Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 1st2nd | Structured version Visualization version GIF version |
Description: Reconstruction of a member of a relation in terms of its ordered pair components. (Contributed by NM, 29-Aug-2006.) |
Ref | Expression |
---|---|
1st2nd | ⊢ ((Rel 𝐵 ∧ 𝐴 ∈ 𝐵) → 𝐴 = 〈(1st ‘𝐴), (2nd ‘𝐴)〉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rel 5596 | . . 3 ⊢ (Rel 𝐵 ↔ 𝐵 ⊆ (V × V)) | |
2 | ssel2 3916 | . . 3 ⊢ ((𝐵 ⊆ (V × V) ∧ 𝐴 ∈ 𝐵) → 𝐴 ∈ (V × V)) | |
3 | 1, 2 | sylanb 581 | . 2 ⊢ ((Rel 𝐵 ∧ 𝐴 ∈ 𝐵) → 𝐴 ∈ (V × V)) |
4 | 1st2nd2 7870 | . 2 ⊢ (𝐴 ∈ (V × V) → 𝐴 = 〈(1st ‘𝐴), (2nd ‘𝐴)〉) | |
5 | 3, 4 | syl 17 | 1 ⊢ ((Rel 𝐵 ∧ 𝐴 ∈ 𝐵) → 𝐴 = 〈(1st ‘𝐴), (2nd ‘𝐴)〉) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 Vcvv 3432 ⊆ wss 3887 〈cop 4567 × cxp 5587 Rel wrel 5594 ‘cfv 6433 1st c1st 7829 2nd c2nd 7830 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-iota 6391 df-fun 6435 df-fv 6441 df-1st 7831 df-2nd 7832 |
This theorem is referenced by: 2ndrn 7882 1st2ndbr 7883 funfv1st2nd 7887 funelss 7888 elopabi 7902 cnvf1olem 7950 ordpinq 10699 addassnq 10714 mulassnq 10715 distrnq 10717 mulidnq 10719 recmulnq 10720 ltexnq 10731 fsumcnv 15485 fprodcnv 15693 cofulid 17605 cofurid 17606 idffth 17649 cofull 17650 cofth 17651 ressffth 17654 isnat2 17664 nat1st2nd 17667 homadmcd 17757 catciso 17826 prf1st 17921 prf2nd 17922 1st2ndprf 17923 curfuncf 17956 uncfcurf 17957 curf2ndf 17965 yonffthlem 18000 yoniso 18003 dprd2dlem2 19643 dprd2dlem1 19644 dprd2da 19645 mdetunilem9 21769 2ndcctbss 22606 utop2nei 23402 utop3cls 23403 caubl 24472 wlkop 27995 nvop2 28970 nvvop 28971 nvop 29038 phop 29180 fgreu 31009 1stpreimas 31038 gsumhashmul 31316 cvmliftlem1 33247 heiborlem3 35971 rngoi 36057 drngoi 36109 isdrngo1 36114 iscrngo2 36155 |
Copyright terms: Public domain | W3C validator |