ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  blval GIF version

Theorem blval 12567
Description: The ball around a point 𝑃 is the set of all points whose distance from 𝑃 is less than the ball's radius 𝑅. (Contributed by NM, 31-Aug-2006.) (Revised by Mario Carneiro, 11-Nov-2013.)
Assertion
Ref Expression
blval ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) → (𝑃(ball‘𝐷)𝑅) = {𝑥𝑋 ∣ (𝑃𝐷𝑥) < 𝑅})
Distinct variable groups:   𝑥,𝑃   𝑥,𝐷   𝑥,𝑅   𝑥,𝑋

Proof of Theorem blval
Dummy variables 𝑟 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 blfval 12564 . . 3 (𝐷 ∈ (∞Met‘𝑋) → (ball‘𝐷) = (𝑦𝑋, 𝑟 ∈ ℝ* ↦ {𝑥𝑋 ∣ (𝑦𝐷𝑥) < 𝑟}))
213ad2ant1 1002 . 2 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) → (ball‘𝐷) = (𝑦𝑋, 𝑟 ∈ ℝ* ↦ {𝑥𝑋 ∣ (𝑦𝐷𝑥) < 𝑟}))
3 simprl 520 . . . . 5 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ (𝑦 = 𝑃𝑟 = 𝑅)) → 𝑦 = 𝑃)
43oveq1d 5789 . . . 4 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ (𝑦 = 𝑃𝑟 = 𝑅)) → (𝑦𝐷𝑥) = (𝑃𝐷𝑥))
5 simprr 521 . . . 4 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ (𝑦 = 𝑃𝑟 = 𝑅)) → 𝑟 = 𝑅)
64, 5breq12d 3942 . . 3 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ (𝑦 = 𝑃𝑟 = 𝑅)) → ((𝑦𝐷𝑥) < 𝑟 ↔ (𝑃𝐷𝑥) < 𝑅))
76rabbidv 2675 . 2 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ (𝑦 = 𝑃𝑟 = 𝑅)) → {𝑥𝑋 ∣ (𝑦𝐷𝑥) < 𝑟} = {𝑥𝑋 ∣ (𝑃𝐷𝑥) < 𝑅})
8 simp2 982 . 2 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) → 𝑃𝑋)
9 simp3 983 . 2 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) → 𝑅 ∈ ℝ*)
10 xmetrel 12521 . . . . 5 Rel ∞Met
11 relelfvdm 5453 . . . . 5 ((Rel ∞Met ∧ 𝐷 ∈ (∞Met‘𝑋)) → 𝑋 ∈ dom ∞Met)
1210, 11mpan 420 . . . 4 (𝐷 ∈ (∞Met‘𝑋) → 𝑋 ∈ dom ∞Met)
13123ad2ant1 1002 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) → 𝑋 ∈ dom ∞Met)
14 rabexg 4071 . . 3 (𝑋 ∈ dom ∞Met → {𝑥𝑋 ∣ (𝑃𝐷𝑥) < 𝑅} ∈ V)
1513, 14syl 14 . 2 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) → {𝑥𝑋 ∣ (𝑃𝐷𝑥) < 𝑅} ∈ V)
162, 7, 8, 9, 15ovmpod 5898 1 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) → (𝑃(ball‘𝐷)𝑅) = {𝑥𝑋 ∣ (𝑃𝐷𝑥) < 𝑅})
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  w3a 962   = wceq 1331  wcel 1480  {crab 2420  Vcvv 2686   class class class wbr 3929  dom cdm 4539  Rel wrel 4544  cfv 5123  (class class class)co 5774  cmpo 5776  *cxr 7806   < clt 7807  ∞Metcxmet 12158  ballcbl 12160
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-cnex 7718  ax-resscn 7719
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-ral 2421  df-rex 2422  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-id 4215  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-fv 5131  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-map 6544  df-pnf 7809  df-mnf 7810  df-xr 7811  df-psmet 12165  df-xmet 12166  df-bl 12168
This theorem is referenced by:  elbl  12569  metss2lem  12675  bdbl  12681  xmetxpbl  12686
  Copyright terms: Public domain W3C validator