Step | Hyp | Ref
| Expression |
1 | | ivth.1 |
. . 3
⊢ (𝜑 → 𝐴 ∈ ℝ) |
2 | | ivth.2 |
. . 3
⊢ (𝜑 → 𝐵 ∈ ℝ) |
3 | | ivth.3 |
. . . 4
⊢ (𝜑 → 𝑈 ∈ ℝ) |
4 | 3 | renegcld 8299 |
. . 3
⊢ (𝜑 → -𝑈 ∈ ℝ) |
5 | | ivth.4 |
. . 3
⊢ (𝜑 → 𝐴 < 𝐵) |
6 | | ivth.5 |
. . 3
⊢ (𝜑 → (𝐴[,]𝐵) ⊆ 𝐷) |
7 | | ivth.7 |
. . . 4
⊢ (𝜑 → 𝐹 ∈ (𝐷–cn→ℂ)) |
8 | | eqid 2170 |
. . . . 5
⊢ (𝑤 ∈ 𝐷 ↦ -(𝐹‘𝑤)) = (𝑤 ∈ 𝐷 ↦ -(𝐹‘𝑤)) |
9 | 8 | negfcncf 13383 |
. . . 4
⊢ (𝐹 ∈ (𝐷–cn→ℂ) → (𝑤 ∈ 𝐷 ↦ -(𝐹‘𝑤)) ∈ (𝐷–cn→ℂ)) |
10 | 7, 9 | syl 14 |
. . 3
⊢ (𝜑 → (𝑤 ∈ 𝐷 ↦ -(𝐹‘𝑤)) ∈ (𝐷–cn→ℂ)) |
11 | | fveq2 5496 |
. . . . . 6
⊢ (𝑤 = 𝑥 → (𝐹‘𝑤) = (𝐹‘𝑥)) |
12 | 11 | negeqd 8114 |
. . . . 5
⊢ (𝑤 = 𝑥 → -(𝐹‘𝑤) = -(𝐹‘𝑥)) |
13 | 6 | sselda 3147 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → 𝑥 ∈ 𝐷) |
14 | | ivth.8 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (𝐹‘𝑥) ∈ ℝ) |
15 | 14 | renegcld 8299 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → -(𝐹‘𝑥) ∈ ℝ) |
16 | 8, 12, 13, 15 | fvmptd3 5589 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → ((𝑤 ∈ 𝐷 ↦ -(𝐹‘𝑤))‘𝑥) = -(𝐹‘𝑥)) |
17 | 16, 15 | eqeltrd 2247 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → ((𝑤 ∈ 𝐷 ↦ -(𝐹‘𝑤))‘𝑥) ∈ ℝ) |
18 | | fveq2 5496 |
. . . . . . 7
⊢ (𝑤 = 𝐴 → (𝐹‘𝑤) = (𝐹‘𝐴)) |
19 | 18 | negeqd 8114 |
. . . . . 6
⊢ (𝑤 = 𝐴 → -(𝐹‘𝑤) = -(𝐹‘𝐴)) |
20 | 1 | rexrd 7969 |
. . . . . . . 8
⊢ (𝜑 → 𝐴 ∈
ℝ*) |
21 | 2 | rexrd 7969 |
. . . . . . . 8
⊢ (𝜑 → 𝐵 ∈
ℝ*) |
22 | 1, 2, 5 | ltled 8038 |
. . . . . . . 8
⊢ (𝜑 → 𝐴 ≤ 𝐵) |
23 | | lbicc2 9941 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ 𝐴
≤ 𝐵) → 𝐴 ∈ (𝐴[,]𝐵)) |
24 | 20, 21, 22, 23 | syl3anc 1233 |
. . . . . . 7
⊢ (𝜑 → 𝐴 ∈ (𝐴[,]𝐵)) |
25 | 6, 24 | sseldd 3148 |
. . . . . 6
⊢ (𝜑 → 𝐴 ∈ 𝐷) |
26 | | fveq2 5496 |
. . . . . . . . 9
⊢ (𝑥 = 𝐴 → (𝐹‘𝑥) = (𝐹‘𝐴)) |
27 | 26 | eleq1d 2239 |
. . . . . . . 8
⊢ (𝑥 = 𝐴 → ((𝐹‘𝑥) ∈ ℝ ↔ (𝐹‘𝐴) ∈ ℝ)) |
28 | 14 | ralrimiva 2543 |
. . . . . . . 8
⊢ (𝜑 → ∀𝑥 ∈ (𝐴[,]𝐵)(𝐹‘𝑥) ∈ ℝ) |
29 | 27, 28, 24 | rspcdva 2839 |
. . . . . . 7
