MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  1st2nd Structured version   Visualization version   GIF version

Theorem 1st2nd 8080
Description: Reconstruction of a member of a relation in terms of its ordered pair components. (Contributed by NM, 29-Aug-2006.)
Assertion
Ref Expression
1st2nd ((Rel 𝐵𝐴𝐵) → 𝐴 = ⟨(1st𝐴), (2nd𝐴)⟩)

Proof of Theorem 1st2nd
StepHypRef Expression
1 df-rel 5707 . . 3 (Rel 𝐵𝐵 ⊆ (V × V))
2 ssel2 4003 . . 3 ((𝐵 ⊆ (V × V) ∧ 𝐴𝐵) → 𝐴 ∈ (V × V))
31, 2sylanb 580 . 2 ((Rel 𝐵𝐴𝐵) → 𝐴 ∈ (V × V))
4 1st2nd2 8069 . 2 (𝐴 ∈ (V × V) → 𝐴 = ⟨(1st𝐴), (2nd𝐴)⟩)
53, 4syl 17 1 ((Rel 𝐵𝐴𝐵) → 𝐴 = ⟨(1st𝐴), (2nd𝐴)⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  Vcvv 3488  wss 3976  cop 4654   × cxp 5698  Rel wrel 5705  cfv 6573  1st c1st 8028  2nd c2nd 8029
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-iota 6525  df-fun 6575  df-fv 6581  df-1st 8030  df-2nd 8031
This theorem is referenced by:  2ndrn  8082  1st2ndbr  8083  funfv1st2nd  8087  funelss  8088  elopabi  8103  cnvf1olem  8151  ordpinq  11012  addassnq  11027  mulassnq  11028  distrnq  11030  mulidnq  11032  recmulnq  11033  ltexnq  11044  fsumcnv  15821  fprodcnv  16031  cofulid  17954  cofurid  17955  idffth  18000  cofull  18001  cofth  18002  ressffth  18005  isnat2  18016  nat1st2nd  18019  homadmcd  18109  catciso  18178  prf1st  18273  prf2nd  18274  1st2ndprf  18275  curfuncf  18308  uncfcurf  18309  curf2ndf  18317  yonffthlem  18352  yoniso  18355  dprd2dlem2  20084  dprd2dlem1  20085  dprd2da  20086  mdetunilem9  22647  2ndcctbss  23484  utop2nei  24280  utop3cls  24281  caubl  25361  wlkop  29664  nvop2  30640  nvvop  30641  nvop  30708  phop  30850  fgreu  32690  1stpreimas  32717  gsumhashmul  33040  cvmliftlem1  35253  heiborlem3  37773  rngoi  37859  drngoi  37911  isdrngo1  37916  iscrngo2  37957
  Copyright terms: Public domain W3C validator