ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnovex GIF version

Theorem cnovex 12836
Description: The class of all continuous functions from a topology to another is a set. (Contributed by Jim Kingdon, 14-Dec-2023.)
Assertion
Ref Expression
cnovex ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) → (𝐽 Cn 𝐾) ∈ V)

Proof of Theorem cnovex
Dummy variables 𝑓 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 toptopon2 12657 . . 3 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘ 𝐽))
2 toptopon2 12657 . . 3 (𝐾 ∈ Top ↔ 𝐾 ∈ (TopOn‘ 𝐾))
3 cnfval 12834 . . 3 ((𝐽 ∈ (TopOn‘ 𝐽) ∧ 𝐾 ∈ (TopOn‘ 𝐾)) → (𝐽 Cn 𝐾) = {𝑓 ∈ ( 𝐾𝑚 𝐽) ∣ ∀𝑦𝐾 (𝑓𝑦) ∈ 𝐽})
41, 2, 3syl2anb 289 . 2 ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) → (𝐽 Cn 𝐾) = {𝑓 ∈ ( 𝐾𝑚 𝐽) ∣ ∀𝑦𝐾 (𝑓𝑦) ∈ 𝐽})
5 uniexg 4417 . . . . 5 (𝐾 ∈ Top → 𝐾 ∈ V)
6 uniexg 4417 . . . . 5 (𝐽 ∈ Top → 𝐽 ∈ V)
7 mapvalg 6624 . . . . 5 (( 𝐾 ∈ V ∧ 𝐽 ∈ V) → ( 𝐾𝑚 𝐽) = {𝑧𝑧: 𝐽 𝐾})
85, 6, 7syl2anr 288 . . . 4 ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) → ( 𝐾𝑚 𝐽) = {𝑧𝑧: 𝐽 𝐾})
9 mapex 6620 . . . . 5 (( 𝐽 ∈ V ∧ 𝐾 ∈ V) → {𝑧𝑧: 𝐽 𝐾} ∈ V)
106, 5, 9syl2an 287 . . . 4 ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) → {𝑧𝑧: 𝐽 𝐾} ∈ V)
118, 10eqeltrd 2243 . . 3 ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) → ( 𝐾𝑚 𝐽) ∈ V)
12 rabexg 4125 . . 3 (( 𝐾𝑚 𝐽) ∈ V → {𝑓 ∈ ( 𝐾𝑚 𝐽) ∣ ∀𝑦𝐾 (𝑓𝑦) ∈ 𝐽} ∈ V)
1311, 12syl 14 . 2 ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) → {𝑓 ∈ ( 𝐾𝑚 𝐽) ∣ ∀𝑦𝐾 (𝑓𝑦) ∈ 𝐽} ∈ V)
144, 13eqeltrd 2243 1 ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) → (𝐽 Cn 𝐾) ∈ V)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1343  wcel 2136  {cab 2151  wral 2444  {crab 2448  Vcvv 2726   cuni 3789  ccnv 4603  cima 4607  wf 5184  cfv 5188  (class class class)co 5842  𝑚 cmap 6614  Topctop 12635  TopOnctopon 12648   Cn ccn 12825
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-fv 5196  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-map 6616  df-top 12636  df-topon 12649  df-cn 12828
This theorem is referenced by:  hmeofn  12942  hmeofvalg  12943
  Copyright terms: Public domain W3C validator