![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 2ndval | Structured version Visualization version GIF version |
Description: The value of the function that extracts the second member of an ordered pair. (Contributed by NM, 9-Oct-2004.) (Revised by Mario Carneiro, 8-Sep-2013.) |
Ref | Expression |
---|---|
2ndval | ⊢ (2nd ‘𝐴) = ∪ ran {𝐴} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sneq 4639 | . . . . 5 ⊢ (𝑥 = 𝐴 → {𝑥} = {𝐴}) | |
2 | 1 | rneqd 5940 | . . . 4 ⊢ (𝑥 = 𝐴 → ran {𝑥} = ran {𝐴}) |
3 | 2 | unieqd 4921 | . . 3 ⊢ (𝑥 = 𝐴 → ∪ ran {𝑥} = ∪ ran {𝐴}) |
4 | df-2nd 7994 | . . 3 ⊢ 2nd = (𝑥 ∈ V ↦ ∪ ran {𝑥}) | |
5 | snex 5433 | . . . . 5 ⊢ {𝐴} ∈ V | |
6 | 5 | rnex 7918 | . . . 4 ⊢ ran {𝐴} ∈ V |
7 | 6 | uniex 7746 | . . 3 ⊢ ∪ ran {𝐴} ∈ V |
8 | 3, 4, 7 | fvmpt 7005 | . 2 ⊢ (𝐴 ∈ V → (2nd ‘𝐴) = ∪ ran {𝐴}) |
9 | fvprc 6889 | . . 3 ⊢ (¬ 𝐴 ∈ V → (2nd ‘𝐴) = ∅) | |
10 | snprc 4722 | . . . . . . . 8 ⊢ (¬ 𝐴 ∈ V ↔ {𝐴} = ∅) | |
11 | 10 | biimpi 215 | . . . . . . 7 ⊢ (¬ 𝐴 ∈ V → {𝐴} = ∅) |
12 | 11 | rneqd 5940 | . . . . . 6 ⊢ (¬ 𝐴 ∈ V → ran {𝐴} = ran ∅) |
13 | rn0 5928 | . . . . . 6 ⊢ ran ∅ = ∅ | |
14 | 12, 13 | eqtrdi 2784 | . . . . 5 ⊢ (¬ 𝐴 ∈ V → ran {𝐴} = ∅) |
15 | 14 | unieqd 4921 | . . . 4 ⊢ (¬ 𝐴 ∈ V → ∪ ran {𝐴} = ∪ ∅) |
16 | uni0 4938 | . . . 4 ⊢ ∪ ∅ = ∅ | |
17 | 15, 16 | eqtrdi 2784 | . . 3 ⊢ (¬ 𝐴 ∈ V → ∪ ran {𝐴} = ∅) |
18 | 9, 17 | eqtr4d 2771 | . 2 ⊢ (¬ 𝐴 ∈ V → (2nd ‘𝐴) = ∪ ran {𝐴}) |
19 | 8, 18 | pm2.61i 182 | 1 ⊢ (2nd ‘𝐴) = ∪ ran {𝐴} |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1534 ∈ wcel 2099 Vcvv 3471 ∅c0 4323 {csn 4629 ∪ cuni 4908 ran crn 5679 ‘cfv 6548 2nd c2nd 7992 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5299 ax-nul 5306 ax-pr 5429 ax-un 7740 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ral 3059 df-rex 3068 df-rab 3430 df-v 3473 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5576 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-iota 6500 df-fun 6550 df-fv 6556 df-2nd 7994 |
This theorem is referenced by: 2ndnpr 7998 2nd0 8000 op2nd 8002 2nd2val 8022 elxp6 8027 |
Copyright terms: Public domain | W3C validator |