MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  1st2nd Structured version   Visualization version   GIF version

Theorem 1st2nd 8022
Description: Reconstruction of a member of a relation in terms of its ordered pair components. (Contributed by NM, 29-Aug-2006.)
Assertion
Ref Expression
1st2nd ((Rel 𝐵𝐴𝐵) → 𝐴 = ⟨(1st𝐴), (2nd𝐴)⟩)

Proof of Theorem 1st2nd
StepHypRef Expression
1 df-rel 5683 . . 3 (Rel 𝐵𝐵 ⊆ (V × V))
2 ssel2 3977 . . 3 ((𝐵 ⊆ (V × V) ∧ 𝐴𝐵) → 𝐴 ∈ (V × V))
31, 2sylanb 582 . 2 ((Rel 𝐵𝐴𝐵) → 𝐴 ∈ (V × V))
4 1st2nd2 8011 . 2 (𝐴 ∈ (V × V) → 𝐴 = ⟨(1st𝐴), (2nd𝐴)⟩)
53, 4syl 17 1 ((Rel 𝐵𝐴𝐵) → 𝐴 = ⟨(1st𝐴), (2nd𝐴)⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397   = wceq 1542  wcel 2107  Vcvv 3475  wss 3948  cop 4634   × cxp 5674  Rel wrel 5681  cfv 6541  1st c1st 7970  2nd c2nd 7971
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5299  ax-nul 5306  ax-pr 5427  ax-un 7722
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-iota 6493  df-fun 6543  df-fv 6549  df-1st 7972  df-2nd 7973
This theorem is referenced by:  2ndrn  8024  1st2ndbr  8025  funfv1st2nd  8029  funelss  8030  elopabi  8045  cnvf1olem  8093  ordpinq  10935  addassnq  10950  mulassnq  10951  distrnq  10953  mulidnq  10955  recmulnq  10956  ltexnq  10967  fsumcnv  15716  fprodcnv  15924  cofulid  17837  cofurid  17838  idffth  17881  cofull  17882  cofth  17883  ressffth  17886  isnat2  17896  nat1st2nd  17899  homadmcd  17989  catciso  18058  prf1st  18153  prf2nd  18154  1st2ndprf  18155  curfuncf  18188  uncfcurf  18189  curf2ndf  18197  yonffthlem  18232  yoniso  18235  dprd2dlem2  19905  dprd2dlem1  19906  dprd2da  19907  mdetunilem9  22114  2ndcctbss  22951  utop2nei  23747  utop3cls  23748  caubl  24817  wlkop  28875  nvop2  29849  nvvop  29850  nvop  29917  phop  30059  fgreu  31885  1stpreimas  31915  gsumhashmul  32196  cvmliftlem1  34265  heiborlem3  36670  rngoi  36756  drngoi  36808  isdrngo1  36813  iscrngo2  36854
  Copyright terms: Public domain W3C validator