| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 1st2nd | Structured version Visualization version GIF version | ||
| Description: Reconstruction of a member of a relation in terms of its ordered pair components. (Contributed by NM, 29-Aug-2006.) |
| Ref | Expression |
|---|---|
| 1st2nd | ⊢ ((Rel 𝐵 ∧ 𝐴 ∈ 𝐵) → 𝐴 = 〈(1st ‘𝐴), (2nd ‘𝐴)〉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rel 5645 | . . 3 ⊢ (Rel 𝐵 ↔ 𝐵 ⊆ (V × V)) | |
| 2 | ssel2 3941 | . . 3 ⊢ ((𝐵 ⊆ (V × V) ∧ 𝐴 ∈ 𝐵) → 𝐴 ∈ (V × V)) | |
| 3 | 1, 2 | sylanb 581 | . 2 ⊢ ((Rel 𝐵 ∧ 𝐴 ∈ 𝐵) → 𝐴 ∈ (V × V)) |
| 4 | 1st2nd2 8007 | . 2 ⊢ (𝐴 ∈ (V × V) → 𝐴 = 〈(1st ‘𝐴), (2nd ‘𝐴)〉) | |
| 5 | 3, 4 | syl 17 | 1 ⊢ ((Rel 𝐵 ∧ 𝐴 ∈ 𝐵) → 𝐴 = 〈(1st ‘𝐴), (2nd ‘𝐴)〉) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3447 ⊆ wss 3914 〈cop 4595 × cxp 5636 Rel wrel 5643 ‘cfv 6511 1st c1st 7966 2nd c2nd 7967 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-iota 6464 df-fun 6513 df-fv 6519 df-1st 7968 df-2nd 7969 |
| This theorem is referenced by: 2ndrn 8020 1st2ndbr 8021 funfv1st2nd 8025 funelss 8026 elopabi 8041 cnvf1olem 8089 ordpinq 10896 addassnq 10911 mulassnq 10912 distrnq 10914 mulidnq 10916 recmulnq 10917 ltexnq 10928 fsumcnv 15739 fprodcnv 15949 cofulid 17852 cofurid 17853 idffth 17897 cofull 17898 cofth 17899 ressffth 17902 isnat2 17913 nat1st2nd 17916 homadmcd 18004 catciso 18073 prf1st 18165 prf2nd 18166 1st2ndprf 18167 curfuncf 18199 uncfcurf 18200 curf2ndf 18208 yonffthlem 18243 yoniso 18246 dprd2dlem2 19972 dprd2dlem1 19973 dprd2da 19974 mdetunilem9 22507 2ndcctbss 23342 utop2nei 24138 utop3cls 24139 caubl 25208 wlkop 29556 nvop2 30537 nvvop 30538 nvop 30605 phop 30747 fgreu 32596 1stpreimas 32629 gsumhashmul 33001 cvmliftlem1 35272 heiborlem3 37807 rngoi 37893 drngoi 37945 isdrngo1 37950 iscrngo2 37991 tposideq 48876 cic1st2nd 49036 cofu1st2nd 49081 oppfval2 49126 oppfoppc2 49131 idfth 49147 up1st2nd 49174 up1st2ndr 49175 uptrlem2 49200 uptra 49204 uobeqw 49208 uobeq 49209 uptr2a 49211 diag1 49293 fuco11bALT 49327 fuco22nat 49335 fucocolem4 49345 precofvalALT 49357 prcoftposcurfucoa 49373 prcofdiag1 49382 prcofdiag 49383 oppfdiag1 49403 oppfdiag 49405 termcfuncval 49521 diagffth 49527 lmddu 49656 |
| Copyright terms: Public domain | W3C validator |