Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 1st2nd | Structured version Visualization version GIF version |
Description: Reconstruction of a member of a relation in terms of its ordered pair components. (Contributed by NM, 29-Aug-2006.) |
Ref | Expression |
---|---|
1st2nd | ⊢ ((Rel 𝐵 ∧ 𝐴 ∈ 𝐵) → 𝐴 = 〈(1st ‘𝐴), (2nd ‘𝐴)〉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rel 5587 | . . 3 ⊢ (Rel 𝐵 ↔ 𝐵 ⊆ (V × V)) | |
2 | ssel2 3912 | . . 3 ⊢ ((𝐵 ⊆ (V × V) ∧ 𝐴 ∈ 𝐵) → 𝐴 ∈ (V × V)) | |
3 | 1, 2 | sylanb 580 | . 2 ⊢ ((Rel 𝐵 ∧ 𝐴 ∈ 𝐵) → 𝐴 ∈ (V × V)) |
4 | 1st2nd2 7843 | . 2 ⊢ (𝐴 ∈ (V × V) → 𝐴 = 〈(1st ‘𝐴), (2nd ‘𝐴)〉) | |
5 | 3, 4 | syl 17 | 1 ⊢ ((Rel 𝐵 ∧ 𝐴 ∈ 𝐵) → 𝐴 = 〈(1st ‘𝐴), (2nd ‘𝐴)〉) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 Vcvv 3422 ⊆ wss 3883 〈cop 4564 × cxp 5578 Rel wrel 5585 ‘cfv 6418 1st c1st 7802 2nd c2nd 7803 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-iota 6376 df-fun 6420 df-fv 6426 df-1st 7804 df-2nd 7805 |
This theorem is referenced by: 2ndrn 7855 1st2ndbr 7856 funfv1st2nd 7860 funelss 7861 elopabi 7875 cnvf1olem 7921 ordpinq 10630 addassnq 10645 mulassnq 10646 distrnq 10648 mulidnq 10650 recmulnq 10651 ltexnq 10662 fsumcnv 15413 fprodcnv 15621 cofulid 17521 cofurid 17522 idffth 17565 cofull 17566 cofth 17567 ressffth 17570 isnat2 17580 nat1st2nd 17583 homadmcd 17673 catciso 17742 prf1st 17837 prf2nd 17838 1st2ndprf 17839 curfuncf 17872 uncfcurf 17873 curf2ndf 17881 yonffthlem 17916 yoniso 17919 dprd2dlem2 19558 dprd2dlem1 19559 dprd2da 19560 mdetunilem9 21677 2ndcctbss 22514 utop2nei 23310 utop3cls 23311 caubl 24377 wlkop 27897 nvop2 28871 nvvop 28872 nvop 28939 phop 29081 fgreu 30911 1stpreimas 30940 gsumhashmul 31218 cvmliftlem1 33147 heiborlem3 35898 rngoi 35984 drngoi 36036 isdrngo1 36041 iscrngo2 36082 |
Copyright terms: Public domain | W3C validator |