Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 2ndval | Structured version Visualization version GIF version |
Description: The value of the function that extracts the second member of an ordered pair. (Contributed by NM, 9-Oct-2004.) (Revised by Mario Carneiro, 8-Sep-2013.) |
Ref | Expression |
---|---|
2ndval | ⊢ (2nd ‘𝐴) = ∪ ran {𝐴} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sneq 4571 | . . . . 5 ⊢ (𝑥 = 𝐴 → {𝑥} = {𝐴}) | |
2 | 1 | rneqd 5847 | . . . 4 ⊢ (𝑥 = 𝐴 → ran {𝑥} = ran {𝐴}) |
3 | 2 | unieqd 4853 | . . 3 ⊢ (𝑥 = 𝐴 → ∪ ran {𝑥} = ∪ ran {𝐴}) |
4 | df-2nd 7832 | . . 3 ⊢ 2nd = (𝑥 ∈ V ↦ ∪ ran {𝑥}) | |
5 | snex 5354 | . . . . 5 ⊢ {𝐴} ∈ V | |
6 | 5 | rnex 7759 | . . . 4 ⊢ ran {𝐴} ∈ V |
7 | 6 | uniex 7594 | . . 3 ⊢ ∪ ran {𝐴} ∈ V |
8 | 3, 4, 7 | fvmpt 6875 | . 2 ⊢ (𝐴 ∈ V → (2nd ‘𝐴) = ∪ ran {𝐴}) |
9 | fvprc 6766 | . . 3 ⊢ (¬ 𝐴 ∈ V → (2nd ‘𝐴) = ∅) | |
10 | snprc 4653 | . . . . . . . 8 ⊢ (¬ 𝐴 ∈ V ↔ {𝐴} = ∅) | |
11 | 10 | biimpi 215 | . . . . . . 7 ⊢ (¬ 𝐴 ∈ V → {𝐴} = ∅) |
12 | 11 | rneqd 5847 | . . . . . 6 ⊢ (¬ 𝐴 ∈ V → ran {𝐴} = ran ∅) |
13 | rn0 5835 | . . . . . 6 ⊢ ran ∅ = ∅ | |
14 | 12, 13 | eqtrdi 2794 | . . . . 5 ⊢ (¬ 𝐴 ∈ V → ran {𝐴} = ∅) |
15 | 14 | unieqd 4853 | . . . 4 ⊢ (¬ 𝐴 ∈ V → ∪ ran {𝐴} = ∪ ∅) |
16 | uni0 4869 | . . . 4 ⊢ ∪ ∅ = ∅ | |
17 | 15, 16 | eqtrdi 2794 | . . 3 ⊢ (¬ 𝐴 ∈ V → ∪ ran {𝐴} = ∅) |
18 | 9, 17 | eqtr4d 2781 | . 2 ⊢ (¬ 𝐴 ∈ V → (2nd ‘𝐴) = ∪ ran {𝐴}) |
19 | 8, 18 | pm2.61i 182 | 1 ⊢ (2nd ‘𝐴) = ∪ ran {𝐴} |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1539 ∈ wcel 2106 Vcvv 3432 ∅c0 4256 {csn 4561 ∪ cuni 4839 ran crn 5590 ‘cfv 6433 2nd c2nd 7830 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-iota 6391 df-fun 6435 df-fv 6441 df-2nd 7832 |
This theorem is referenced by: 2ndnpr 7836 2nd0 7838 op2nd 7840 2nd2val 7860 elxp6 7865 |
Copyright terms: Public domain | W3C validator |