| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 1st2nd | Structured version Visualization version GIF version | ||
| Description: Reconstruction of a member of a relation in terms of its ordered pair components. (Contributed by NM, 29-Aug-2006.) |
| Ref | Expression |
|---|---|
| 1st2nd | ⊢ ((Rel 𝐵 ∧ 𝐴 ∈ 𝐵) → 𝐴 = 〈(1st ‘𝐴), (2nd ‘𝐴)〉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rel 5626 | . . 3 ⊢ (Rel 𝐵 ↔ 𝐵 ⊆ (V × V)) | |
| 2 | ssel2 3925 | . . 3 ⊢ ((𝐵 ⊆ (V × V) ∧ 𝐴 ∈ 𝐵) → 𝐴 ∈ (V × V)) | |
| 3 | 1, 2 | sylanb 581 | . 2 ⊢ ((Rel 𝐵 ∧ 𝐴 ∈ 𝐵) → 𝐴 ∈ (V × V)) |
| 4 | 1st2nd2 7966 | . 2 ⊢ (𝐴 ∈ (V × V) → 𝐴 = 〈(1st ‘𝐴), (2nd ‘𝐴)〉) | |
| 5 | 3, 4 | syl 17 | 1 ⊢ ((Rel 𝐵 ∧ 𝐴 ∈ 𝐵) → 𝐴 = 〈(1st ‘𝐴), (2nd ‘𝐴)〉) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 Vcvv 3437 ⊆ wss 3898 〈cop 4581 × cxp 5617 Rel wrel 5624 ‘cfv 6486 1st c1st 7925 2nd c2nd 7926 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pr 5372 ax-un 7674 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-iota 6442 df-fun 6488 df-fv 6494 df-1st 7927 df-2nd 7928 |
| This theorem is referenced by: 2ndrn 7979 1st2ndbr 7980 funfv1st2nd 7984 funelss 7985 elopabi 8000 cnvf1olem 8046 ordpinq 10841 addassnq 10856 mulassnq 10857 distrnq 10859 mulidnq 10861 recmulnq 10862 ltexnq 10873 fsumcnv 15682 fprodcnv 15892 cofulid 17799 cofurid 17800 idffth 17844 cofull 17845 cofth 17846 ressffth 17849 isnat2 17860 nat1st2nd 17863 homadmcd 17951 catciso 18020 prf1st 18112 prf2nd 18113 1st2ndprf 18114 curfuncf 18146 uncfcurf 18147 curf2ndf 18155 yonffthlem 18190 yoniso 18193 dprd2dlem2 19956 dprd2dlem1 19957 dprd2da 19958 mdetunilem9 22536 2ndcctbss 23371 utop2nei 24166 utop3cls 24167 caubl 25236 wlkop 29608 nvop2 30590 nvvop 30591 nvop 30658 phop 30800 fgreu 32656 1stpreimas 32691 gsumhashmul 33048 cvmliftlem1 35350 heiborlem3 37873 rngoi 37959 drngoi 38011 isdrngo1 38016 iscrngo2 38057 tposideq 49012 cic1st2nd 49172 cofu1st2nd 49217 oppfval2 49262 oppfoppc2 49267 idfth 49283 up1st2nd 49310 up1st2ndr 49311 uptrlem2 49336 uptra 49340 uobeqw 49344 uobeq 49345 uptr2a 49347 diag1 49429 fuco11bALT 49463 fuco22nat 49471 fucocolem4 49481 precofvalALT 49493 prcoftposcurfucoa 49509 prcofdiag1 49518 prcofdiag 49519 oppfdiag1 49539 oppfdiag 49541 termcfuncval 49657 diagffth 49663 lmddu 49792 |
| Copyright terms: Public domain | W3C validator |