Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > blval | GIF version |
Description: The ball around a point 𝑃 is the set of all points whose distance from 𝑃 is less than the ball's radius 𝑅. (Contributed by NM, 31-Aug-2006.) (Revised by Mario Carneiro, 11-Nov-2013.) |
Ref | Expression |
---|---|
blval | ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ*) → (𝑃(ball‘𝐷)𝑅) = {𝑥 ∈ 𝑋 ∣ (𝑃𝐷𝑥) < 𝑅}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | blfval 13036 | . . 3 ⊢ (𝐷 ∈ (∞Met‘𝑋) → (ball‘𝐷) = (𝑦 ∈ 𝑋, 𝑟 ∈ ℝ* ↦ {𝑥 ∈ 𝑋 ∣ (𝑦𝐷𝑥) < 𝑟})) | |
2 | 1 | 3ad2ant1 1008 | . 2 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ*) → (ball‘𝐷) = (𝑦 ∈ 𝑋, 𝑟 ∈ ℝ* ↦ {𝑥 ∈ 𝑋 ∣ (𝑦𝐷𝑥) < 𝑟})) |
3 | simprl 521 | . . . . 5 ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ*) ∧ (𝑦 = 𝑃 ∧ 𝑟 = 𝑅)) → 𝑦 = 𝑃) | |
4 | 3 | oveq1d 5857 | . . . 4 ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ*) ∧ (𝑦 = 𝑃 ∧ 𝑟 = 𝑅)) → (𝑦𝐷𝑥) = (𝑃𝐷𝑥)) |
5 | simprr 522 | . . . 4 ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ*) ∧ (𝑦 = 𝑃 ∧ 𝑟 = 𝑅)) → 𝑟 = 𝑅) | |
6 | 4, 5 | breq12d 3995 | . . 3 ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ*) ∧ (𝑦 = 𝑃 ∧ 𝑟 = 𝑅)) → ((𝑦𝐷𝑥) < 𝑟 ↔ (𝑃𝐷𝑥) < 𝑅)) |
7 | 6 | rabbidv 2715 | . 2 ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ*) ∧ (𝑦 = 𝑃 ∧ 𝑟 = 𝑅)) → {𝑥 ∈ 𝑋 ∣ (𝑦𝐷𝑥) < 𝑟} = {𝑥 ∈ 𝑋 ∣ (𝑃𝐷𝑥) < 𝑅}) |
8 | simp2 988 | . 2 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ*) → 𝑃 ∈ 𝑋) | |
9 | simp3 989 | . 2 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ*) → 𝑅 ∈ ℝ*) | |
10 | xmetrel 12993 | . . . . 5 ⊢ Rel ∞Met | |
11 | relelfvdm 5518 | . . . . 5 ⊢ ((Rel ∞Met ∧ 𝐷 ∈ (∞Met‘𝑋)) → 𝑋 ∈ dom ∞Met) | |
12 | 10, 11 | mpan 421 | . . . 4 ⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝑋 ∈ dom ∞Met) |
13 | 12 | 3ad2ant1 1008 | . . 3 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ*) → 𝑋 ∈ dom ∞Met) |
14 | rabexg 4125 | . . 3 ⊢ (𝑋 ∈ dom ∞Met → {𝑥 ∈ 𝑋 ∣ (𝑃𝐷𝑥) < 𝑅} ∈ V) | |
15 | 13, 14 | syl 14 | . 2 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ*) → {𝑥 ∈ 𝑋 ∣ (𝑃𝐷𝑥) < 𝑅} ∈ V) |
16 | 2, 7, 8, 9, 15 | ovmpod 5969 | 1 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ*) → (𝑃(ball‘𝐷)𝑅) = {𝑥 ∈ 𝑋 ∣ (𝑃𝐷𝑥) < 𝑅}) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∧ w3a 968 = wceq 1343 ∈ wcel 2136 {crab 2448 Vcvv 2726 class class class wbr 3982 dom cdm 4604 Rel wrel 4609 ‘cfv 5188 (class class class)co 5842 ∈ cmpo 5844 ℝ*cxr 7932 < clt 7933 ∞Metcxmet 12630 ballcbl 12632 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-cnex 7844 ax-resscn 7845 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-ral 2449 df-rex 2450 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-fv 5196 df-ov 5845 df-oprab 5846 df-mpo 5847 df-1st 6108 df-2nd 6109 df-map 6616 df-pnf 7935 df-mnf 7936 df-xr 7937 df-psmet 12637 df-xmet 12638 df-bl 12640 |
This theorem is referenced by: elbl 13041 metss2lem 13147 bdbl 13153 xmetxpbl 13158 |
Copyright terms: Public domain | W3C validator |