![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > cnovex | GIF version |
Description: The class of all continuous functions from a topology to another is a set. (Contributed by Jim Kingdon, 14-Dec-2023.) |
Ref | Expression |
---|---|
cnovex | β’ ((π½ β Top β§ πΎ β Top) β (π½ Cn πΎ) β V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | toptopon2 13558 | . . 3 β’ (π½ β Top β π½ β (TopOnββͺ π½)) | |
2 | toptopon2 13558 | . . 3 β’ (πΎ β Top β πΎ β (TopOnββͺ πΎ)) | |
3 | cnfval 13733 | . . 3 β’ ((π½ β (TopOnββͺ π½) β§ πΎ β (TopOnββͺ πΎ)) β (π½ Cn πΎ) = {π β (βͺ πΎ βπ βͺ π½) β£ βπ¦ β πΎ (β‘π β π¦) β π½}) | |
4 | 1, 2, 3 | syl2anb 291 | . 2 β’ ((π½ β Top β§ πΎ β Top) β (π½ Cn πΎ) = {π β (βͺ πΎ βπ βͺ π½) β£ βπ¦ β πΎ (β‘π β π¦) β π½}) |
5 | uniexg 4441 | . . . . 5 β’ (πΎ β Top β βͺ πΎ β V) | |
6 | uniexg 4441 | . . . . 5 β’ (π½ β Top β βͺ π½ β V) | |
7 | mapvalg 6660 | . . . . 5 β’ ((βͺ πΎ β V β§ βͺ π½ β V) β (βͺ πΎ βπ βͺ π½) = {π§ β£ π§:βͺ π½βΆβͺ πΎ}) | |
8 | 5, 6, 7 | syl2anr 290 | . . . 4 β’ ((π½ β Top β§ πΎ β Top) β (βͺ πΎ βπ βͺ π½) = {π§ β£ π§:βͺ π½βΆβͺ πΎ}) |
9 | mapex 6656 | . . . . 5 β’ ((βͺ π½ β V β§ βͺ πΎ β V) β {π§ β£ π§:βͺ π½βΆβͺ πΎ} β V) | |
10 | 6, 5, 9 | syl2an 289 | . . . 4 β’ ((π½ β Top β§ πΎ β Top) β {π§ β£ π§:βͺ π½βΆβͺ πΎ} β V) |
11 | 8, 10 | eqeltrd 2254 | . . 3 β’ ((π½ β Top β§ πΎ β Top) β (βͺ πΎ βπ βͺ π½) β V) |
12 | rabexg 4148 | . . 3 β’ ((βͺ πΎ βπ βͺ π½) β V β {π β (βͺ πΎ βπ βͺ π½) β£ βπ¦ β πΎ (β‘π β π¦) β π½} β V) | |
13 | 11, 12 | syl 14 | . 2 β’ ((π½ β Top β§ πΎ β Top) β {π β (βͺ πΎ βπ βͺ π½) β£ βπ¦ β πΎ (β‘π β π¦) β π½} β V) |
14 | 4, 13 | eqeltrd 2254 | 1 β’ ((π½ β Top β§ πΎ β Top) β (π½ Cn πΎ) β V) |
Colors of variables: wff set class |
Syntax hints: β wi 4 β§ wa 104 = wceq 1353 β wcel 2148 {cab 2163 βwral 2455 {crab 2459 Vcvv 2739 βͺ cuni 3811 β‘ccnv 4627 β cima 4631 βΆwf 5214 βcfv 5218 (class class class)co 5877 βπ cmap 6650 Topctop 13536 TopOnctopon 13549 Cn ccn 13724 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-sep 4123 ax-pow 4176 ax-pr 4211 ax-un 4435 ax-setind 4538 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-ral 2460 df-rex 2461 df-rab 2464 df-v 2741 df-sbc 2965 df-csb 3060 df-dif 3133 df-un 3135 df-in 3137 df-ss 3144 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-iun 3890 df-br 4006 df-opab 4067 df-mpt 4068 df-id 4295 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-rn 4639 df-res 4640 df-ima 4641 df-iota 5180 df-fun 5220 df-fn 5221 df-f 5222 df-fv 5226 df-ov 5880 df-oprab 5881 df-mpo 5882 df-1st 6143 df-2nd 6144 df-map 6652 df-top 13537 df-topon 13550 df-cn 13727 |
This theorem is referenced by: hmeofn 13841 hmeofvalg 13842 |
Copyright terms: Public domain | W3C validator |