| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cnovex | GIF version | ||
| Description: The class of all continuous functions from a topology to another is a set. (Contributed by Jim Kingdon, 14-Dec-2023.) |
| Ref | Expression |
|---|---|
| cnovex | ⊢ ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) → (𝐽 Cn 𝐾) ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | toptopon2 14693 | . . 3 ⊢ (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘∪ 𝐽)) | |
| 2 | toptopon2 14693 | . . 3 ⊢ (𝐾 ∈ Top ↔ 𝐾 ∈ (TopOn‘∪ 𝐾)) | |
| 3 | cnfval 14868 | . . 3 ⊢ ((𝐽 ∈ (TopOn‘∪ 𝐽) ∧ 𝐾 ∈ (TopOn‘∪ 𝐾)) → (𝐽 Cn 𝐾) = {𝑓 ∈ (∪ 𝐾 ↑𝑚 ∪ 𝐽) ∣ ∀𝑦 ∈ 𝐾 (◡𝑓 “ 𝑦) ∈ 𝐽}) | |
| 4 | 1, 2, 3 | syl2anb 291 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) → (𝐽 Cn 𝐾) = {𝑓 ∈ (∪ 𝐾 ↑𝑚 ∪ 𝐽) ∣ ∀𝑦 ∈ 𝐾 (◡𝑓 “ 𝑦) ∈ 𝐽}) |
| 5 | uniexg 4530 | . . . . 5 ⊢ (𝐾 ∈ Top → ∪ 𝐾 ∈ V) | |
| 6 | uniexg 4530 | . . . . 5 ⊢ (𝐽 ∈ Top → ∪ 𝐽 ∈ V) | |
| 7 | mapvalg 6805 | . . . . 5 ⊢ ((∪ 𝐾 ∈ V ∧ ∪ 𝐽 ∈ V) → (∪ 𝐾 ↑𝑚 ∪ 𝐽) = {𝑧 ∣ 𝑧:∪ 𝐽⟶∪ 𝐾}) | |
| 8 | 5, 6, 7 | syl2anr 290 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) → (∪ 𝐾 ↑𝑚 ∪ 𝐽) = {𝑧 ∣ 𝑧:∪ 𝐽⟶∪ 𝐾}) |
| 9 | mapex 6801 | . . . . 5 ⊢ ((∪ 𝐽 ∈ V ∧ ∪ 𝐾 ∈ V) → {𝑧 ∣ 𝑧:∪ 𝐽⟶∪ 𝐾} ∈ V) | |
| 10 | 6, 5, 9 | syl2an 289 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) → {𝑧 ∣ 𝑧:∪ 𝐽⟶∪ 𝐾} ∈ V) |
| 11 | 8, 10 | eqeltrd 2306 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) → (∪ 𝐾 ↑𝑚 ∪ 𝐽) ∈ V) |
| 12 | rabexg 4227 | . . 3 ⊢ ((∪ 𝐾 ↑𝑚 ∪ 𝐽) ∈ V → {𝑓 ∈ (∪ 𝐾 ↑𝑚 ∪ 𝐽) ∣ ∀𝑦 ∈ 𝐾 (◡𝑓 “ 𝑦) ∈ 𝐽} ∈ V) | |
| 13 | 11, 12 | syl 14 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) → {𝑓 ∈ (∪ 𝐾 ↑𝑚 ∪ 𝐽) ∣ ∀𝑦 ∈ 𝐾 (◡𝑓 “ 𝑦) ∈ 𝐽} ∈ V) |
| 14 | 4, 13 | eqeltrd 2306 | 1 ⊢ ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) → (𝐽 Cn 𝐾) ∈ V) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1395 ∈ wcel 2200 {cab 2215 ∀wral 2508 {crab 2512 Vcvv 2799 ∪ cuni 3888 ◡ccnv 4718 “ cima 4722 ⟶wf 5314 ‘cfv 5318 (class class class)co 6001 ↑𝑚 cmap 6795 Topctop 14671 TopOnctopon 14684 Cn ccn 14859 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-fv 5326 df-ov 6004 df-oprab 6005 df-mpo 6006 df-1st 6286 df-2nd 6287 df-map 6797 df-top 14672 df-topon 14685 df-cn 14862 |
| This theorem is referenced by: hmeofn 14976 hmeofvalg 14977 |
| Copyright terms: Public domain | W3C validator |