![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 1st2nd2 | Structured version Visualization version GIF version |
Description: Reconstruction of a member of a Cartesian product in terms of its ordered pair components. (Contributed by NM, 20-Oct-2013.) |
Ref | Expression |
---|---|
1st2nd2 | ⊢ (𝐴 ∈ (𝐵 × 𝐶) → 𝐴 = 〈(1st ‘𝐴), (2nd ‘𝐴)〉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elxp6 8047 | . 2 ⊢ (𝐴 ∈ (𝐵 × 𝐶) ↔ (𝐴 = 〈(1st ‘𝐴), (2nd ‘𝐴)〉 ∧ ((1st ‘𝐴) ∈ 𝐵 ∧ (2nd ‘𝐴) ∈ 𝐶))) | |
2 | 1 | simplbi 497 | 1 ⊢ (𝐴 ∈ (𝐵 × 𝐶) → 𝐴 = 〈(1st ‘𝐴), (2nd ‘𝐴)〉) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2106 〈cop 4637 × cxp 5687 ‘cfv 6563 1st c1st 8011 2nd c2nd 8012 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-iota 6516 df-fun 6565 df-fv 6571 df-1st 8013 df-2nd 8014 |
This theorem is referenced by: 1st2ndb 8053 xpopth 8054 eqop 8055 2nd1st 8062 1st2nd 8063 opiota 8083 fimaproj 8159 disjen 9173 xpmapenlem 9183 mapunen 9185 djulf1o 9950 djurf1o 9951 djur 9957 r0weon 10050 enqbreq2 10958 nqereu 10967 lterpq 11008 elreal2 11170 cnref1o 13025 ruclem6 16268 ruclem8 16270 ruclem9 16271 ruclem12 16274 eucalgval 16616 eucalginv 16618 eucalglt 16619 eucalg 16621 qnumdenbi 16778 isstruct2 17183 xpsff1o 17614 comfffval2 17746 comfeq 17751 idfucl 17932 funcpropd 17954 coapm 18125 xpccatid 18244 1stfcl 18253 2ndfcl 18254 1st2ndprf 18262 xpcpropd 18265 evlfcl 18279 hofcl 18316 hofpropd 18324 yonedalem3 18337 gsum2dlem2 20004 mdetunilem9 22642 tx1cn 23633 tx2cn 23634 txdis 23656 txlly 23660 txnlly 23661 txhaus 23671 txkgen 23676 txconn 23713 utop3cls 24276 ucnima 24306 fmucndlem 24316 psmetxrge0 24339 imasdsf1olem 24399 cnheiborlem 25000 caublcls 25357 bcthlem1 25372 bcthlem2 25373 bcthlem4 25375 bcthlem5 25376 ovolfcl 25515 ovolfioo 25516 ovolficc 25517 ovolficcss 25518 ovolfsval 25519 ovolicc2lem1 25566 ovolicc2lem5 25570 ovolfs2 25620 uniiccdif 25627 uniioovol 25628 uniiccvol 25629 uniioombllem2a 25631 uniioombllem2 25632 uniioombllem3a 25633 uniioombllem3 25634 uniioombllem4 25635 uniioombllem5 25636 uniioombllem6 25637 dyadmbl 25649 fsumvma 27272 opreu2reuALT 32505 ofpreima 32682 ofpreima2 32683 erler 33252 1stmbfm 34242 2ndmbfm 34243 sibfof 34322 oddpwdcv 34337 txsconnlem 35225 mpst123 35525 bj-elid4 37151 bj-elid6 37153 poimirlem4 37611 poimirlem26 37633 poimirlem27 37634 mblfinlem1 37644 mblfinlem2 37645 ftc2nc 37689 heiborlem8 37805 dvhgrp 41090 dvhlveclem 41091 fvovco 45136 dvnprodlem1 45902 volioof 45943 fvvolioof 45945 fvvolicof 45947 etransclem44 46234 ovolval3 46603 ovolval4lem1 46605 ovolval5lem2 46609 ovnovollem1 46612 ovnovollem2 46613 smfpimbor1lem1 46754 rrx2xpref1o 48568 |
Copyright terms: Public domain | W3C validator |