ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  blval GIF version

Theorem blval 13039
Description: The ball around a point 𝑃 is the set of all points whose distance from 𝑃 is less than the ball's radius 𝑅. (Contributed by NM, 31-Aug-2006.) (Revised by Mario Carneiro, 11-Nov-2013.)
Assertion
Ref Expression
blval ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) → (𝑃(ball‘𝐷)𝑅) = {𝑥𝑋 ∣ (𝑃𝐷𝑥) < 𝑅})
Distinct variable groups:   𝑥,𝑃   𝑥,𝐷   𝑥,𝑅   𝑥,𝑋

Proof of Theorem blval
Dummy variables 𝑟 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 blfval 13036 . . 3 (𝐷 ∈ (∞Met‘𝑋) → (ball‘𝐷) = (𝑦𝑋, 𝑟 ∈ ℝ* ↦ {𝑥𝑋 ∣ (𝑦𝐷𝑥) < 𝑟}))
213ad2ant1 1008 . 2 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) → (ball‘𝐷) = (𝑦𝑋, 𝑟 ∈ ℝ* ↦ {𝑥𝑋 ∣ (𝑦𝐷𝑥) < 𝑟}))
3 simprl 521 . . . . 5 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ (𝑦 = 𝑃𝑟 = 𝑅)) → 𝑦 = 𝑃)
43oveq1d 5857 . . . 4 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ (𝑦 = 𝑃𝑟 = 𝑅)) → (𝑦𝐷𝑥) = (𝑃𝐷𝑥))
5 simprr 522 . . . 4 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ (𝑦 = 𝑃𝑟 = 𝑅)) → 𝑟 = 𝑅)
64, 5breq12d 3995 . . 3 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ (𝑦 = 𝑃𝑟 = 𝑅)) → ((𝑦𝐷𝑥) < 𝑟 ↔ (𝑃𝐷𝑥) < 𝑅))
76rabbidv 2715 . 2 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ (𝑦 = 𝑃𝑟 = 𝑅)) → {𝑥𝑋 ∣ (𝑦𝐷𝑥) < 𝑟} = {𝑥𝑋 ∣ (𝑃𝐷𝑥) < 𝑅})
8 simp2 988 . 2 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) → 𝑃𝑋)
9 simp3 989 . 2 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) → 𝑅 ∈ ℝ*)
10 xmetrel 12993 . . . . 5 Rel ∞Met
11 relelfvdm 5518 . . . . 5 ((Rel ∞Met ∧ 𝐷 ∈ (∞Met‘𝑋)) → 𝑋 ∈ dom ∞Met)
1210, 11mpan 421 . . . 4 (𝐷 ∈ (∞Met‘𝑋) → 𝑋 ∈ dom ∞Met)
13123ad2ant1 1008 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) → 𝑋 ∈ dom ∞Met)
14 rabexg 4125 . . 3 (𝑋 ∈ dom ∞Met → {𝑥𝑋 ∣ (𝑃𝐷𝑥) < 𝑅} ∈ V)
1513, 14syl 14 . 2 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) → {𝑥𝑋 ∣ (𝑃𝐷𝑥) < 𝑅} ∈ V)
162, 7, 8, 9, 15ovmpod 5969 1 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) → (𝑃(ball‘𝐷)𝑅) = {𝑥𝑋 ∣ (𝑃𝐷𝑥) < 𝑅})
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  w3a 968   = wceq 1343  wcel 2136  {crab 2448  Vcvv 2726   class class class wbr 3982  dom cdm 4604  Rel wrel 4609  cfv 5188  (class class class)co 5842  cmpo 5844  *cxr 7932   < clt 7933  ∞Metcxmet 12630  ballcbl 12632
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-cnex 7844  ax-resscn 7845
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-fv 5196  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-map 6616  df-pnf 7935  df-mnf 7936  df-xr 7937  df-psmet 12637  df-xmet 12638  df-bl 12640
This theorem is referenced by:  elbl  13041  metss2lem  13147  bdbl  13153  xmetxpbl  13158
  Copyright terms: Public domain W3C validator