| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 1st2nd | Structured version Visualization version GIF version | ||
| Description: Reconstruction of a member of a relation in terms of its ordered pair components. (Contributed by NM, 29-Aug-2006.) |
| Ref | Expression |
|---|---|
| 1st2nd | ⊢ ((Rel 𝐵 ∧ 𝐴 ∈ 𝐵) → 𝐴 = 〈(1st ‘𝐴), (2nd ‘𝐴)〉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rel 5661 | . . 3 ⊢ (Rel 𝐵 ↔ 𝐵 ⊆ (V × V)) | |
| 2 | ssel2 3953 | . . 3 ⊢ ((𝐵 ⊆ (V × V) ∧ 𝐴 ∈ 𝐵) → 𝐴 ∈ (V × V)) | |
| 3 | 1, 2 | sylanb 581 | . 2 ⊢ ((Rel 𝐵 ∧ 𝐴 ∈ 𝐵) → 𝐴 ∈ (V × V)) |
| 4 | 1st2nd2 8027 | . 2 ⊢ (𝐴 ∈ (V × V) → 𝐴 = 〈(1st ‘𝐴), (2nd ‘𝐴)〉) | |
| 5 | 3, 4 | syl 17 | 1 ⊢ ((Rel 𝐵 ∧ 𝐴 ∈ 𝐵) → 𝐴 = 〈(1st ‘𝐴), (2nd ‘𝐴)〉) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 Vcvv 3459 ⊆ wss 3926 〈cop 4607 × cxp 5652 Rel wrel 5659 ‘cfv 6531 1st c1st 7986 2nd c2nd 7987 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-iota 6484 df-fun 6533 df-fv 6539 df-1st 7988 df-2nd 7989 |
| This theorem is referenced by: 2ndrn 8040 1st2ndbr 8041 funfv1st2nd 8045 funelss 8046 elopabi 8061 cnvf1olem 8109 ordpinq 10957 addassnq 10972 mulassnq 10973 distrnq 10975 mulidnq 10977 recmulnq 10978 ltexnq 10989 fsumcnv 15789 fprodcnv 15999 cofulid 17903 cofurid 17904 idffth 17948 cofull 17949 cofth 17950 ressffth 17953 isnat2 17964 nat1st2nd 17967 homadmcd 18055 catciso 18124 prf1st 18216 prf2nd 18217 1st2ndprf 18218 curfuncf 18250 uncfcurf 18251 curf2ndf 18259 yonffthlem 18294 yoniso 18297 dprd2dlem2 20023 dprd2dlem1 20024 dprd2da 20025 mdetunilem9 22558 2ndcctbss 23393 utop2nei 24189 utop3cls 24190 caubl 25260 wlkop 29608 nvop2 30589 nvvop 30590 nvop 30657 phop 30799 fgreu 32650 1stpreimas 32683 gsumhashmul 33055 cvmliftlem1 35307 heiborlem3 37837 rngoi 37923 drngoi 37975 isdrngo1 37980 iscrngo2 38021 tposideq 48863 cic1st2nd 49014 oppfval2 49083 oppfoppc2 49085 idfth 49098 up1st2nd 49119 up1st2ndr 49120 diag1 49215 fuco11bALT 49249 fuco22nat 49257 fucocolem4 49267 precofvalALT 49279 prcoftposcurfucoa 49294 termcfuncval 49417 diagffth 49423 |
| Copyright terms: Public domain | W3C validator |