MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2ndval Structured version   Visualization version   GIF version

Theorem 2ndval 7971
Description: The value of the function that extracts the second member of an ordered pair. (Contributed by NM, 9-Oct-2004.) (Revised by Mario Carneiro, 8-Sep-2013.)
Assertion
Ref Expression
2ndval (2nd𝐴) = ran {𝐴}

Proof of Theorem 2ndval
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 sneq 4599 . . . . 5 (𝑥 = 𝐴 → {𝑥} = {𝐴})
21rneqd 5902 . . . 4 (𝑥 = 𝐴 → ran {𝑥} = ran {𝐴})
32unieqd 4884 . . 3 (𝑥 = 𝐴 ran {𝑥} = ran {𝐴})
4 df-2nd 7969 . . 3 2nd = (𝑥 ∈ V ↦ ran {𝑥})
5 snex 5391 . . . . 5 {𝐴} ∈ V
65rnex 7886 . . . 4 ran {𝐴} ∈ V
76uniex 7717 . . 3 ran {𝐴} ∈ V
83, 4, 7fvmpt 6968 . 2 (𝐴 ∈ V → (2nd𝐴) = ran {𝐴})
9 fvprc 6850 . . 3 𝐴 ∈ V → (2nd𝐴) = ∅)
10 snprc 4681 . . . . . . . 8 𝐴 ∈ V ↔ {𝐴} = ∅)
1110biimpi 216 . . . . . . 7 𝐴 ∈ V → {𝐴} = ∅)
1211rneqd 5902 . . . . . 6 𝐴 ∈ V → ran {𝐴} = ran ∅)
13 rn0 5889 . . . . . 6 ran ∅ = ∅
1412, 13eqtrdi 2780 . . . . 5 𝐴 ∈ V → ran {𝐴} = ∅)
1514unieqd 4884 . . . 4 𝐴 ∈ V → ran {𝐴} = ∅)
16 uni0 4899 . . . 4 ∅ = ∅
1715, 16eqtrdi 2780 . . 3 𝐴 ∈ V → ran {𝐴} = ∅)
189, 17eqtr4d 2767 . 2 𝐴 ∈ V → (2nd𝐴) = ran {𝐴})
198, 18pm2.61i 182 1 (2nd𝐴) = ran {𝐴}
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1540  wcel 2109  Vcvv 3447  c0 4296  {csn 4589   cuni 4871  ran crn 5639  cfv 6511  2nd c2nd 7967
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-iota 6464  df-fun 6513  df-fv 6519  df-2nd 7969
This theorem is referenced by:  2ndnpr  7973  2nd0  7975  op2nd  7977  2nd2val  7997  elxp6  8002
  Copyright terms: Public domain W3C validator