MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2ndval Structured version   Visualization version   GIF version

Theorem 2ndval 7996
Description: The value of the function that extracts the second member of an ordered pair. (Contributed by NM, 9-Oct-2004.) (Revised by Mario Carneiro, 8-Sep-2013.)
Assertion
Ref Expression
2ndval (2nd𝐴) = ran {𝐴}

Proof of Theorem 2ndval
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 sneq 4639 . . . . 5 (𝑥 = 𝐴 → {𝑥} = {𝐴})
21rneqd 5940 . . . 4 (𝑥 = 𝐴 → ran {𝑥} = ran {𝐴})
32unieqd 4921 . . 3 (𝑥 = 𝐴 ran {𝑥} = ran {𝐴})
4 df-2nd 7994 . . 3 2nd = (𝑥 ∈ V ↦ ran {𝑥})
5 snex 5433 . . . . 5 {𝐴} ∈ V
65rnex 7918 . . . 4 ran {𝐴} ∈ V
76uniex 7746 . . 3 ran {𝐴} ∈ V
83, 4, 7fvmpt 7005 . 2 (𝐴 ∈ V → (2nd𝐴) = ran {𝐴})
9 fvprc 6889 . . 3 𝐴 ∈ V → (2nd𝐴) = ∅)
10 snprc 4722 . . . . . . . 8 𝐴 ∈ V ↔ {𝐴} = ∅)
1110biimpi 215 . . . . . . 7 𝐴 ∈ V → {𝐴} = ∅)
1211rneqd 5940 . . . . . 6 𝐴 ∈ V → ran {𝐴} = ran ∅)
13 rn0 5928 . . . . . 6 ran ∅ = ∅
1412, 13eqtrdi 2784 . . . . 5 𝐴 ∈ V → ran {𝐴} = ∅)
1514unieqd 4921 . . . 4 𝐴 ∈ V → ran {𝐴} = ∅)
16 uni0 4938 . . . 4 ∅ = ∅
1715, 16eqtrdi 2784 . . 3 𝐴 ∈ V → ran {𝐴} = ∅)
189, 17eqtr4d 2771 . 2 𝐴 ∈ V → (2nd𝐴) = ran {𝐴})
198, 18pm2.61i 182 1 (2nd𝐴) = ran {𝐴}
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1534  wcel 2099  Vcvv 3471  c0 4323  {csn 4629   cuni 4908  ran crn 5679  cfv 6548  2nd c2nd 7992
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-sep 5299  ax-nul 5306  ax-pr 5429  ax-un 7740
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ral 3059  df-rex 3068  df-rab 3430  df-v 3473  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5576  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-iota 6500  df-fun 6550  df-fv 6556  df-2nd 7994
This theorem is referenced by:  2ndnpr  7998  2nd0  8000  op2nd  8002  2nd2val  8022  elxp6  8027
  Copyright terms: Public domain W3C validator