| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 1st2nd | Structured version Visualization version GIF version | ||
| Description: Reconstruction of a member of a relation in terms of its ordered pair components. (Contributed by NM, 29-Aug-2006.) |
| Ref | Expression |
|---|---|
| 1st2nd | ⊢ ((Rel 𝐵 ∧ 𝐴 ∈ 𝐵) → 𝐴 = 〈(1st ‘𝐴), (2nd ‘𝐴)〉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rel 5623 | . . 3 ⊢ (Rel 𝐵 ↔ 𝐵 ⊆ (V × V)) | |
| 2 | ssel2 3929 | . . 3 ⊢ ((𝐵 ⊆ (V × V) ∧ 𝐴 ∈ 𝐵) → 𝐴 ∈ (V × V)) | |
| 3 | 1, 2 | sylanb 581 | . 2 ⊢ ((Rel 𝐵 ∧ 𝐴 ∈ 𝐵) → 𝐴 ∈ (V × V)) |
| 4 | 1st2nd2 7960 | . 2 ⊢ (𝐴 ∈ (V × V) → 𝐴 = 〈(1st ‘𝐴), (2nd ‘𝐴)〉) | |
| 5 | 3, 4 | syl 17 | 1 ⊢ ((Rel 𝐵 ∧ 𝐴 ∈ 𝐵) → 𝐴 = 〈(1st ‘𝐴), (2nd ‘𝐴)〉) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 Vcvv 3436 ⊆ wss 3902 〈cop 4582 × cxp 5614 Rel wrel 5621 ‘cfv 6481 1st c1st 7919 2nd c2nd 7920 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-iota 6437 df-fun 6483 df-fv 6489 df-1st 7921 df-2nd 7922 |
| This theorem is referenced by: 2ndrn 7973 1st2ndbr 7974 funfv1st2nd 7978 funelss 7979 elopabi 7994 cnvf1olem 8040 ordpinq 10831 addassnq 10846 mulassnq 10847 distrnq 10849 mulidnq 10851 recmulnq 10852 ltexnq 10863 fsumcnv 15677 fprodcnv 15887 cofulid 17794 cofurid 17795 idffth 17839 cofull 17840 cofth 17841 ressffth 17844 isnat2 17855 nat1st2nd 17858 homadmcd 17946 catciso 18015 prf1st 18107 prf2nd 18108 1st2ndprf 18109 curfuncf 18141 uncfcurf 18142 curf2ndf 18150 yonffthlem 18185 yoniso 18188 dprd2dlem2 19952 dprd2dlem1 19953 dprd2da 19954 mdetunilem9 22533 2ndcctbss 23368 utop2nei 24163 utop3cls 24164 caubl 25233 wlkop 29604 nvop2 30583 nvvop 30584 nvop 30651 phop 30793 fgreu 32649 1stpreimas 32682 gsumhashmul 33036 cvmliftlem1 35317 heiborlem3 37852 rngoi 37938 drngoi 37990 isdrngo1 37995 iscrngo2 38036 tposideq 48918 cic1st2nd 49078 cofu1st2nd 49123 oppfval2 49168 oppfoppc2 49173 idfth 49189 up1st2nd 49216 up1st2ndr 49217 uptrlem2 49242 uptra 49246 uobeqw 49250 uobeq 49251 uptr2a 49253 diag1 49335 fuco11bALT 49369 fuco22nat 49377 fucocolem4 49387 precofvalALT 49399 prcoftposcurfucoa 49415 prcofdiag1 49424 prcofdiag 49425 oppfdiag1 49445 oppfdiag 49447 termcfuncval 49563 diagffth 49569 lmddu 49698 |
| Copyright terms: Public domain | W3C validator |