⊢ (𝜑 → (𝐹‘𝐴) ∈ ℝ) |
30 | 29 | renegcld 8299 |
. . . . . 6
⊢ (𝜑 → -(𝐹‘𝐴) ∈ ℝ) |
31 | 8, 19, 25, 30 | fvmptd3 5589 |
. . . . 5
⊢ (𝜑 → ((𝑤 ∈ 𝐷 ↦ -(𝐹‘𝑤))‘𝐴) = -(𝐹‘𝐴)) |
32 | | ivthdec.9 |
. . . . . . 7
⊢ (𝜑 → ((𝐹‘𝐵) < 𝑈 ∧ 𝑈 < (𝐹‘𝐴))) |
33 | 32 | simprd 113 |
. . . . . 6
⊢ (𝜑 → 𝑈 < (𝐹‘𝐴)) |
34 | 3, 29 | ltnegd 8442 |
. . . . . 6
⊢ (𝜑 → (𝑈 < (𝐹‘𝐴) ↔ -(𝐹‘𝐴) < -𝑈)) |
35 | 33, 34 | mpbid 146 |
. . . . 5
⊢ (𝜑 → -(𝐹‘𝐴) < -𝑈) |
36 | 31, 35 | eqbrtrd 4011 |
. . . 4
⊢ (𝜑 → ((𝑤 ∈ 𝐷 ↦ -(𝐹‘𝑤))‘𝐴) < -𝑈) |
37 | 32 | simpld 111 |
. . . . . 6
⊢ (𝜑 → (𝐹‘𝐵) < 𝑈) |
38 | | fveq2 5496 |
. . . . . . . . 9
⊢ (𝑥 = 𝐵 → (𝐹‘𝑥) = (𝐹‘𝐵)) |
39 | 38 | eleq1d 2239 |
. . . . . . . 8
⊢ (𝑥 = 𝐵 → ((𝐹‘𝑥) ∈ ℝ ↔ (𝐹‘𝐵) ∈ ℝ)) |
40 | | ubicc2 9942 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ 𝐴
≤ 𝐵) → 𝐵 ∈ (𝐴[,]𝐵)) |
41 | 20, 21, 22, 40 | syl3anc 1233 |
. . . . . . . 8
⊢ (𝜑 → 𝐵 ∈ (𝐴[,]𝐵)) |
42 | 39, 28, 41 | rspcdva 2839 |
. . . . . . 7
⊢ (𝜑 → (𝐹‘𝐵) ∈ ℝ) |
43 | 42, 3 | ltnegd 8442 |
. . . . . 6
⊢ (𝜑 → ((𝐹‘𝐵) < 𝑈 ↔ -𝑈 < -(𝐹‘𝐵))) |
44 | 37, 43 | mpbid 146 |
. . . . 5
⊢ (𝜑 → -𝑈 < -(𝐹‘𝐵)) |
45 | | fveq2 5496 |
. . . . . . 7
⊢ (𝑤 = 𝐵 → (𝐹‘𝑤) = (𝐹‘𝐵)) |
46 | 45 | negeqd 8114 |
. . . . . 6
⊢ (𝑤 = 𝐵 → -(𝐹‘𝑤) = -(𝐹‘𝐵)) |
47 | 6, 41 | sseldd 3148 |
. . . . . 6
⊢ (𝜑 → 𝐵 ∈ 𝐷) |
48 | 42 | renegcld 8299 |
. . . . . 6
⊢ (𝜑 → -(𝐹‘𝐵) ∈ ℝ) |
49 | 8, 46, 47, 48 | fvmptd3 5589 |
. . . . 5
⊢ (𝜑 → ((𝑤 ∈ 𝐷 ↦ -(𝐹‘𝑤))‘𝐵) = -(𝐹‘𝐵)) |
50 | 44, 49 | breqtrrd 4017 |
. . . 4
⊢ (𝜑 → -𝑈 < ((𝑤 ∈ 𝐷 ↦ -(𝐹‘𝑤))‘𝐵)) |
51 | 36, 50 | jca 304 |
. . 3
⊢ (𝜑 → (((𝑤 ∈ 𝐷 ↦ -(𝐹‘𝑤))‘𝐴) < -𝑈 ∧ -𝑈 < ((𝑤 ∈ 𝐷 ↦ -(𝐹‘𝑤))‘𝐵))) |
52 | | ivthdec.i |
. . . . 5
⊢ (((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑥 < 𝑦)) → (𝐹‘𝑦) < (𝐹‘𝑥)) |
53 | | fveq2 5496 |
. . . . . . . 8
⊢ (𝑥 = 𝑦 → (𝐹‘𝑥) = (𝐹‘𝑦)) |
54 | 53 | eleq1d 2239 |
. . . . . . 7
⊢ (𝑥 = 𝑦 → ((𝐹‘𝑥) ∈ ℝ ↔ (𝐹‘𝑦) ∈ ℝ)) |
55 | | simpll 524 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑥 < 𝑦)) → 𝜑) |
