ∈ ℝ)
57 simprl 529 . . . . . . 7 (((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑥 < 𝑦)) → 𝑦 ∈ (𝐴[,]𝐵))
5854, 56, 57rspcdva 2869 . . . . . 6 (((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑥 < 𝑦)) → (𝐹𝑦) ∈ ℝ)
5914adantr 276 . . . . . 6 (((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑥 < 𝑦)) → (𝐹𝑥) ∈ ℝ)
6058, 59ltnegd 8542 . . . . 5 (((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑥 < 𝑦)) → ((𝐹𝑦) < (𝐹𝑥) ↔ -(𝐹𝑥) < -(𝐹𝑦)))
6152, 60mpbid 147 . . . 4 (((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑥 < 𝑦)) → -(𝐹𝑥) < -(𝐹𝑦))
6213adantr 276 . . . . 5 (((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑥 < 𝑦)) → 𝑥𝐷)
6315adantr 276 . . . . 5 (((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑥 < 𝑦)) → -(𝐹𝑥) ∈ ℝ)
648, 12, 62, 63fvmptd3 5651 . . . 4 (((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑥 < 𝑦)) → ((𝑤𝐷 ↦ -(𝐹𝑤))‘𝑥) = -(𝐹𝑥))
65 fveq2 5554 . . . . . 6 (𝑤 = 𝑦 → (𝐹𝑤) = (𝐹𝑦))
6665negeqd 8214 . . . . 5 (𝑤 = 𝑦 → -(𝐹𝑤) = -(𝐹𝑦))
676sseld 3178 . . . . . 6 (𝜑 → (𝑦 ∈ (𝐴[,]𝐵) → 𝑦𝐷))
6855, 57, 67sylc 62 . . . . 5 (((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑥 < 𝑦)) → 𝑦𝐷)
6958renegcld 8399 . . . . 5 (((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑥 < 𝑦)) → -(𝐹𝑦) ∈ ℝ)
708, 66, 68, 69fvmptd3 5651 . . . 4 (((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑥 < 𝑦)) → ((𝑤𝐷 ↦ -(𝐹𝑤))‘𝑦) = -(𝐹𝑦))
7161, 64, 703brtr4d 4061 . . 3 (((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑥 < 𝑦)) → ((𝑤𝐷 ↦ -(𝐹𝑤))‘𝑥) < ((𝑤𝐷 ↦ -(𝐹𝑤))‘𝑦))
721, 2, 4, 5, 6, 10, 17, 51, 71ivthinc 14797 . 2 (𝜑 → ∃𝑐 ∈ (𝐴(,)𝐵)((𝑤𝐷 ↦ -(𝐹𝑤))‘𝑐) = -𝑈)
73 fveq2 5554 . . . . . . 7 (𝑤 = 𝑐 → (𝐹𝑤) = (𝐹𝑐))
7473negeqd 8214 . . . . . 6 (𝑤 = 𝑐 → -(𝐹𝑤) = -(𝐹𝑐))
75 ioossicc 10025 . . . . . . . 8 (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵)
7675, 6sstrid 3190 . . . . . . 7 (𝜑 → (𝐴(,)𝐵) ⊆ 𝐷)
7776sselda 3179 . . . . . 6 ((𝜑𝑐 ∈ (𝐴(,)𝐵)) → 𝑐𝐷)
78 fveq2 5554 . . . . . . . . 9 (𝑥 = 𝑐 → (𝐹𝑥) = (𝐹𝑐))
7978eleq1d 2262 . . . . . . . 8 (𝑥 = 𝑐 → ((𝐹𝑥) ∈ ℝ ↔ (𝐹𝑐) ∈ ℝ))
8028adantr 276 . . . . . . . 8 ((𝜑𝑐 ∈ (𝐴(,)𝐵)) → ∀𝑥 ∈ (𝐴[,]𝐵)(𝐹𝑥) ∈ ℝ)
8175sseli 3175 . . . . . . . . 9 (𝑐 ∈ (𝐴(,)𝐵) → 𝑐 ∈ (𝐴[,]𝐵))
8281adantl 277 . . . . . . . 8 ((𝜑𝑐 ∈ (𝐴(,)𝐵)) → 𝑐 ∈ (𝐴[,]𝐵))
8379, 80, 82rspcdva 2869 . . . . . . 7 ((𝜑𝑐 ∈ (𝐴(,)𝐵)) → (𝐹𝑐) ∈ ℝ)
