Step | Hyp | Ref
| Expression |
1 | | blfval 13971 |
. . 3
β’ (π· β (βMetβπ) β (ballβπ·) = (π¦ β π, π β β* β¦ {π₯ β π β£ (π¦π·π₯) < π})) |
2 | 1 | 3ad2ant1 1018 |
. 2
β’ ((π· β (βMetβπ) β§ π β π β§ π
β β*) β
(ballβπ·) = (π¦ β π, π β β* β¦ {π₯ β π β£ (π¦π·π₯) < π})) |
3 | | simprl 529 |
. . . . 5
β’ (((π· β (βMetβπ) β§ π β π β§ π
β β*) β§ (π¦ = π β§ π = π
)) β π¦ = π) |
4 | 3 | oveq1d 5892 |
. . . 4
β’ (((π· β (βMetβπ) β§ π β π β§ π
β β*) β§ (π¦ = π β§ π = π
)) β (π¦π·π₯) = (ππ·π₯)) |
5 | | simprr 531 |
. . . 4
β’ (((π· β (βMetβπ) β§ π β π β§ π
β β*) β§ (π¦ = π β§ π = π
)) β π = π
) |
6 | 4, 5 | breq12d 4018 |
. . 3
β’ (((π· β (βMetβπ) β§ π β π β§ π
β β*) β§ (π¦ = π β§ π = π
)) β ((π¦π·π₯) < π β (ππ·π₯) < π
)) |
7 | 6 | rabbidv 2728 |
. 2
β’ (((π· β (βMetβπ) β§ π β π β§ π
β β*) β§ (π¦ = π β§ π = π
)) β {π₯ β π β£ (π¦π·π₯) < π} = {π₯ β π β£ (ππ·π₯) < π
}) |
8 | | simp2 998 |
. 2
β’ ((π· β (βMetβπ) β§ π β π β§ π
β β*) β π β π) |
9 | | simp3 999 |
. 2
β’ ((π· β (βMetβπ) β§ π β π β§ π
β β*) β π
β
β*) |
10 | | xmetrel 13928 |
. . . . 5
β’ Rel
βMet |
11 | | relelfvdm 5549 |
. . . . 5
β’ ((Rel
βMet β§ π· β
(βMetβπ))
β π β dom
βMet) |
12 | 10, 11 | mpan 424 |
. . . 4
β’ (π· β (βMetβπ) β π β dom βMet) |
13 | 12 | 3ad2ant1 1018 |
. . 3
β’ ((π· β (βMetβπ) β§ π β π β§ π
β β*) β π β dom
βMet) |
14 | | rabexg 4148 |
. . 3
β’ (π β dom βMet β
{π₯ β π β£ (ππ·π₯) < π
} β V) |
15 | 13, 14 | syl 14 |
. 2
β’ ((π· β (βMetβπ) β§ π β π β§ π
β β*) β {π₯ β π β£ (ππ·π₯) < π
} β V) |
16 | 2, 7, 8, 9, 15 | ovmpod 6004 |
1
β’ ((π· β (βMetβπ) β§ π β π β§ π
β β*) β (π(ballβπ·)π
) = {π₯ β π β£ (ππ·π₯) < π
}) |