MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  1st2nd Structured version   Visualization version   GIF version

Theorem 1st2nd 8038
Description: Reconstruction of a member of a relation in terms of its ordered pair components. (Contributed by NM, 29-Aug-2006.)
Assertion
Ref Expression
1st2nd ((Rel 𝐵𝐴𝐵) → 𝐴 = ⟨(1st𝐴), (2nd𝐴)⟩)

Proof of Theorem 1st2nd
StepHypRef Expression
1 df-rel 5661 . . 3 (Rel 𝐵𝐵 ⊆ (V × V))
2 ssel2 3953 . . 3 ((𝐵 ⊆ (V × V) ∧ 𝐴𝐵) → 𝐴 ∈ (V × V))
31, 2sylanb 581 . 2 ((Rel 𝐵𝐴𝐵) → 𝐴 ∈ (V × V))
4 1st2nd2 8027 . 2 (𝐴 ∈ (V × V) → 𝐴 = ⟨(1st𝐴), (2nd𝐴)⟩)
53, 4syl 17 1 ((Rel 𝐵𝐴𝐵) → 𝐴 = ⟨(1st𝐴), (2nd𝐴)⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  Vcvv 3459  wss 3926  cop 4607   × cxp 5652  Rel wrel 5659  cfv 6531  1st c1st 7986  2nd c2nd 7987
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-iota 6484  df-fun 6533  df-fv 6539  df-1st 7988  df-2nd 7989
This theorem is referenced by:  2ndrn  8040  1st2ndbr  8041  funfv1st2nd  8045  funelss  8046  elopabi  8061  cnvf1olem  8109  ordpinq  10957  addassnq  10972  mulassnq  10973  distrnq  10975  mulidnq  10977  recmulnq  10978  ltexnq  10989  fsumcnv  15789  fprodcnv  15999  cofulid  17903  cofurid  17904  idffth  17948  cofull  17949  cofth  17950  ressffth  17953  isnat2  17964  nat1st2nd  17967  homadmcd  18055  catciso  18124  prf1st  18216  prf2nd  18217  1st2ndprf  18218  curfuncf  18250  uncfcurf  18251  curf2ndf  18259  yonffthlem  18294  yoniso  18297  dprd2dlem2  20023  dprd2dlem1  20024  dprd2da  20025  mdetunilem9  22558  2ndcctbss  23393  utop2nei  24189  utop3cls  24190  caubl  25260  wlkop  29608  nvop2  30589  nvvop  30590  nvop  30657  phop  30799  fgreu  32650  1stpreimas  32683  gsumhashmul  33055  cvmliftlem1  35307  heiborlem3  37837  rngoi  37923  drngoi  37975  isdrngo1  37980  iscrngo2  38021  tposideq  48863  cic1st2nd  49014  oppfval2  49083  oppfoppc2  49085  idfth  49098  up1st2nd  49119  up1st2ndr  49120  diag1  49215  fuco11bALT  49249  fuco22nat  49257  fucocolem4  49267  precofvalALT  49279  prcoftposcurfucoa  49294  termcfuncval  49417  diagffth  49423
  Copyright terms: Public domain W3C validator