8483renegcld 8399 . . . . . 6 ((𝜑𝑐 ∈ (𝐴(,)𝐵)) → -(𝐹𝑐) ∈ ℝ)
858, 74, 77, 84fvmptd3 5651 . . . . 5 ((𝜑𝑐 ∈ (𝐴(,)𝐵)) → ((𝑤𝐷 ↦ -(𝐹𝑤))‘𝑐) = -(𝐹𝑐))
8685eqeq1d 2202 . . . 4 ((𝜑𝑐 ∈ (𝐴(,)𝐵)) → (((𝑤𝐷 ↦ -(𝐹𝑤))‘𝑐) = -𝑈 ↔ -(𝐹𝑐) = -𝑈))
87 cncff 14732 . . . . . . . 8 (𝐹 ∈ (𝐷cn→ℂ) → 𝐹:𝐷⟶ℂ)
887, 87syl 14 . . . . . . 7 (𝜑𝐹:𝐷⟶ℂ)
8988ffvelcdmda 5693 . . . . . 6 ((𝜑𝑐𝐷) → (𝐹𝑐) ∈ ℂ)
9077, 89syldan 282 . . . . 5 ((𝜑𝑐 ∈ (𝐴(,)𝐵)) → (𝐹𝑐) ∈ ℂ)
913recnd 8048 . . . . . 6 (𝜑𝑈 ∈ ℂ)
9291adantr 276 . . . . 5 ((𝜑𝑐 ∈ (𝐴(,)𝐵)) → 𝑈 ∈ ℂ)
9390, 92neg11ad 8326 . . . 4 ((𝜑𝑐 ∈ (𝐴(,)𝐵)) → (-(𝐹𝑐) = -𝑈 ↔ (𝐹𝑐) = 𝑈))
9486, 93bitrd 188 . . 3 ((𝜑𝑐 ∈ (𝐴(,)𝐵)) → (((𝑤𝐷 ↦ -(𝐹𝑤))‘𝑐) = -𝑈 ↔ (𝐹𝑐) = 𝑈))
9594rexbidva 2491 . 2 (𝜑 → (∃𝑐 ∈ (𝐴(,)𝐵)((𝑤𝐷 ↦ -(𝐹𝑤))‘𝑐) = -𝑈 ↔ ∃𝑐 ∈ (𝐴(,)𝐵)(𝐹𝑐) = 𝑈))
9672, 95mpbid 147 1 (𝜑 → ∃𝑐 ∈ (𝐴(,)𝐵)(𝐹𝑐) = 𝑈)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2164  wral 2472  wrex 2473  wss 3153   class class class wbr 4029  cmpt 4090  wf 5250  cfv 5254  (class class class)co 5918  cc 7870  cr 7871  *cxr 8053   < clt 8054  cle 8055  -cneg 8191  (,)cioo 9954  [,]cicc 9957  cnccncf 14725
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-mulrcl 7971  ax-addcom 7972  ax-mulcom 7973  ax-addass 7974  ax-mulass 7975  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-1rid 7979  ax-0id 7980  ax-rnegex 7981  ax-precex 7982  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-apti 7987  ax-pre-ltadd 7988  ax-pre-mulgt0 7989  ax-pre-mulext 7990  ax-arch 7991  ax-caucvg 7992  ax-pre-suploc 7993
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-if 3558  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4324  df-po 4327  df-iso 4328  df-iord 4397  df-on 4399  df-ilim 4400  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-isom 5263  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-recs 6358  df-frec 6444  df-map 6704  df-sup 7043  df-inf 7044  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-reap 8594  df-ap 8601  df-div 8692  df-inn 8983  df-2 9041  df-3 9042  df-4 9043  df-n0 9241  df-z 9318  df-uz 9593  df-rp 9720  df-ioo 9958  df-icc 9961  df-seqfrec 10519  df-exp 10610  df-cj 10986  df-re 10987  df-im 10988  df-rsqrt 11142  df-abs 11143  df-cncf 14726
This theorem is referenced by:  cosz12  14915  ioocosf1o  14989
  Copyright terms: Public domain W3C validator