56 | 55, 28 | syl 14 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑥 < 𝑦)) → ∀𝑥 ∈ (𝐴[,]𝐵)(𝐹‘𝑥) ∈ ℝ) |
57 | | simprl 526 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑥 < 𝑦)) → 𝑦 ∈ (𝐴[,]𝐵)) |
58 | 54, 56, 57 | rspcdva 2839 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑥 < 𝑦)) → (𝐹‘𝑦) ∈ ℝ) |
59 | 14 | adantr 274 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑥 < 𝑦)) → (𝐹‘𝑥) ∈ ℝ) |
60 | 58, 59 | ltnegd 8442 |
. . . . 5
⊢ (((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑥 < 𝑦)) → ((𝐹‘𝑦) < (𝐹‘𝑥) ↔ -(𝐹‘𝑥) < -(𝐹‘𝑦))) |
61 | 52, 60 | mpbid 146 |
. . . 4
⊢ (((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑥 < 𝑦)) → -(𝐹‘𝑥) < -(𝐹‘𝑦)) |
62 | 13 | adantr 274 |
. . . . 5
⊢ (((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑥 < 𝑦)) → 𝑥 ∈ 𝐷) |
63 | 15 | adantr 274 |
. . . . 5
⊢ (((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑥 < 𝑦)) → -(𝐹‘𝑥) ∈ ℝ) |
64 | 8, 12, 62, 63 | fvmptd3 5589 |
. . . 4
⊢ (((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑥 < 𝑦)) → ((𝑤 ∈ 𝐷 ↦ -(𝐹‘𝑤))‘𝑥) = -(𝐹‘𝑥)) |
65 | | fveq2 5496 |
. . . . . 6
⊢ (𝑤 = 𝑦 → (𝐹‘𝑤) = (𝐹‘𝑦)) |
66 | 65 | negeqd 8114 |
. . . . 5
⊢ (𝑤 = 𝑦 → -(𝐹‘𝑤) = -(𝐹‘𝑦)) |
67 | 6 | sseld 3146 |
. . . . . 6
⊢ (𝜑 → (𝑦 ∈ (𝐴[,]𝐵) → 𝑦 ∈ 𝐷)) |
68 | 55, 57, 67 | sylc 62 |
. . . . 5
⊢ (((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑥 < 𝑦)) → 𝑦 ∈ 𝐷) |
69 | 58 | renegcld 8299 |
. . . . 5
⊢ (((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑥 < 𝑦)) → -(𝐹‘𝑦) ∈ ℝ) |
70 | 8, 66, 68, 69 | fvmptd3 5589 |
. . . 4
⊢ (((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑥 < 𝑦)) → ((𝑤 ∈ 𝐷 ↦ -(𝐹‘𝑤))‘𝑦) = -(𝐹‘𝑦)) |
71 | 61, 64, 70 | 3brtr4d 4021 |
. . 3
⊢ (((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑥 < 𝑦)) → ((𝑤 ∈ 𝐷 ↦ -(𝐹‘𝑤))‘𝑥) < ((𝑤 ∈ 𝐷 ↦ -(𝐹‘𝑤))‘𝑦)) |
72 | 1, 2, 4, 5, 6, 10,
17, 51, 71 | ivthinc 13415 |
. 2
⊢ (𝜑 → ∃𝑐 ∈ (𝐴(,)𝐵)((𝑤 ∈ 𝐷 ↦ -(𝐹‘𝑤))‘𝑐) = -𝑈) |
73 | | fveq2 5496 |
. . . . . . 7
⊢ (𝑤 = 𝑐 → (𝐹‘𝑤) = (𝐹‘𝑐)) |
