MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2ndval Structured version   Visualization version   GIF version

Theorem 2ndval 7930
Description: The value of the function that extracts the second member of an ordered pair. (Contributed by NM, 9-Oct-2004.) (Revised by Mario Carneiro, 8-Sep-2013.)
Assertion
Ref Expression
2ndval (2nd𝐴) = ran {𝐴}

Proof of Theorem 2ndval
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 sneq 4585 . . . . 5 (𝑥 = 𝐴 → {𝑥} = {𝐴})
21rneqd 5882 . . . 4 (𝑥 = 𝐴 → ran {𝑥} = ran {𝐴})
32unieqd 4871 . . 3 (𝑥 = 𝐴 ran {𝑥} = ran {𝐴})
4 df-2nd 7928 . . 3 2nd = (𝑥 ∈ V ↦ ran {𝑥})
5 snex 5376 . . . . 5 {𝐴} ∈ V
65rnex 7846 . . . 4 ran {𝐴} ∈ V
76uniex 7680 . . 3 ran {𝐴} ∈ V
83, 4, 7fvmpt 6935 . 2 (𝐴 ∈ V → (2nd𝐴) = ran {𝐴})
9 fvprc 6820 . . 3 𝐴 ∈ V → (2nd𝐴) = ∅)
10 snprc 4669 . . . . . . . 8 𝐴 ∈ V ↔ {𝐴} = ∅)
1110biimpi 216 . . . . . . 7 𝐴 ∈ V → {𝐴} = ∅)
1211rneqd 5882 . . . . . 6 𝐴 ∈ V → ran {𝐴} = ran ∅)
13 rn0 5870 . . . . . 6 ran ∅ = ∅
1412, 13eqtrdi 2784 . . . . 5 𝐴 ∈ V → ran {𝐴} = ∅)
1514unieqd 4871 . . . 4 𝐴 ∈ V → ran {𝐴} = ∅)
16 uni0 4886 . . . 4 ∅ = ∅
1715, 16eqtrdi 2784 . . 3 𝐴 ∈ V → ran {𝐴} = ∅)
189, 17eqtr4d 2771 . 2 𝐴 ∈ V → (2nd𝐴) = ran {𝐴})
198, 18pm2.61i 182 1 (2nd𝐴) = ran {𝐴}
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1541  wcel 2113  Vcvv 3437  c0 4282  {csn 4575   cuni 4858  ran crn 5620  cfv 6486  2nd c2nd 7926
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pr 5372  ax-un 7674
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-iota 6442  df-fun 6488  df-fv 6494  df-2nd 7928
This theorem is referenced by:  2ndnpr  7932  2nd0  7934  op2nd  7936  2nd2val  7956  elxp6  7961
  Copyright terms: Public domain W3C validator