ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xmetpsmet GIF version

Theorem xmetpsmet 14009
Description: An extended metric is a pseudometric. (Contributed by Thierry Arnoux, 7-Feb-2018.)
Assertion
Ref Expression
xmetpsmet (𝐷 ∈ (∞Metβ€˜π‘‹) β†’ 𝐷 ∈ (PsMetβ€˜π‘‹))

Proof of Theorem xmetpsmet
Dummy variables π‘₯ 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xmetf 13990 . 2 (𝐷 ∈ (∞Metβ€˜π‘‹) β†’ 𝐷:(𝑋 Γ— 𝑋)βŸΆβ„*)
2 xmet0 14003 . . . 4 ((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ π‘₯ ∈ 𝑋) β†’ (π‘₯𝐷π‘₯) = 0)
3 3anrot 983 . . . . . . . 8 ((𝑧 ∈ 𝑋 ∧ π‘₯ ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) ↔ (π‘₯ ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋))
4 xmettri2 14001 . . . . . . . 8 ((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ (𝑧 ∈ 𝑋 ∧ π‘₯ ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) β†’ (π‘₯𝐷𝑦) ≀ ((𝑧𝐷π‘₯) +𝑒 (𝑧𝐷𝑦)))
53, 4sylan2br 288 . . . . . . 7 ((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ (π‘₯ ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) β†’ (π‘₯𝐷𝑦) ≀ ((𝑧𝐷π‘₯) +𝑒 (𝑧𝐷𝑦)))
653anassrs 1229 . . . . . 6 ((((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ π‘₯ ∈ 𝑋) ∧ 𝑦 ∈ 𝑋) ∧ 𝑧 ∈ 𝑋) β†’ (π‘₯𝐷𝑦) ≀ ((𝑧𝐷π‘₯) +𝑒 (𝑧𝐷𝑦)))
76ralrimiva 2550 . . . . 5 (((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ π‘₯ ∈ 𝑋) ∧ 𝑦 ∈ 𝑋) β†’ βˆ€π‘§ ∈ 𝑋 (π‘₯𝐷𝑦) ≀ ((𝑧𝐷π‘₯) +𝑒 (𝑧𝐷𝑦)))
87ralrimiva 2550 . . . 4 ((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ π‘₯ ∈ 𝑋) β†’ βˆ€π‘¦ ∈ 𝑋 βˆ€π‘§ ∈ 𝑋 (π‘₯𝐷𝑦) ≀ ((𝑧𝐷π‘₯) +𝑒 (𝑧𝐷𝑦)))
92, 8jca 306 . . 3 ((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ π‘₯ ∈ 𝑋) β†’ ((π‘₯𝐷π‘₯) = 0 ∧ βˆ€π‘¦ ∈ 𝑋 βˆ€π‘§ ∈ 𝑋 (π‘₯𝐷𝑦) ≀ ((𝑧𝐷π‘₯) +𝑒 (𝑧𝐷𝑦))))
109ralrimiva 2550 . 2 (𝐷 ∈ (∞Metβ€˜π‘‹) β†’ βˆ€π‘₯ ∈ 𝑋 ((π‘₯𝐷π‘₯) = 0 ∧ βˆ€π‘¦ ∈ 𝑋 βˆ€π‘§ ∈ 𝑋 (π‘₯𝐷𝑦) ≀ ((𝑧𝐷π‘₯) +𝑒 (𝑧𝐷𝑦))))
11 xmetrel 13983 . . . 4 Rel ∞Met
12 relelfvdm 5549 . . . . 5 ((Rel ∞Met ∧ 𝐷 ∈ (∞Metβ€˜π‘‹)) β†’ 𝑋 ∈ dom ∞Met)
1312elexd 2752 . . . 4 ((Rel ∞Met ∧ 𝐷 ∈ (∞Metβ€˜π‘‹)) β†’ 𝑋 ∈ V)
1411, 13mpan 424 . . 3 (𝐷 ∈ (∞Metβ€˜π‘‹) β†’ 𝑋 ∈ V)
15 ispsmet 13963 . . 3 (𝑋 ∈ V β†’ (𝐷 ∈ (PsMetβ€˜π‘‹) ↔ (𝐷:(𝑋 Γ— 𝑋)βŸΆβ„* ∧ βˆ€π‘₯ ∈ 𝑋 ((π‘₯𝐷π‘₯) = 0 ∧ βˆ€π‘¦ ∈ 𝑋 βˆ€π‘§ ∈ 𝑋 (π‘₯𝐷𝑦) ≀ ((𝑧𝐷π‘₯) +𝑒 (𝑧𝐷𝑦))))))
1614, 15syl 14 . 2 (𝐷 ∈ (∞Metβ€˜π‘‹) β†’ (𝐷 ∈ (PsMetβ€˜π‘‹) ↔ (𝐷:(𝑋 Γ— 𝑋)βŸΆβ„* ∧ βˆ€π‘₯ ∈ 𝑋 ((π‘₯𝐷π‘₯) = 0 ∧ βˆ€π‘¦ ∈ 𝑋 βˆ€π‘§ ∈ 𝑋 (π‘₯𝐷𝑦) ≀ ((𝑧𝐷π‘₯) +𝑒 (𝑧𝐷𝑦))))))
171, 10, 16mpbir2and 944 1 (𝐷 ∈ (∞Metβ€˜π‘‹) β†’ 𝐷 ∈ (PsMetβ€˜π‘‹))
Colors of variables: wff set class
Syntax hints:   β†’ wi 4   ∧ wa 104   ↔ wb 105   ∧ w3a 978   = wceq 1353   ∈ wcel 2148  βˆ€wral 2455  Vcvv 2739   class class class wbr 4005   Γ— cxp 4626  dom cdm 4628  Rel wrel 4633  βŸΆwf 5214  β€˜cfv 5218  (class class class)co 5878  0cc0 7814  β„*cxr 7994   ≀ cle 7996   +𝑒 cxad 9773  PsMetcpsmet 13579  βˆžMetcxmet 13580
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-cnex 7905  ax-resscn 7906
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-fv 5226  df-ov 5881  df-oprab 5882  df-mpo 5883  df-1st 6144  df-2nd 6145  df-map 6653  df-pnf 7997  df-mnf 7998  df-xr 7999  df-psmet 13587  df-xmet 13588
This theorem is referenced by:  blfval  14026
  Copyright terms: Public domain W3C validator