| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 2ndval | Structured version Visualization version GIF version | ||
| Description: The value of the function that extracts the second member of an ordered pair. (Contributed by NM, 9-Oct-2004.) (Revised by Mario Carneiro, 8-Sep-2013.) |
| Ref | Expression |
|---|---|
| 2ndval | ⊢ (2nd ‘𝐴) = ∪ ran {𝐴} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sneq 4602 | . . . . 5 ⊢ (𝑥 = 𝐴 → {𝑥} = {𝐴}) | |
| 2 | 1 | rneqd 5905 | . . . 4 ⊢ (𝑥 = 𝐴 → ran {𝑥} = ran {𝐴}) |
| 3 | 2 | unieqd 4887 | . . 3 ⊢ (𝑥 = 𝐴 → ∪ ran {𝑥} = ∪ ran {𝐴}) |
| 4 | df-2nd 7972 | . . 3 ⊢ 2nd = (𝑥 ∈ V ↦ ∪ ran {𝑥}) | |
| 5 | snex 5394 | . . . . 5 ⊢ {𝐴} ∈ V | |
| 6 | 5 | rnex 7889 | . . . 4 ⊢ ran {𝐴} ∈ V |
| 7 | 6 | uniex 7720 | . . 3 ⊢ ∪ ran {𝐴} ∈ V |
| 8 | 3, 4, 7 | fvmpt 6971 | . 2 ⊢ (𝐴 ∈ V → (2nd ‘𝐴) = ∪ ran {𝐴}) |
| 9 | fvprc 6853 | . . 3 ⊢ (¬ 𝐴 ∈ V → (2nd ‘𝐴) = ∅) | |
| 10 | snprc 4684 | . . . . . . . 8 ⊢ (¬ 𝐴 ∈ V ↔ {𝐴} = ∅) | |
| 11 | 10 | biimpi 216 | . . . . . . 7 ⊢ (¬ 𝐴 ∈ V → {𝐴} = ∅) |
| 12 | 11 | rneqd 5905 | . . . . . 6 ⊢ (¬ 𝐴 ∈ V → ran {𝐴} = ran ∅) |
| 13 | rn0 5892 | . . . . . 6 ⊢ ran ∅ = ∅ | |
| 14 | 12, 13 | eqtrdi 2781 | . . . . 5 ⊢ (¬ 𝐴 ∈ V → ran {𝐴} = ∅) |
| 15 | 14 | unieqd 4887 | . . . 4 ⊢ (¬ 𝐴 ∈ V → ∪ ran {𝐴} = ∪ ∅) |
| 16 | uni0 4902 | . . . 4 ⊢ ∪ ∅ = ∅ | |
| 17 | 15, 16 | eqtrdi 2781 | . . 3 ⊢ (¬ 𝐴 ∈ V → ∪ ran {𝐴} = ∅) |
| 18 | 9, 17 | eqtr4d 2768 | . 2 ⊢ (¬ 𝐴 ∈ V → (2nd ‘𝐴) = ∪ ran {𝐴}) |
| 19 | 8, 18 | pm2.61i 182 | 1 ⊢ (2nd ‘𝐴) = ∪ ran {𝐴} |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 = wceq 1540 ∈ wcel 2109 Vcvv 3450 ∅c0 4299 {csn 4592 ∪ cuni 4874 ran crn 5642 ‘cfv 6514 2nd c2nd 7970 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-iota 6467 df-fun 6516 df-fv 6522 df-2nd 7972 |
| This theorem is referenced by: 2ndnpr 7976 2nd0 7978 op2nd 7980 2nd2val 8000 elxp6 8005 |
| Copyright terms: Public domain | W3C validator |