| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 1st2nd2 | Structured version Visualization version GIF version | ||
| Description: Reconstruction of a member of a Cartesian product in terms of its ordered pair components. (Contributed by NM, 20-Oct-2013.) |
| Ref | Expression |
|---|---|
| 1st2nd2 | ⊢ (𝐴 ∈ (𝐵 × 𝐶) → 𝐴 = 〈(1st ‘𝐴), (2nd ‘𝐴)〉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elxp6 8005 | . 2 ⊢ (𝐴 ∈ (𝐵 × 𝐶) ↔ (𝐴 = 〈(1st ‘𝐴), (2nd ‘𝐴)〉 ∧ ((1st ‘𝐴) ∈ 𝐵 ∧ (2nd ‘𝐴) ∈ 𝐶))) | |
| 2 | 1 | simplbi 497 | 1 ⊢ (𝐴 ∈ (𝐵 × 𝐶) → 𝐴 = 〈(1st ‘𝐴), (2nd ‘𝐴)〉) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 〈cop 4598 × cxp 5639 ‘cfv 6514 1st c1st 7969 2nd c2nd 7970 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-iota 6467 df-fun 6516 df-fv 6522 df-1st 7971 df-2nd 7972 |
| This theorem is referenced by: 1st2ndb 8011 xpopth 8012 eqop 8013 2nd1st 8020 1st2nd 8021 opiota 8041 fimaproj 8117 disjen 9104 xpmapenlem 9114 mapunen 9116 djulf1o 9872 djurf1o 9873 djur 9879 r0weon 9972 enqbreq2 10880 nqereu 10889 lterpq 10930 elreal2 11092 cnref1o 12951 ruclem6 16210 ruclem8 16212 ruclem9 16213 ruclem12 16216 eucalgval 16559 eucalginv 16561 eucalglt 16562 eucalg 16564 qnumdenbi 16721 isstruct2 17126 xpsff1o 17537 comfffval2 17669 comfeq 17674 idfucl 17850 funcpropd 17871 coapm 18040 xpccatid 18156 1stfcl 18165 2ndfcl 18166 1st2ndprf 18174 xpcpropd 18176 evlfcl 18190 hofcl 18227 hofpropd 18235 yonedalem3 18248 gsum2dlem2 19908 mdetunilem9 22514 tx1cn 23503 tx2cn 23504 txdis 23526 txlly 23530 txnlly 23531 txhaus 23541 txkgen 23546 txconn 23583 utop3cls 24146 ucnima 24175 fmucndlem 24185 psmetxrge0 24208 imasdsf1olem 24268 cnheiborlem 24860 caublcls 25216 bcthlem1 25231 bcthlem2 25232 bcthlem4 25234 bcthlem5 25235 ovolfcl 25374 ovolfioo 25375 ovolficc 25376 ovolficcss 25377 ovolfsval 25378 ovolicc2lem1 25425 ovolicc2lem5 25429 ovolfs2 25479 uniiccdif 25486 uniioovol 25487 uniiccvol 25488 uniioombllem2a 25490 uniioombllem2 25491 uniioombllem3a 25492 uniioombllem3 25493 uniioombllem4 25494 uniioombllem5 25495 uniioombllem6 25496 dyadmbl 25508 fsumvma 27131 opreu2reuALT 32413 ofpreima 32596 ofpreima2 32597 elrgspnsubrunlem2 33206 erler 33223 1stmbfm 34258 2ndmbfm 34259 sibfof 34338 oddpwdcv 34353 txsconnlem 35234 mpst123 35534 bj-elid4 37163 bj-elid6 37165 poimirlem4 37625 poimirlem26 37647 poimirlem27 37648 mblfinlem1 37658 mblfinlem2 37659 ftc2nc 37703 heiborlem8 37819 dvhgrp 41108 dvhlveclem 41109 fvovco 45194 dvnprodlem1 45951 volioof 45992 fvvolioof 45994 fvvolicof 45996 etransclem44 46283 ovolval3 46652 ovolval4lem1 46654 ovolval5lem2 46658 ovnovollem1 46661 ovnovollem2 46662 smfpimbor1lem1 46803 rrx2xpref1o 48711 2oppf 49125 eloppf 49126 funcoppc5 49138 swapf2f1oa 49270 swapfida 49273 swapffunca 49277 swapfiso 49278 cofuswapf1 49287 cofuswapf2 49288 fuco2eld2 49307 fuco11b 49330 fuco11bALT 49331 fucoco2 49351 fucofunca 49353 fucolid 49354 fucorid 49355 precofvalALT 49361 reldmlan2 49610 reldmran2 49611 rellan 49616 relran 49617 ranval3 49624 ranrcl4lem 49631 ranup 49635 |
| Copyright terms: Public domain | W3C validator |