![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 1st2nd | Structured version Visualization version GIF version |
Description: Reconstruction of a member of a relation in terms of its ordered pair components. (Contributed by NM, 29-Aug-2006.) |
Ref | Expression |
---|---|
1st2nd | ⊢ ((Rel 𝐵 ∧ 𝐴 ∈ 𝐵) → 𝐴 = ⟨(1st ‘𝐴), (2nd ‘𝐴)⟩) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rel 5682 | . . 3 ⊢ (Rel 𝐵 ↔ 𝐵 ⊆ (V × V)) | |
2 | ssel2 3976 | . . 3 ⊢ ((𝐵 ⊆ (V × V) ∧ 𝐴 ∈ 𝐵) → 𝐴 ∈ (V × V)) | |
3 | 1, 2 | sylanb 579 | . 2 ⊢ ((Rel 𝐵 ∧ 𝐴 ∈ 𝐵) → 𝐴 ∈ (V × V)) |
4 | 1st2nd2 8016 | . 2 ⊢ (𝐴 ∈ (V × V) → 𝐴 = ⟨(1st ‘𝐴), (2nd ‘𝐴)⟩) | |
5 | 3, 4 | syl 17 | 1 ⊢ ((Rel 𝐵 ∧ 𝐴 ∈ 𝐵) → 𝐴 = ⟨(1st ‘𝐴), (2nd ‘𝐴)⟩) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1539 ∈ wcel 2104 Vcvv 3472 ⊆ wss 3947 ⟨cop 4633 × cxp 5673 Rel wrel 5680 ‘cfv 6542 1st c1st 7975 2nd c2nd 7976 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-sep 5298 ax-nul 5305 ax-pr 5426 ax-un 7727 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ral 3060 df-rex 3069 df-rab 3431 df-v 3474 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-iota 6494 df-fun 6544 df-fv 6550 df-1st 7977 df-2nd 7978 |
This theorem is referenced by: 2ndrn 8029 1st2ndbr 8030 funfv1st2nd 8034 funelss 8035 elopabi 8050 cnvf1olem 8098 ordpinq 10940 addassnq 10955 mulassnq 10956 distrnq 10958 mulidnq 10960 recmulnq 10961 ltexnq 10972 fsumcnv 15723 fprodcnv 15931 cofulid 17844 cofurid 17845 idffth 17888 cofull 17889 cofth 17890 ressffth 17893 isnat2 17903 nat1st2nd 17906 homadmcd 17996 catciso 18065 prf1st 18160 prf2nd 18161 1st2ndprf 18162 curfuncf 18195 uncfcurf 18196 curf2ndf 18204 yonffthlem 18239 yoniso 18242 dprd2dlem2 19951 dprd2dlem1 19952 dprd2da 19953 mdetunilem9 22342 2ndcctbss 23179 utop2nei 23975 utop3cls 23976 caubl 25056 wlkop 29152 nvop2 30128 nvvop 30129 nvop 30196 phop 30338 fgreu 32164 1stpreimas 32194 gsumhashmul 32478 cvmliftlem1 34574 heiborlem3 36984 rngoi 37070 drngoi 37122 isdrngo1 37127 iscrngo2 37168 |
Copyright terms: Public domain | W3C validator |