![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 1st2nd | Structured version Visualization version GIF version |
Description: Reconstruction of a member of a relation in terms of its ordered pair components. (Contributed by NM, 29-Aug-2006.) |
Ref | Expression |
---|---|
1st2nd | ⊢ ((Rel 𝐵 ∧ 𝐴 ∈ 𝐵) → 𝐴 = ⟨(1st ‘𝐴), (2nd ‘𝐴)⟩) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rel 5683 | . . 3 ⊢ (Rel 𝐵 ↔ 𝐵 ⊆ (V × V)) | |
2 | ssel2 3977 | . . 3 ⊢ ((𝐵 ⊆ (V × V) ∧ 𝐴 ∈ 𝐵) → 𝐴 ∈ (V × V)) | |
3 | 1, 2 | sylanb 582 | . 2 ⊢ ((Rel 𝐵 ∧ 𝐴 ∈ 𝐵) → 𝐴 ∈ (V × V)) |
4 | 1st2nd2 8011 | . 2 ⊢ (𝐴 ∈ (V × V) → 𝐴 = ⟨(1st ‘𝐴), (2nd ‘𝐴)⟩) | |
5 | 3, 4 | syl 17 | 1 ⊢ ((Rel 𝐵 ∧ 𝐴 ∈ 𝐵) → 𝐴 = ⟨(1st ‘𝐴), (2nd ‘𝐴)⟩) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1542 ∈ wcel 2107 Vcvv 3475 ⊆ wss 3948 ⟨cop 4634 × cxp 5674 Rel wrel 5681 ‘cfv 6541 1st c1st 7970 2nd c2nd 7971 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5299 ax-nul 5306 ax-pr 5427 ax-un 7722 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-iota 6493 df-fun 6543 df-fv 6549 df-1st 7972 df-2nd 7973 |
This theorem is referenced by: 2ndrn 8024 1st2ndbr 8025 funfv1st2nd 8029 funelss 8030 elopabi 8045 cnvf1olem 8093 ordpinq 10935 addassnq 10950 mulassnq 10951 distrnq 10953 mulidnq 10955 recmulnq 10956 ltexnq 10967 fsumcnv 15716 fprodcnv 15924 cofulid 17837 cofurid 17838 idffth 17881 cofull 17882 cofth 17883 ressffth 17886 isnat2 17896 nat1st2nd 17899 homadmcd 17989 catciso 18058 prf1st 18153 prf2nd 18154 1st2ndprf 18155 curfuncf 18188 uncfcurf 18189 curf2ndf 18197 yonffthlem 18232 yoniso 18235 dprd2dlem2 19905 dprd2dlem1 19906 dprd2da 19907 mdetunilem9 22114 2ndcctbss 22951 utop2nei 23747 utop3cls 23748 caubl 24817 wlkop 28875 nvop2 29849 nvvop 29850 nvop 29917 phop 30059 fgreu 31885 1stpreimas 31915 gsumhashmul 32196 cvmliftlem1 34265 heiborlem3 36670 rngoi 36756 drngoi 36808 isdrngo1 36813 iscrngo2 36854 |
Copyright terms: Public domain | W3C validator |