ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnovex GIF version

Theorem cnovex 14093
Description: The class of all continuous functions from a topology to another is a set. (Contributed by Jim Kingdon, 14-Dec-2023.)
Assertion
Ref Expression
cnovex ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) → (𝐽 Cn 𝐾) ∈ V)

Proof of Theorem cnovex
Dummy variables 𝑓 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 toptopon2 13916 . . 3 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘ 𝐽))
2 toptopon2 13916 . . 3 (𝐾 ∈ Top ↔ 𝐾 ∈ (TopOn‘ 𝐾))
3 cnfval 14091 . . 3 ((𝐽 ∈ (TopOn‘ 𝐽) ∧ 𝐾 ∈ (TopOn‘ 𝐾)) → (𝐽 Cn 𝐾) = {𝑓 ∈ ( 𝐾𝑚 𝐽) ∣ ∀𝑦𝐾 (𝑓𝑦) ∈ 𝐽})
41, 2, 3syl2anb 291 . 2 ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) → (𝐽 Cn 𝐾) = {𝑓 ∈ ( 𝐾𝑚 𝐽) ∣ ∀𝑦𝐾 (𝑓𝑦) ∈ 𝐽})
5 uniexg 4454 . . . . 5 (𝐾 ∈ Top → 𝐾 ∈ V)
6 uniexg 4454 . . . . 5 (𝐽 ∈ Top → 𝐽 ∈ V)
7 mapvalg 6676 . . . . 5 (( 𝐾 ∈ V ∧ 𝐽 ∈ V) → ( 𝐾𝑚 𝐽) = {𝑧𝑧: 𝐽 𝐾})
85, 6, 7syl2anr 290 . . . 4 ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) → ( 𝐾𝑚 𝐽) = {𝑧𝑧: 𝐽 𝐾})
9 mapex 6672 . . . . 5 (( 𝐽 ∈ V ∧ 𝐾 ∈ V) → {𝑧𝑧: 𝐽 𝐾} ∈ V)
106, 5, 9syl2an 289 . . . 4 ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) → {𝑧𝑧: 𝐽 𝐾} ∈ V)
118, 10eqeltrd 2266 . . 3 ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) → ( 𝐾𝑚 𝐽) ∈ V)
12 rabexg 4161 . . 3 (( 𝐾𝑚 𝐽) ∈ V → {𝑓 ∈ ( 𝐾𝑚 𝐽) ∣ ∀𝑦𝐾 (𝑓𝑦) ∈ 𝐽} ∈ V)
1311, 12syl 14 . 2 ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) → {𝑓 ∈ ( 𝐾𝑚 𝐽) ∣ ∀𝑦𝐾 (𝑓𝑦) ∈ 𝐽} ∈ V)
144, 13eqeltrd 2266 1 ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) → (𝐽 Cn 𝐾) ∈ V)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2160  {cab 2175  wral 2468  {crab 2472  Vcvv 2752   cuni 3824  ccnv 4640  cima 4644  wf 5227  cfv 5231  (class class class)co 5891  𝑚 cmap 6666  Topctop 13894  TopOnctopon 13907   Cn ccn 14082
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-sep 4136  ax-pow 4189  ax-pr 4224  ax-un 4448  ax-setind 4551
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-ral 2473  df-rex 2474  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-iun 3903  df-br 4019  df-opab 4080  df-mpt 4081  df-id 4308  df-xp 4647  df-rel 4648  df-cnv 4649  df-co 4650  df-dm 4651  df-rn 4652  df-res 4653  df-ima 4654  df-iota 5193  df-fun 5233  df-fn 5234  df-f 5235  df-fv 5239  df-ov 5894  df-oprab 5895  df-mpo 5896  df-1st 6159  df-2nd 6160  df-map 6668  df-top 13895  df-topon 13908  df-cn 14085
This theorem is referenced by:  hmeofn  14199  hmeofvalg  14200
  Copyright terms: Public domain W3C validator