Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 1st2nd | Structured version Visualization version GIF version |
Description: Reconstruction of a member of a relation in terms of its ordered pair components. (Contributed by NM, 29-Aug-2006.) |
Ref | Expression |
---|---|
1st2nd | ⊢ ((Rel 𝐵 ∧ 𝐴 ∈ 𝐵) → 𝐴 = 〈(1st ‘𝐴), (2nd ‘𝐴)〉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rel 5597 | . . 3 ⊢ (Rel 𝐵 ↔ 𝐵 ⊆ (V × V)) | |
2 | ssel2 3921 | . . 3 ⊢ ((𝐵 ⊆ (V × V) ∧ 𝐴 ∈ 𝐵) → 𝐴 ∈ (V × V)) | |
3 | 1, 2 | sylanb 581 | . 2 ⊢ ((Rel 𝐵 ∧ 𝐴 ∈ 𝐵) → 𝐴 ∈ (V × V)) |
4 | 1st2nd2 7863 | . 2 ⊢ (𝐴 ∈ (V × V) → 𝐴 = 〈(1st ‘𝐴), (2nd ‘𝐴)〉) | |
5 | 3, 4 | syl 17 | 1 ⊢ ((Rel 𝐵 ∧ 𝐴 ∈ 𝐵) → 𝐴 = 〈(1st ‘𝐴), (2nd ‘𝐴)〉) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1542 ∈ wcel 2110 Vcvv 3431 ⊆ wss 3892 〈cop 4573 × cxp 5588 Rel wrel 5595 ‘cfv 6432 1st c1st 7822 2nd c2nd 7823 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-sep 5227 ax-nul 5234 ax-pr 5356 ax-un 7582 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ral 3071 df-rex 3072 df-rab 3075 df-v 3433 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-br 5080 df-opab 5142 df-mpt 5163 df-id 5490 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-iota 6390 df-fun 6434 df-fv 6440 df-1st 7824 df-2nd 7825 |
This theorem is referenced by: 2ndrn 7875 1st2ndbr 7876 funfv1st2nd 7880 funelss 7881 elopabi 7895 cnvf1olem 7941 ordpinq 10700 addassnq 10715 mulassnq 10716 distrnq 10718 mulidnq 10720 recmulnq 10721 ltexnq 10732 fsumcnv 15483 fprodcnv 15691 cofulid 17603 cofurid 17604 idffth 17647 cofull 17648 cofth 17649 ressffth 17652 isnat2 17662 nat1st2nd 17665 homadmcd 17755 catciso 17824 prf1st 17919 prf2nd 17920 1st2ndprf 17921 curfuncf 17954 uncfcurf 17955 curf2ndf 17963 yonffthlem 17998 yoniso 18001 dprd2dlem2 19641 dprd2dlem1 19642 dprd2da 19643 mdetunilem9 21767 2ndcctbss 22604 utop2nei 23400 utop3cls 23401 caubl 24470 wlkop 27992 nvop2 28966 nvvop 28967 nvop 29034 phop 29176 fgreu 31005 1stpreimas 31034 gsumhashmul 31312 cvmliftlem1 33243 heiborlem3 35967 rngoi 36053 drngoi 36105 isdrngo1 36110 iscrngo2 36151 |
Copyright terms: Public domain | W3C validator |