Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 2ndval | Structured version Visualization version GIF version |
Description: The value of the function that extracts the second member of an ordered pair. (Contributed by NM, 9-Oct-2004.) (Revised by Mario Carneiro, 8-Sep-2013.) |
Ref | Expression |
---|---|
2ndval | ⊢ (2nd ‘𝐴) = ∪ ran {𝐴} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sneq 4535 | . . . . 5 ⊢ (𝑥 = 𝐴 → {𝑥} = {𝐴}) | |
2 | 1 | rneqd 5783 | . . . 4 ⊢ (𝑥 = 𝐴 → ran {𝑥} = ran {𝐴}) |
3 | 2 | unieqd 4815 | . . 3 ⊢ (𝑥 = 𝐴 → ∪ ran {𝑥} = ∪ ran {𝐴}) |
4 | df-2nd 7699 | . . 3 ⊢ 2nd = (𝑥 ∈ V ↦ ∪ ran {𝑥}) | |
5 | snex 5303 | . . . . 5 ⊢ {𝐴} ∈ V | |
6 | 5 | rnex 7627 | . . . 4 ⊢ ran {𝐴} ∈ V |
7 | 6 | uniex 7470 | . . 3 ⊢ ∪ ran {𝐴} ∈ V |
8 | 3, 4, 7 | fvmpt 6763 | . 2 ⊢ (𝐴 ∈ V → (2nd ‘𝐴) = ∪ ran {𝐴}) |
9 | fvprc 6654 | . . 3 ⊢ (¬ 𝐴 ∈ V → (2nd ‘𝐴) = ∅) | |
10 | snprc 4613 | . . . . . . . 8 ⊢ (¬ 𝐴 ∈ V ↔ {𝐴} = ∅) | |
11 | 10 | biimpi 219 | . . . . . . 7 ⊢ (¬ 𝐴 ∈ V → {𝐴} = ∅) |
12 | 11 | rneqd 5783 | . . . . . 6 ⊢ (¬ 𝐴 ∈ V → ran {𝐴} = ran ∅) |
13 | rn0 5771 | . . . . . 6 ⊢ ran ∅ = ∅ | |
14 | 12, 13 | eqtrdi 2809 | . . . . 5 ⊢ (¬ 𝐴 ∈ V → ran {𝐴} = ∅) |
15 | 14 | unieqd 4815 | . . . 4 ⊢ (¬ 𝐴 ∈ V → ∪ ran {𝐴} = ∪ ∅) |
16 | uni0 4831 | . . . 4 ⊢ ∪ ∅ = ∅ | |
17 | 15, 16 | eqtrdi 2809 | . . 3 ⊢ (¬ 𝐴 ∈ V → ∪ ran {𝐴} = ∅) |
18 | 9, 17 | eqtr4d 2796 | . 2 ⊢ (¬ 𝐴 ∈ V → (2nd ‘𝐴) = ∪ ran {𝐴}) |
19 | 8, 18 | pm2.61i 185 | 1 ⊢ (2nd ‘𝐴) = ∪ ran {𝐴} |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1538 ∈ wcel 2111 Vcvv 3409 ∅c0 4227 {csn 4525 ∪ cuni 4801 ran crn 5528 ‘cfv 6339 2nd c2nd 7697 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5172 ax-nul 5179 ax-pr 5301 ax-un 7464 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-ral 3075 df-rex 3076 df-rab 3079 df-v 3411 df-sbc 3699 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-nul 4228 df-if 4424 df-sn 4526 df-pr 4528 df-op 4532 df-uni 4802 df-br 5036 df-opab 5098 df-mpt 5116 df-id 5433 df-xp 5533 df-rel 5534 df-cnv 5535 df-co 5536 df-dm 5537 df-rn 5538 df-iota 6298 df-fun 6341 df-fv 6347 df-2nd 7699 |
This theorem is referenced by: 2ndnpr 7703 2nd0 7705 op2nd 7707 2nd2val 7727 elxp6 7732 |
Copyright terms: Public domain | W3C validator |