Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > blval | GIF version |
Description: The ball around a point 𝑃 is the set of all points whose distance from 𝑃 is less than the ball's radius 𝑅. (Contributed by NM, 31-Aug-2006.) (Revised by Mario Carneiro, 11-Nov-2013.) |
Ref | Expression |
---|---|
blval | ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ*) → (𝑃(ball‘𝐷)𝑅) = {𝑥 ∈ 𝑋 ∣ (𝑃𝐷𝑥) < 𝑅}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | blfval 13180 | . . 3 ⊢ (𝐷 ∈ (∞Met‘𝑋) → (ball‘𝐷) = (𝑦 ∈ 𝑋, 𝑟 ∈ ℝ* ↦ {𝑥 ∈ 𝑋 ∣ (𝑦𝐷𝑥) < 𝑟})) | |
2 | 1 | 3ad2ant1 1013 | . 2 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ*) → (ball‘𝐷) = (𝑦 ∈ 𝑋, 𝑟 ∈ ℝ* ↦ {𝑥 ∈ 𝑋 ∣ (𝑦𝐷𝑥) < 𝑟})) |
3 | simprl 526 | . . . . 5 ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ*) ∧ (𝑦 = 𝑃 ∧ 𝑟 = 𝑅)) → 𝑦 = 𝑃) | |
4 | 3 | oveq1d 5868 | . . . 4 ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ*) ∧ (𝑦 = 𝑃 ∧ 𝑟 = 𝑅)) → (𝑦𝐷𝑥) = (𝑃𝐷𝑥)) |
5 | simprr 527 | . . . 4 ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ*) ∧ (𝑦 = 𝑃 ∧ 𝑟 = 𝑅)) → 𝑟 = 𝑅) | |
6 | 4, 5 | breq12d 4002 | . . 3 ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ*) ∧ (𝑦 = 𝑃 ∧ 𝑟 = 𝑅)) → ((𝑦𝐷𝑥) < 𝑟 ↔ (𝑃𝐷𝑥) < 𝑅)) |
7 | 6 | rabbidv 2719 | . 2 ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ*) ∧ (𝑦 = 𝑃 ∧ 𝑟 = 𝑅)) → {𝑥 ∈ 𝑋 ∣ (𝑦𝐷𝑥) < 𝑟} = {𝑥 ∈ 𝑋 ∣ (𝑃𝐷𝑥) < 𝑅}) |
8 | simp2 993 | . 2 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ*) → 𝑃 ∈ 𝑋) | |
9 | simp3 994 | . 2 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ*) → 𝑅 ∈ ℝ*) | |
10 | xmetrel 13137 | . . . . 5 ⊢ Rel ∞Met | |
11 | relelfvdm 5528 | . . . . 5 ⊢ ((Rel ∞Met ∧ 𝐷 ∈ (∞Met‘𝑋)) → 𝑋 ∈ dom ∞Met) | |
12 | 10, 11 | mpan 422 | . . . 4 ⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝑋 ∈ dom ∞Met) |
13 | 12 | 3ad2ant1 1013 | . . 3 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ*) → 𝑋 ∈ dom ∞Met) |
14 | rabexg 4132 | . . 3 ⊢ (𝑋 ∈ dom ∞Met → {𝑥 ∈ 𝑋 ∣ (𝑃𝐷𝑥) < 𝑅} ∈ V) | |
15 | 13, 14 | syl 14 | . 2 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ*) → {𝑥 ∈ 𝑋 ∣ (𝑃𝐷𝑥) < 𝑅} ∈ V) |
16 | 2, 7, 8, 9, 15 | ovmpod 5980 | 1 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ*) → (𝑃(ball‘𝐷)𝑅) = {𝑥 ∈ 𝑋 ∣ (𝑃𝐷𝑥) < 𝑅}) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∧ w3a 973 = wceq 1348 ∈ wcel 2141 {crab 2452 Vcvv 2730 class class class wbr 3989 dom cdm 4611 Rel wrel 4616 ‘cfv 5198 (class class class)co 5853 ∈ cmpo 5855 ℝ*cxr 7953 < clt 7954 ∞Metcxmet 12774 ballcbl 12776 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-cnex 7865 ax-resscn 7866 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-ral 2453 df-rex 2454 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-iun 3875 df-br 3990 df-opab 4051 df-mpt 4052 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-fv 5206 df-ov 5856 df-oprab 5857 df-mpo 5858 df-1st 6119 df-2nd 6120 df-map 6628 df-pnf 7956 df-mnf 7957 df-xr 7958 df-psmet 12781 df-xmet 12782 df-bl 12784 |
This theorem is referenced by: elbl 13185 metss2lem 13291 bdbl 13297 xmetxpbl 13302 |
Copyright terms: Public domain | W3C validator |