| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 1st2nd2 | Structured version Visualization version GIF version | ||
| Description: Reconstruction of a member of a Cartesian product in terms of its ordered pair components. (Contributed by NM, 20-Oct-2013.) |
| Ref | Expression |
|---|---|
| 1st2nd2 | ⊢ (𝐴 ∈ (𝐵 × 𝐶) → 𝐴 = 〈(1st ‘𝐴), (2nd ‘𝐴)〉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elxp6 8022 | . 2 ⊢ (𝐴 ∈ (𝐵 × 𝐶) ↔ (𝐴 = 〈(1st ‘𝐴), (2nd ‘𝐴)〉 ∧ ((1st ‘𝐴) ∈ 𝐵 ∧ (2nd ‘𝐴) ∈ 𝐶))) | |
| 2 | 1 | simplbi 497 | 1 ⊢ (𝐴 ∈ (𝐵 × 𝐶) → 𝐴 = 〈(1st ‘𝐴), (2nd ‘𝐴)〉) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 〈cop 4607 × cxp 5652 ‘cfv 6531 1st c1st 7986 2nd c2nd 7987 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-iota 6484 df-fun 6533 df-fv 6539 df-1st 7988 df-2nd 7989 |
| This theorem is referenced by: 1st2ndb 8028 xpopth 8029 eqop 8030 2nd1st 8037 1st2nd 8038 opiota 8058 fimaproj 8134 disjen 9148 xpmapenlem 9158 mapunen 9160 djulf1o 9926 djurf1o 9927 djur 9933 r0weon 10026 enqbreq2 10934 nqereu 10943 lterpq 10984 elreal2 11146 cnref1o 13001 ruclem6 16253 ruclem8 16255 ruclem9 16256 ruclem12 16259 eucalgval 16601 eucalginv 16603 eucalglt 16604 eucalg 16606 qnumdenbi 16763 isstruct2 17168 xpsff1o 17581 comfffval2 17713 comfeq 17718 idfucl 17894 funcpropd 17915 coapm 18084 xpccatid 18200 1stfcl 18209 2ndfcl 18210 1st2ndprf 18218 xpcpropd 18220 evlfcl 18234 hofcl 18271 hofpropd 18279 yonedalem3 18292 gsum2dlem2 19952 mdetunilem9 22558 tx1cn 23547 tx2cn 23548 txdis 23570 txlly 23574 txnlly 23575 txhaus 23585 txkgen 23590 txconn 23627 utop3cls 24190 ucnima 24219 fmucndlem 24229 psmetxrge0 24252 imasdsf1olem 24312 cnheiborlem 24904 caublcls 25261 bcthlem1 25276 bcthlem2 25277 bcthlem4 25279 bcthlem5 25280 ovolfcl 25419 ovolfioo 25420 ovolficc 25421 ovolficcss 25422 ovolfsval 25423 ovolicc2lem1 25470 ovolicc2lem5 25474 ovolfs2 25524 uniiccdif 25531 uniioovol 25532 uniiccvol 25533 uniioombllem2a 25535 uniioombllem2 25536 uniioombllem3a 25537 uniioombllem3 25538 uniioombllem4 25539 uniioombllem5 25540 uniioombllem6 25541 dyadmbl 25553 fsumvma 27176 opreu2reuALT 32458 ofpreima 32643 ofpreima2 32644 elrgspnsubrunlem2 33243 erler 33260 1stmbfm 34292 2ndmbfm 34293 sibfof 34372 oddpwdcv 34387 txsconnlem 35262 mpst123 35562 bj-elid4 37186 bj-elid6 37188 poimirlem4 37648 poimirlem26 37670 poimirlem27 37671 mblfinlem1 37681 mblfinlem2 37682 ftc2nc 37726 heiborlem8 37842 dvhgrp 41126 dvhlveclem 41127 fvovco 45217 dvnprodlem1 45975 volioof 46016 fvvolioof 46018 fvvolicof 46020 etransclem44 46307 ovolval3 46676 ovolval4lem1 46678 ovolval5lem2 46682 ovnovollem1 46685 ovnovollem2 46686 smfpimbor1lem1 46827 rrx2xpref1o 48698 2oppf 49080 funcoppc5 49088 swapf2f1oa 49194 swapfida 49197 swapffunca 49201 swapfiso 49202 cofuswapf1 49205 cofuswapf2 49206 fuco2eld2 49225 fuco11b 49248 fuco11bALT 49249 fucoco2 49269 fucofunca 49271 fucolid 49272 fucorid 49273 precofvalALT 49279 reldmlan2 49492 reldmran2 49493 rellan 49498 relran 49499 ranrcl4lem 49512 ranup 49516 |
| Copyright terms: Public domain | W3C validator |