ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnovex GIF version

Theorem cnovex 14432
Description: The class of all continuous functions from a topology to another is a set. (Contributed by Jim Kingdon, 14-Dec-2023.)
Assertion
Ref Expression
cnovex ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) → (𝐽 Cn 𝐾) ∈ V)

Proof of Theorem cnovex
Dummy variables 𝑓 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 toptopon2 14255 . . 3 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘ 𝐽))
2 toptopon2 14255 . . 3 (𝐾 ∈ Top ↔ 𝐾 ∈ (TopOn‘ 𝐾))
3 cnfval 14430 . . 3 ((𝐽 ∈ (TopOn‘ 𝐽) ∧ 𝐾 ∈ (TopOn‘ 𝐾)) → (𝐽 Cn 𝐾) = {𝑓 ∈ ( 𝐾𝑚 𝐽) ∣ ∀𝑦𝐾 (𝑓𝑦) ∈ 𝐽})
41, 2, 3syl2anb 291 . 2 ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) → (𝐽 Cn 𝐾) = {𝑓 ∈ ( 𝐾𝑚 𝐽) ∣ ∀𝑦𝐾 (𝑓𝑦) ∈ 𝐽})
5 uniexg 4474 . . . . 5 (𝐾 ∈ Top → 𝐾 ∈ V)
6 uniexg 4474 . . . . 5 (𝐽 ∈ Top → 𝐽 ∈ V)
7 mapvalg 6717 . . . . 5 (( 𝐾 ∈ V ∧ 𝐽 ∈ V) → ( 𝐾𝑚 𝐽) = {𝑧𝑧: 𝐽 𝐾})
85, 6, 7syl2anr 290 . . . 4 ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) → ( 𝐾𝑚 𝐽) = {𝑧𝑧: 𝐽 𝐾})
9 mapex 6713 . . . . 5 (( 𝐽 ∈ V ∧ 𝐾 ∈ V) → {𝑧𝑧: 𝐽 𝐾} ∈ V)
106, 5, 9syl2an 289 . . . 4 ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) → {𝑧𝑧: 𝐽 𝐾} ∈ V)
118, 10eqeltrd 2273 . . 3 ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) → ( 𝐾𝑚 𝐽) ∈ V)
12 rabexg 4176 . . 3 (( 𝐾𝑚 𝐽) ∈ V → {𝑓 ∈ ( 𝐾𝑚 𝐽) ∣ ∀𝑦𝐾 (𝑓𝑦) ∈ 𝐽} ∈ V)
1311, 12syl 14 . 2 ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) → {𝑓 ∈ ( 𝐾𝑚 𝐽) ∣ ∀𝑦𝐾 (𝑓𝑦) ∈ 𝐽} ∈ V)
144, 13eqeltrd 2273 1 ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) → (𝐽 Cn 𝐾) ∈ V)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2167  {cab 2182  wral 2475  {crab 2479  Vcvv 2763   cuni 3839  ccnv 4662  cima 4666  wf 5254  cfv 5258  (class class class)co 5922  𝑚 cmap 6707  Topctop 14233  TopOnctopon 14246   Cn ccn 14421
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-fv 5266  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-map 6709  df-top 14234  df-topon 14247  df-cn 14424
This theorem is referenced by:  hmeofn  14538  hmeofvalg  14539
  Copyright terms: Public domain W3C validator