| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 1st2nd | Structured version Visualization version GIF version | ||
| Description: Reconstruction of a member of a relation in terms of its ordered pair components. (Contributed by NM, 29-Aug-2006.) |
| Ref | Expression |
|---|---|
| 1st2nd | ⊢ ((Rel 𝐵 ∧ 𝐴 ∈ 𝐵) → 𝐴 = 〈(1st ‘𝐴), (2nd ‘𝐴)〉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rel 5648 | . . 3 ⊢ (Rel 𝐵 ↔ 𝐵 ⊆ (V × V)) | |
| 2 | ssel2 3944 | . . 3 ⊢ ((𝐵 ⊆ (V × V) ∧ 𝐴 ∈ 𝐵) → 𝐴 ∈ (V × V)) | |
| 3 | 1, 2 | sylanb 581 | . 2 ⊢ ((Rel 𝐵 ∧ 𝐴 ∈ 𝐵) → 𝐴 ∈ (V × V)) |
| 4 | 1st2nd2 8010 | . 2 ⊢ (𝐴 ∈ (V × V) → 𝐴 = 〈(1st ‘𝐴), (2nd ‘𝐴)〉) | |
| 5 | 3, 4 | syl 17 | 1 ⊢ ((Rel 𝐵 ∧ 𝐴 ∈ 𝐵) → 𝐴 = 〈(1st ‘𝐴), (2nd ‘𝐴)〉) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3450 ⊆ wss 3917 〈cop 4598 × cxp 5639 Rel wrel 5646 ‘cfv 6514 1st c1st 7969 2nd c2nd 7970 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-iota 6467 df-fun 6516 df-fv 6522 df-1st 7971 df-2nd 7972 |
| This theorem is referenced by: 2ndrn 8023 1st2ndbr 8024 funfv1st2nd 8028 funelss 8029 elopabi 8044 cnvf1olem 8092 ordpinq 10903 addassnq 10918 mulassnq 10919 distrnq 10921 mulidnq 10923 recmulnq 10924 ltexnq 10935 fsumcnv 15746 fprodcnv 15956 cofulid 17859 cofurid 17860 idffth 17904 cofull 17905 cofth 17906 ressffth 17909 isnat2 17920 nat1st2nd 17923 homadmcd 18011 catciso 18080 prf1st 18172 prf2nd 18173 1st2ndprf 18174 curfuncf 18206 uncfcurf 18207 curf2ndf 18215 yonffthlem 18250 yoniso 18253 dprd2dlem2 19979 dprd2dlem1 19980 dprd2da 19981 mdetunilem9 22514 2ndcctbss 23349 utop2nei 24145 utop3cls 24146 caubl 25215 wlkop 29563 nvop2 30544 nvvop 30545 nvop 30612 phop 30754 fgreu 32603 1stpreimas 32636 gsumhashmul 33008 cvmliftlem1 35279 heiborlem3 37814 rngoi 37900 drngoi 37952 isdrngo1 37957 iscrngo2 37998 tposideq 48880 cic1st2nd 49040 cofu1st2nd 49085 oppfval2 49130 oppfoppc2 49135 idfth 49151 up1st2nd 49178 up1st2ndr 49179 uptrlem2 49204 uptra 49208 uobeqw 49212 uobeq 49213 uptr2a 49215 diag1 49297 fuco11bALT 49331 fuco22nat 49339 fucocolem4 49349 precofvalALT 49361 prcoftposcurfucoa 49377 prcofdiag1 49386 prcofdiag 49387 oppfdiag1 49407 oppfdiag 49409 termcfuncval 49525 diagffth 49531 lmddu 49660 |
| Copyright terms: Public domain | W3C validator |