74 | 73 | negeqd 8114 |
. . . . . 6
⊢ (𝑤 = 𝑐 → -(𝐹‘𝑤) = -(𝐹‘𝑐)) |
75 | | ioossicc 9916 |
. . . . . . . 8
⊢ (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵) |
76 | 75, 6 | sstrid 3158 |
. . . . . . 7
⊢ (𝜑 → (𝐴(,)𝐵) ⊆ 𝐷) |
77 | 76 | sselda 3147 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑐 ∈ (𝐴(,)𝐵)) → 𝑐 ∈ 𝐷) |
78 | | fveq2 5496 |
. . . . . . . . 9
⊢ (𝑥 = 𝑐 → (𝐹‘𝑥) = (𝐹‘𝑐)) |
79 | 78 | eleq1d 2239 |
. . . . . . . 8
⊢ (𝑥 = 𝑐 → ((𝐹‘𝑥) ∈ ℝ ↔ (𝐹‘𝑐) ∈ ℝ)) |
80 | 28 | adantr 274 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑐 ∈ (𝐴(,)𝐵)) → ∀𝑥 ∈ (𝐴[,]𝐵)(𝐹‘𝑥) ∈ ℝ) |
81 | 75 | sseli 3143 |
. . . . . . . . 9
⊢ (𝑐 ∈ (𝐴(,)𝐵) → 𝑐 ∈ (𝐴[,]𝐵)) |
82 | 81 | adantl 275 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑐 ∈ (𝐴(,)𝐵)) → 𝑐 ∈ (𝐴[,]𝐵)) |
83 | 79, 80, 82 | rspcdva 2839 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑐 ∈ (𝐴(,)𝐵)) → (𝐹‘𝑐) ∈ ℝ) |
84 | 83 | renegcld 8299 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑐 ∈ (𝐴(,)𝐵)) → -(𝐹‘𝑐) ∈ ℝ) |
85 | 8, 74, 77, 84 | fvmptd3 5589 |
. . . . 5
⊢ ((𝜑 ∧ 𝑐 ∈ (𝐴(,)𝐵)) → ((𝑤 ∈ 𝐷 ↦ -(𝐹‘𝑤))‘𝑐) = -(𝐹‘𝑐)) |
86 | 85 | eqeq1d 2179 |
. . . 4
⊢ ((𝜑 ∧ 𝑐 ∈ (𝐴(,)𝐵)) → (((𝑤 ∈ 𝐷 ↦ -(𝐹‘𝑤))‘𝑐) = -𝑈 ↔ -(𝐹‘𝑐) = -𝑈)) |
87 | | cncff 13358 |
. . . . . . . 8
⊢ (𝐹 ∈ (𝐷–cn→ℂ) → 𝐹:𝐷⟶ℂ) |
88 | 7, 87 | syl 14 |
. . . . . . 7
⊢ (𝜑 → 𝐹:𝐷⟶ℂ) |
89 | 88 | ffvelrnda 5631 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐷) → (𝐹‘𝑐) ∈ ℂ) |
90 | 77, 89 | syldan 280 |
. . . . 5
⊢ ((𝜑 ∧ 𝑐 ∈ (𝐴(,)𝐵)) → (𝐹‘𝑐) ∈ ℂ) |
91 | 3 | recnd 7948 |
. . . . . 6
⊢ (𝜑 → 𝑈 ∈ ℂ) |
92 | 91 | adantr 274 |
. . . . 5
⊢ ((𝜑 ∧ 𝑐 ∈ (𝐴(,)𝐵)) → 𝑈 ∈ ℂ) |
93 | 90, 92 | neg11ad 8226 |
. . . 4
⊢ ((𝜑 ∧ 𝑐 ∈ (𝐴(,)𝐵)) → (-(𝐹‘𝑐) = -𝑈 ↔ (𝐹‘𝑐) = 𝑈)) |
94 | 86, 93 | bitrd 187 |
. . 3
⊢ ((𝜑 ∧ 𝑐 ∈ (𝐴(,)𝐵)) → (((𝑤 ∈ 𝐷 ↦ -(𝐹‘𝑤))‘𝑐) = -𝑈 ↔ (𝐹‘𝑐) = 𝑈)) |
95 | 94 | rexbidva 2467 |
. 2
⊢ (𝜑 → (∃𝑐 ∈ (𝐴(,)𝐵)((𝑤 ∈ 𝐷 ↦ -(𝐹‘𝑤))‘𝑐) = -𝑈 ↔ ∃𝑐 ∈ (𝐴(,)𝐵)(𝐹‘𝑐) = 𝑈)) |
96 | 72, 95 | mpbid 146 |
1
⊢ (𝜑 → ∃𝑐 ∈ (𝐴(,)𝐵)(𝐹‘𝑐) = 𝑈) |