![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 1st2nd | Structured version Visualization version GIF version |
Description: Reconstruction of a member of a relation in terms of its ordered pair components. (Contributed by NM, 29-Aug-2006.) |
Ref | Expression |
---|---|
1st2nd | ⊢ ((Rel 𝐵 ∧ 𝐴 ∈ 𝐵) → 𝐴 = 〈(1st ‘𝐴), (2nd ‘𝐴)〉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rel 5707 | . . 3 ⊢ (Rel 𝐵 ↔ 𝐵 ⊆ (V × V)) | |
2 | ssel2 4003 | . . 3 ⊢ ((𝐵 ⊆ (V × V) ∧ 𝐴 ∈ 𝐵) → 𝐴 ∈ (V × V)) | |
3 | 1, 2 | sylanb 580 | . 2 ⊢ ((Rel 𝐵 ∧ 𝐴 ∈ 𝐵) → 𝐴 ∈ (V × V)) |
4 | 1st2nd2 8069 | . 2 ⊢ (𝐴 ∈ (V × V) → 𝐴 = 〈(1st ‘𝐴), (2nd ‘𝐴)〉) | |
5 | 3, 4 | syl 17 | 1 ⊢ ((Rel 𝐵 ∧ 𝐴 ∈ 𝐵) → 𝐴 = 〈(1st ‘𝐴), (2nd ‘𝐴)〉) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 Vcvv 3488 ⊆ wss 3976 〈cop 4654 × cxp 5698 Rel wrel 5705 ‘cfv 6573 1st c1st 8028 2nd c2nd 8029 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-iota 6525 df-fun 6575 df-fv 6581 df-1st 8030 df-2nd 8031 |
This theorem is referenced by: 2ndrn 8082 1st2ndbr 8083 funfv1st2nd 8087 funelss 8088 elopabi 8103 cnvf1olem 8151 ordpinq 11012 addassnq 11027 mulassnq 11028 distrnq 11030 mulidnq 11032 recmulnq 11033 ltexnq 11044 fsumcnv 15821 fprodcnv 16031 cofulid 17954 cofurid 17955 idffth 18000 cofull 18001 cofth 18002 ressffth 18005 isnat2 18016 nat1st2nd 18019 homadmcd 18109 catciso 18178 prf1st 18273 prf2nd 18274 1st2ndprf 18275 curfuncf 18308 uncfcurf 18309 curf2ndf 18317 yonffthlem 18352 yoniso 18355 dprd2dlem2 20084 dprd2dlem1 20085 dprd2da 20086 mdetunilem9 22647 2ndcctbss 23484 utop2nei 24280 utop3cls 24281 caubl 25361 wlkop 29664 nvop2 30640 nvvop 30641 nvop 30708 phop 30850 fgreu 32690 1stpreimas 32717 gsumhashmul 33040 cvmliftlem1 35253 heiborlem3 37773 rngoi 37859 drngoi 37911 isdrngo1 37916 iscrngo2 37957 |
Copyright terms: Public domain | W3C validator |