![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > fzossnn0 | GIF version |
Description: A half-open integer range starting at a nonnegative integer is a subset of the nonnegative integers. (Contributed by Alexander van der Vekens, 13-May-2018.) |
Ref | Expression |
---|---|
fzossnn0 | ⊢ (𝑀 ∈ ℕ0 → (𝑀..^𝑁) ⊆ ℕ0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fzossfz 10222 | . . 3 ⊢ (𝑀..^𝑁) ⊆ (𝑀...𝑁) | |
2 | fzss1 10119 | . . . 4 ⊢ (𝑀 ∈ (ℤ≥‘0) → (𝑀...𝑁) ⊆ (0...𝑁)) | |
3 | nn0uz 9617 | . . . 4 ⊢ ℕ0 = (ℤ≥‘0) | |
4 | 2, 3 | eleq2s 2288 | . . 3 ⊢ (𝑀 ∈ ℕ0 → (𝑀...𝑁) ⊆ (0...𝑁)) |
5 | 1, 4 | sstrid 3190 | . 2 ⊢ (𝑀 ∈ ℕ0 → (𝑀..^𝑁) ⊆ (0...𝑁)) |
6 | fzssuz 10121 | . . 3 ⊢ (0...𝑁) ⊆ (ℤ≥‘0) | |
7 | 6, 3 | sseqtrri 3214 | . 2 ⊢ (0...𝑁) ⊆ ℕ0 |
8 | 5, 7 | sstrdi 3191 | 1 ⊢ (𝑀 ∈ ℕ0 → (𝑀..^𝑁) ⊆ ℕ0) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2164 ⊆ wss 3153 ‘cfv 5246 (class class class)co 5910 0cc0 7862 ℕ0cn0 9230 ℤ≥cuz 9582 ...cfz 10064 ..^cfzo 10198 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 ax-pr 4238 ax-un 4462 ax-setind 4565 ax-cnex 7953 ax-resscn 7954 ax-1cn 7955 ax-1re 7956 ax-icn 7957 ax-addcl 7958 ax-addrcl 7959 ax-mulcl 7960 ax-addcom 7962 ax-addass 7964 ax-distr 7966 ax-i2m1 7967 ax-0lt1 7968 ax-0id 7970 ax-rnegex 7971 ax-cnre 7973 ax-pre-ltirr 7974 ax-pre-ltwlin 7975 ax-pre-lttrn 7976 ax-pre-ltadd 7978 |
This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-reu 2479 df-rab 2481 df-v 2762 df-sbc 2986 df-csb 3081 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-int 3871 df-iun 3914 df-br 4030 df-opab 4091 df-mpt 4092 df-id 4322 df-xp 4661 df-rel 4662 df-cnv 4663 df-co 4664 df-dm 4665 df-rn 4666 df-res 4667 df-ima 4668 df-iota 5207 df-fun 5248 df-fn 5249 df-f 5250 df-fv 5254 df-riota 5865 df-ov 5913 df-oprab 5914 df-mpo 5915 df-1st 6184 df-2nd 6185 df-pnf 8046 df-mnf 8047 df-xr 8048 df-ltxr 8049 df-le 8050 df-sub 8182 df-neg 8183 df-inn 8973 df-n0 9231 df-z 9308 df-uz 9583 df-fz 10065 df-fzo 10199 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |