ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnovex GIF version

Theorem cnovex 12365
Description: The class of all continuous functions from a topology to another is a set. (Contributed by Jim Kingdon, 14-Dec-2023.)
Assertion
Ref Expression
cnovex ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) → (𝐽 Cn 𝐾) ∈ V)

Proof of Theorem cnovex
Dummy variables 𝑓 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 toptopon2 12186 . . 3 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘ 𝐽))
2 toptopon2 12186 . . 3 (𝐾 ∈ Top ↔ 𝐾 ∈ (TopOn‘ 𝐾))
3 cnfval 12363 . . 3 ((𝐽 ∈ (TopOn‘ 𝐽) ∧ 𝐾 ∈ (TopOn‘ 𝐾)) → (𝐽 Cn 𝐾) = {𝑓 ∈ ( 𝐾𝑚 𝐽) ∣ ∀𝑦𝐾 (𝑓𝑦) ∈ 𝐽})
41, 2, 3syl2anb 289 . 2 ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) → (𝐽 Cn 𝐾) = {𝑓 ∈ ( 𝐾𝑚 𝐽) ∣ ∀𝑦𝐾 (𝑓𝑦) ∈ 𝐽})
5 uniexg 4361 . . . . 5 (𝐾 ∈ Top → 𝐾 ∈ V)
6 uniexg 4361 . . . . 5 (𝐽 ∈ Top → 𝐽 ∈ V)
7 mapvalg 6552 . . . . 5 (( 𝐾 ∈ V ∧ 𝐽 ∈ V) → ( 𝐾𝑚 𝐽) = {𝑧𝑧: 𝐽 𝐾})
85, 6, 7syl2anr 288 . . . 4 ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) → ( 𝐾𝑚 𝐽) = {𝑧𝑧: 𝐽 𝐾})
9 mapex 6548 . . . . 5 (( 𝐽 ∈ V ∧ 𝐾 ∈ V) → {𝑧𝑧: 𝐽 𝐾} ∈ V)
106, 5, 9syl2an 287 . . . 4 ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) → {𝑧𝑧: 𝐽 𝐾} ∈ V)
118, 10eqeltrd 2216 . . 3 ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) → ( 𝐾𝑚 𝐽) ∈ V)
12 rabexg 4071 . . 3 (( 𝐾𝑚 𝐽) ∈ V → {𝑓 ∈ ( 𝐾𝑚 𝐽) ∣ ∀𝑦𝐾 (𝑓𝑦) ∈ 𝐽} ∈ V)
1311, 12syl 14 . 2 ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) → {𝑓 ∈ ( 𝐾𝑚 𝐽) ∣ ∀𝑦𝐾 (𝑓𝑦) ∈ 𝐽} ∈ V)
144, 13eqeltrd 2216 1 ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) → (𝐽 Cn 𝐾) ∈ V)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1331  wcel 1480  {cab 2125  wral 2416  {crab 2420  Vcvv 2686   cuni 3736  ccnv 4538  cima 4542  wf 5119  cfv 5123  (class class class)co 5774  𝑚 cmap 6542  Topctop 12164  TopOnctopon 12177   Cn ccn 12354
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-ral 2421  df-rex 2422  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-id 4215  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-fv 5131  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-map 6544  df-top 12165  df-topon 12178  df-cn 12357
This theorem is referenced by:  hmeofn  12471  hmeofvalg  12472
  Copyright terms: Public domain W3C validator