| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 2ndval | Structured version Visualization version GIF version | ||
| Description: The value of the function that extracts the second member of an ordered pair. (Contributed by NM, 9-Oct-2004.) (Revised by Mario Carneiro, 8-Sep-2013.) |
| Ref | Expression |
|---|---|
| 2ndval | ⊢ (2nd ‘𝐴) = ∪ ran {𝐴} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sneq 4586 | . . . . 5 ⊢ (𝑥 = 𝐴 → {𝑥} = {𝐴}) | |
| 2 | 1 | rneqd 5878 | . . . 4 ⊢ (𝑥 = 𝐴 → ran {𝑥} = ran {𝐴}) |
| 3 | 2 | unieqd 4872 | . . 3 ⊢ (𝑥 = 𝐴 → ∪ ran {𝑥} = ∪ ran {𝐴}) |
| 4 | df-2nd 7922 | . . 3 ⊢ 2nd = (𝑥 ∈ V ↦ ∪ ran {𝑥}) | |
| 5 | snex 5374 | . . . . 5 ⊢ {𝐴} ∈ V | |
| 6 | 5 | rnex 7840 | . . . 4 ⊢ ran {𝐴} ∈ V |
| 7 | 6 | uniex 7674 | . . 3 ⊢ ∪ ran {𝐴} ∈ V |
| 8 | 3, 4, 7 | fvmpt 6929 | . 2 ⊢ (𝐴 ∈ V → (2nd ‘𝐴) = ∪ ran {𝐴}) |
| 9 | fvprc 6814 | . . 3 ⊢ (¬ 𝐴 ∈ V → (2nd ‘𝐴) = ∅) | |
| 10 | snprc 4670 | . . . . . . . 8 ⊢ (¬ 𝐴 ∈ V ↔ {𝐴} = ∅) | |
| 11 | 10 | biimpi 216 | . . . . . . 7 ⊢ (¬ 𝐴 ∈ V → {𝐴} = ∅) |
| 12 | 11 | rneqd 5878 | . . . . . 6 ⊢ (¬ 𝐴 ∈ V → ran {𝐴} = ran ∅) |
| 13 | rn0 5866 | . . . . . 6 ⊢ ran ∅ = ∅ | |
| 14 | 12, 13 | eqtrdi 2782 | . . . . 5 ⊢ (¬ 𝐴 ∈ V → ran {𝐴} = ∅) |
| 15 | 14 | unieqd 4872 | . . . 4 ⊢ (¬ 𝐴 ∈ V → ∪ ran {𝐴} = ∪ ∅) |
| 16 | uni0 4887 | . . . 4 ⊢ ∪ ∅ = ∅ | |
| 17 | 15, 16 | eqtrdi 2782 | . . 3 ⊢ (¬ 𝐴 ∈ V → ∪ ran {𝐴} = ∅) |
| 18 | 9, 17 | eqtr4d 2769 | . 2 ⊢ (¬ 𝐴 ∈ V → (2nd ‘𝐴) = ∪ ran {𝐴}) |
| 19 | 8, 18 | pm2.61i 182 | 1 ⊢ (2nd ‘𝐴) = ∪ ran {𝐴} |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 = wceq 1541 ∈ wcel 2111 Vcvv 3436 ∅c0 4283 {csn 4576 ∪ cuni 4859 ran crn 5617 ‘cfv 6481 2nd c2nd 7920 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-iota 6437 df-fun 6483 df-fv 6489 df-2nd 7922 |
| This theorem is referenced by: 2ndnpr 7926 2nd0 7928 op2nd 7930 2nd2val 7950 elxp6 7955 |
| Copyright terms: Public domain | W3C validator |