![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 2ndval | Structured version Visualization version GIF version |
Description: The value of the function that extracts the second member of an ordered pair. (Contributed by NM, 9-Oct-2004.) (Revised by Mario Carneiro, 8-Sep-2013.) |
Ref | Expression |
---|---|
2ndval | ⊢ (2nd ‘𝐴) = ∪ ran {𝐴} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sneq 4637 | . . . . 5 ⊢ (𝑥 = 𝐴 → {𝑥} = {𝐴}) | |
2 | 1 | rneqd 5935 | . . . 4 ⊢ (𝑥 = 𝐴 → ran {𝑥} = ran {𝐴}) |
3 | 2 | unieqd 4921 | . . 3 ⊢ (𝑥 = 𝐴 → ∪ ran {𝑥} = ∪ ran {𝐴}) |
4 | df-2nd 7972 | . . 3 ⊢ 2nd = (𝑥 ∈ V ↦ ∪ ran {𝑥}) | |
5 | snex 5430 | . . . . 5 ⊢ {𝐴} ∈ V | |
6 | 5 | rnex 7899 | . . . 4 ⊢ ran {𝐴} ∈ V |
7 | 6 | uniex 7727 | . . 3 ⊢ ∪ ran {𝐴} ∈ V |
8 | 3, 4, 7 | fvmpt 6995 | . 2 ⊢ (𝐴 ∈ V → (2nd ‘𝐴) = ∪ ran {𝐴}) |
9 | fvprc 6880 | . . 3 ⊢ (¬ 𝐴 ∈ V → (2nd ‘𝐴) = ∅) | |
10 | snprc 4720 | . . . . . . . 8 ⊢ (¬ 𝐴 ∈ V ↔ {𝐴} = ∅) | |
11 | 10 | biimpi 215 | . . . . . . 7 ⊢ (¬ 𝐴 ∈ V → {𝐴} = ∅) |
12 | 11 | rneqd 5935 | . . . . . 6 ⊢ (¬ 𝐴 ∈ V → ran {𝐴} = ran ∅) |
13 | rn0 5923 | . . . . . 6 ⊢ ran ∅ = ∅ | |
14 | 12, 13 | eqtrdi 2788 | . . . . 5 ⊢ (¬ 𝐴 ∈ V → ran {𝐴} = ∅) |
15 | 14 | unieqd 4921 | . . . 4 ⊢ (¬ 𝐴 ∈ V → ∪ ran {𝐴} = ∪ ∅) |
16 | uni0 4938 | . . . 4 ⊢ ∪ ∅ = ∅ | |
17 | 15, 16 | eqtrdi 2788 | . . 3 ⊢ (¬ 𝐴 ∈ V → ∪ ran {𝐴} = ∅) |
18 | 9, 17 | eqtr4d 2775 | . 2 ⊢ (¬ 𝐴 ∈ V → (2nd ‘𝐴) = ∪ ran {𝐴}) |
19 | 8, 18 | pm2.61i 182 | 1 ⊢ (2nd ‘𝐴) = ∪ ran {𝐴} |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1541 ∈ wcel 2106 Vcvv 3474 ∅c0 4321 {csn 4627 ∪ cuni 4907 ran crn 5676 ‘cfv 6540 2nd c2nd 7970 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pr 5426 ax-un 7721 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-iota 6492 df-fun 6542 df-fv 6548 df-2nd 7972 |
This theorem is referenced by: 2ndnpr 7976 2nd0 7978 op2nd 7980 2nd2val 8000 elxp6 8005 |
Copyright terms: Public domain | W3C validator |