| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 1st2nd | Structured version Visualization version GIF version | ||
| Description: Reconstruction of a member of a relation in terms of its ordered pair components. (Contributed by NM, 29-Aug-2006.) |
| Ref | Expression |
|---|---|
| 1st2nd | ⊢ ((Rel 𝐵 ∧ 𝐴 ∈ 𝐵) → 𝐴 = 〈(1st ‘𝐴), (2nd ‘𝐴)〉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rel 5630 | . . 3 ⊢ (Rel 𝐵 ↔ 𝐵 ⊆ (V × V)) | |
| 2 | ssel2 3932 | . . 3 ⊢ ((𝐵 ⊆ (V × V) ∧ 𝐴 ∈ 𝐵) → 𝐴 ∈ (V × V)) | |
| 3 | 1, 2 | sylanb 581 | . 2 ⊢ ((Rel 𝐵 ∧ 𝐴 ∈ 𝐵) → 𝐴 ∈ (V × V)) |
| 4 | 1st2nd2 7970 | . 2 ⊢ (𝐴 ∈ (V × V) → 𝐴 = 〈(1st ‘𝐴), (2nd ‘𝐴)〉) | |
| 5 | 3, 4 | syl 17 | 1 ⊢ ((Rel 𝐵 ∧ 𝐴 ∈ 𝐵) → 𝐴 = 〈(1st ‘𝐴), (2nd ‘𝐴)〉) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3438 ⊆ wss 3905 〈cop 4585 × cxp 5621 Rel wrel 5628 ‘cfv 6486 1st c1st 7929 2nd c2nd 7930 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-iota 6442 df-fun 6488 df-fv 6494 df-1st 7931 df-2nd 7932 |
| This theorem is referenced by: 2ndrn 7983 1st2ndbr 7984 funfv1st2nd 7988 funelss 7989 elopabi 8004 cnvf1olem 8050 ordpinq 10856 addassnq 10871 mulassnq 10872 distrnq 10874 mulidnq 10876 recmulnq 10877 ltexnq 10888 fsumcnv 15698 fprodcnv 15908 cofulid 17815 cofurid 17816 idffth 17860 cofull 17861 cofth 17862 ressffth 17865 isnat2 17876 nat1st2nd 17879 homadmcd 17967 catciso 18036 prf1st 18128 prf2nd 18129 1st2ndprf 18130 curfuncf 18162 uncfcurf 18163 curf2ndf 18171 yonffthlem 18206 yoniso 18209 dprd2dlem2 19939 dprd2dlem1 19940 dprd2da 19941 mdetunilem9 22523 2ndcctbss 23358 utop2nei 24154 utop3cls 24155 caubl 25224 wlkop 29591 nvop2 30570 nvvop 30571 nvop 30638 phop 30780 fgreu 32629 1stpreimas 32662 gsumhashmul 33027 cvmliftlem1 35257 heiborlem3 37792 rngoi 37878 drngoi 37930 isdrngo1 37935 iscrngo2 37976 tposideq 48873 cic1st2nd 49033 cofu1st2nd 49078 oppfval2 49123 oppfoppc2 49128 idfth 49144 up1st2nd 49171 up1st2ndr 49172 uptrlem2 49197 uptra 49201 uobeqw 49205 uobeq 49206 uptr2a 49208 diag1 49290 fuco11bALT 49324 fuco22nat 49332 fucocolem4 49342 precofvalALT 49354 prcoftposcurfucoa 49370 prcofdiag1 49379 prcofdiag 49380 oppfdiag1 49400 oppfdiag 49402 termcfuncval 49518 diagffth 49524 lmddu 49653 |
| Copyright terms: Public domain | W3C validator |