MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  1st2nd Structured version   Visualization version   GIF version

Theorem 1st2nd 7977
Description: Reconstruction of a member of a relation in terms of its ordered pair components. (Contributed by NM, 29-Aug-2006.)
Assertion
Ref Expression
1st2nd ((Rel 𝐵𝐴𝐵) → 𝐴 = ⟨(1st𝐴), (2nd𝐴)⟩)

Proof of Theorem 1st2nd
StepHypRef Expression
1 df-rel 5626 . . 3 (Rel 𝐵𝐵 ⊆ (V × V))
2 ssel2 3925 . . 3 ((𝐵 ⊆ (V × V) ∧ 𝐴𝐵) → 𝐴 ∈ (V × V))
31, 2sylanb 581 . 2 ((Rel 𝐵𝐴𝐵) → 𝐴 ∈ (V × V))
4 1st2nd2 7966 . 2 (𝐴 ∈ (V × V) → 𝐴 = ⟨(1st𝐴), (2nd𝐴)⟩)
53, 4syl 17 1 ((Rel 𝐵𝐴𝐵) → 𝐴 = ⟨(1st𝐴), (2nd𝐴)⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2113  Vcvv 3437  wss 3898  cop 4581   × cxp 5617  Rel wrel 5624  cfv 6486  1st c1st 7925  2nd c2nd 7926
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pr 5372  ax-un 7674
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-iota 6442  df-fun 6488  df-fv 6494  df-1st 7927  df-2nd 7928
This theorem is referenced by:  2ndrn  7979  1st2ndbr  7980  funfv1st2nd  7984  funelss  7985  elopabi  8000  cnvf1olem  8046  ordpinq  10841  addassnq  10856  mulassnq  10857  distrnq  10859  mulidnq  10861  recmulnq  10862  ltexnq  10873  fsumcnv  15682  fprodcnv  15892  cofulid  17799  cofurid  17800  idffth  17844  cofull  17845  cofth  17846  ressffth  17849  isnat2  17860  nat1st2nd  17863  homadmcd  17951  catciso  18020  prf1st  18112  prf2nd  18113  1st2ndprf  18114  curfuncf  18146  uncfcurf  18147  curf2ndf  18155  yonffthlem  18190  yoniso  18193  dprd2dlem2  19956  dprd2dlem1  19957  dprd2da  19958  mdetunilem9  22536  2ndcctbss  23371  utop2nei  24166  utop3cls  24167  caubl  25236  wlkop  29608  nvop2  30590  nvvop  30591  nvop  30658  phop  30800  fgreu  32656  1stpreimas  32691  gsumhashmul  33048  cvmliftlem1  35350  heiborlem3  37873  rngoi  37959  drngoi  38011  isdrngo1  38016  iscrngo2  38057  tposideq  49012  cic1st2nd  49172  cofu1st2nd  49217  oppfval2  49262  oppfoppc2  49267  idfth  49283  up1st2nd  49310  up1st2ndr  49311  uptrlem2  49336  uptra  49340  uobeqw  49344  uobeq  49345  uptr2a  49347  diag1  49429  fuco11bALT  49463  fuco22nat  49471  fucocolem4  49481  precofvalALT  49493  prcoftposcurfucoa  49509  prcofdiag1  49518  prcofdiag  49519  oppfdiag1  49539  oppfdiag  49541  termcfuncval  49657  diagffth  49663  lmddu  49792
  Copyright terms: Public domain W3C validator