MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  1st2nd Structured version   Visualization version   GIF version

Theorem 1st2nd 8027
Description: Reconstruction of a member of a relation in terms of its ordered pair components. (Contributed by NM, 29-Aug-2006.)
Assertion
Ref Expression
1st2nd ((Rel 𝐵𝐴𝐵) → 𝐴 = ⟨(1st𝐴), (2nd𝐴)⟩)

Proof of Theorem 1st2nd
StepHypRef Expression
1 df-rel 5682 . . 3 (Rel 𝐵𝐵 ⊆ (V × V))
2 ssel2 3976 . . 3 ((𝐵 ⊆ (V × V) ∧ 𝐴𝐵) → 𝐴 ∈ (V × V))
31, 2sylanb 579 . 2 ((Rel 𝐵𝐴𝐵) → 𝐴 ∈ (V × V))
4 1st2nd2 8016 . 2 (𝐴 ∈ (V × V) → 𝐴 = ⟨(1st𝐴), (2nd𝐴)⟩)
53, 4syl 17 1 ((Rel 𝐵𝐴𝐵) → 𝐴 = ⟨(1st𝐴), (2nd𝐴)⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1539  wcel 2104  Vcvv 3472  wss 3947  cop 4633   × cxp 5673  Rel wrel 5680  cfv 6542  1st c1st 7975  2nd c2nd 7976
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-sep 5298  ax-nul 5305  ax-pr 5426  ax-un 7727
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ral 3060  df-rex 3069  df-rab 3431  df-v 3474  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-iota 6494  df-fun 6544  df-fv 6550  df-1st 7977  df-2nd 7978
This theorem is referenced by:  2ndrn  8029  1st2ndbr  8030  funfv1st2nd  8034  funelss  8035  elopabi  8050  cnvf1olem  8098  ordpinq  10940  addassnq  10955  mulassnq  10956  distrnq  10958  mulidnq  10960  recmulnq  10961  ltexnq  10972  fsumcnv  15723  fprodcnv  15931  cofulid  17844  cofurid  17845  idffth  17888  cofull  17889  cofth  17890  ressffth  17893  isnat2  17903  nat1st2nd  17906  homadmcd  17996  catciso  18065  prf1st  18160  prf2nd  18161  1st2ndprf  18162  curfuncf  18195  uncfcurf  18196  curf2ndf  18204  yonffthlem  18239  yoniso  18242  dprd2dlem2  19951  dprd2dlem1  19952  dprd2da  19953  mdetunilem9  22342  2ndcctbss  23179  utop2nei  23975  utop3cls  23976  caubl  25056  wlkop  29152  nvop2  30128  nvvop  30129  nvop  30196  phop  30338  fgreu  32164  1stpreimas  32194  gsumhashmul  32478  cvmliftlem1  34574  heiborlem3  36984  rngoi  37070  drngoi  37122  isdrngo1  37127  iscrngo2  37168
  Copyright terms: Public domain W3C validator