Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 1st2nd2 | Structured version Visualization version GIF version |
Description: Reconstruction of a member of a Cartesian product in terms of its ordered pair components. (Contributed by NM, 20-Oct-2013.) |
Ref | Expression |
---|---|
1st2nd2 | ⊢ (𝐴 ∈ (𝐵 × 𝐶) → 𝐴 = 〈(1st ‘𝐴), (2nd ‘𝐴)〉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elxp6 7865 | . 2 ⊢ (𝐴 ∈ (𝐵 × 𝐶) ↔ (𝐴 = 〈(1st ‘𝐴), (2nd ‘𝐴)〉 ∧ ((1st ‘𝐴) ∈ 𝐵 ∧ (2nd ‘𝐴) ∈ 𝐶))) | |
2 | 1 | simplbi 498 | 1 ⊢ (𝐴 ∈ (𝐵 × 𝐶) → 𝐴 = 〈(1st ‘𝐴), (2nd ‘𝐴)〉) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 〈cop 4567 × cxp 5587 ‘cfv 6433 1st c1st 7829 2nd c2nd 7830 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-iota 6391 df-fun 6435 df-fv 6441 df-1st 7831 df-2nd 7832 |
This theorem is referenced by: 1st2ndb 7871 xpopth 7872 eqop 7873 2nd1st 7879 1st2nd 7880 opiota 7899 fimaproj 7976 disjen 8921 xpmapenlem 8931 mapunen 8933 djulf1o 9670 djurf1o 9671 djur 9677 r0weon 9768 enqbreq2 10676 nqereu 10685 lterpq 10726 elreal2 10888 cnref1o 12725 ruclem6 15944 ruclem8 15946 ruclem9 15947 ruclem12 15950 eucalgval 16287 eucalginv 16289 eucalglt 16290 eucalg 16292 qnumdenbi 16448 isstruct2 16850 xpsff1o 17278 comfffval2 17410 comfeq 17415 idfucl 17596 funcpropd 17616 coapm 17786 xpccatid 17905 1stfcl 17914 2ndfcl 17915 1st2ndprf 17923 xpcpropd 17926 evlfcl 17940 hofcl 17977 hofpropd 17985 yonedalem3 17998 gsum2dlem2 19572 mdetunilem9 21769 tx1cn 22760 tx2cn 22761 txdis 22783 txlly 22787 txnlly 22788 txhaus 22798 txkgen 22803 txconn 22840 utop3cls 23403 ucnima 23433 fmucndlem 23443 psmetxrge0 23466 imasdsf1olem 23526 cnheiborlem 24117 caublcls 24473 bcthlem1 24488 bcthlem2 24489 bcthlem4 24491 bcthlem5 24492 ovolfcl 24630 ovolfioo 24631 ovolficc 24632 ovolficcss 24633 ovolfsval 24634 ovolicc2lem1 24681 ovolicc2lem5 24685 ovolfs2 24735 uniiccdif 24742 uniioovol 24743 uniiccvol 24744 uniioombllem2a 24746 uniioombllem2 24747 uniioombllem3a 24748 uniioombllem3 24749 uniioombllem4 24750 uniioombllem5 24751 uniioombllem6 24752 dyadmbl 24764 fsumvma 26361 opreu2reuALT 30825 ofpreima 31002 ofpreima2 31003 1stmbfm 32227 2ndmbfm 32228 sibfof 32307 oddpwdcv 32322 txsconnlem 33202 mpst123 33502 bj-elid4 35339 bj-elid6 35341 poimirlem4 35781 poimirlem26 35803 poimirlem27 35804 mblfinlem1 35814 mblfinlem2 35815 ftc2nc 35859 heiborlem8 35976 dvhgrp 39121 dvhlveclem 39122 fvovco 42732 dvnprodlem1 43487 volioof 43528 fvvolioof 43530 fvvolicof 43532 etransclem44 43819 ovolval3 44185 ovolval4lem1 44187 ovolval5lem2 44191 ovnovollem1 44194 ovnovollem2 44195 smfpimbor1lem1 44332 rrx2xpref1o 46064 |
Copyright terms: Public domain | W3C validator |