![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 1st2nd2 | Structured version Visualization version GIF version |
Description: Reconstruction of a member of a Cartesian product in terms of its ordered pair components. (Contributed by NM, 20-Oct-2013.) |
Ref | Expression |
---|---|
1st2nd2 | ⊢ (𝐴 ∈ (𝐵 × 𝐶) → 𝐴 = 〈(1st ‘𝐴), (2nd ‘𝐴)〉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elxp6 8064 | . 2 ⊢ (𝐴 ∈ (𝐵 × 𝐶) ↔ (𝐴 = 〈(1st ‘𝐴), (2nd ‘𝐴)〉 ∧ ((1st ‘𝐴) ∈ 𝐵 ∧ (2nd ‘𝐴) ∈ 𝐶))) | |
2 | 1 | simplbi 497 | 1 ⊢ (𝐴 ∈ (𝐵 × 𝐶) → 𝐴 = 〈(1st ‘𝐴), (2nd ‘𝐴)〉) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 〈cop 4654 × cxp 5698 ‘cfv 6573 1st c1st 8028 2nd c2nd 8029 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-iota 6525 df-fun 6575 df-fv 6581 df-1st 8030 df-2nd 8031 |
This theorem is referenced by: 1st2ndb 8070 xpopth 8071 eqop 8072 2nd1st 8079 1st2nd 8080 opiota 8100 fimaproj 8176 disjen 9200 xpmapenlem 9210 mapunen 9212 djulf1o 9981 djurf1o 9982 djur 9988 r0weon 10081 enqbreq2 10989 nqereu 10998 lterpq 11039 elreal2 11201 cnref1o 13050 ruclem6 16283 ruclem8 16285 ruclem9 16286 ruclem12 16289 eucalgval 16629 eucalginv 16631 eucalglt 16632 eucalg 16634 qnumdenbi 16791 isstruct2 17196 xpsff1o 17627 comfffval2 17759 comfeq 17764 idfucl 17945 funcpropd 17967 coapm 18138 xpccatid 18257 1stfcl 18266 2ndfcl 18267 1st2ndprf 18275 xpcpropd 18278 evlfcl 18292 hofcl 18329 hofpropd 18337 yonedalem3 18350 gsum2dlem2 20013 mdetunilem9 22647 tx1cn 23638 tx2cn 23639 txdis 23661 txlly 23665 txnlly 23666 txhaus 23676 txkgen 23681 txconn 23718 utop3cls 24281 ucnima 24311 fmucndlem 24321 psmetxrge0 24344 imasdsf1olem 24404 cnheiborlem 25005 caublcls 25362 bcthlem1 25377 bcthlem2 25378 bcthlem4 25380 bcthlem5 25381 ovolfcl 25520 ovolfioo 25521 ovolficc 25522 ovolficcss 25523 ovolfsval 25524 ovolicc2lem1 25571 ovolicc2lem5 25575 ovolfs2 25625 uniiccdif 25632 uniioovol 25633 uniiccvol 25634 uniioombllem2a 25636 uniioombllem2 25637 uniioombllem3a 25638 uniioombllem3 25639 uniioombllem4 25640 uniioombllem5 25641 uniioombllem6 25642 dyadmbl 25654 fsumvma 27275 opreu2reuALT 32505 ofpreima 32683 ofpreima2 32684 erler 33237 1stmbfm 34225 2ndmbfm 34226 sibfof 34305 oddpwdcv 34320 txsconnlem 35208 mpst123 35508 bj-elid4 37134 bj-elid6 37136 poimirlem4 37584 poimirlem26 37606 poimirlem27 37607 mblfinlem1 37617 mblfinlem2 37618 ftc2nc 37662 heiborlem8 37778 dvhgrp 41064 dvhlveclem 41065 fvovco 45100 dvnprodlem1 45867 volioof 45908 fvvolioof 45910 fvvolicof 45912 etransclem44 46199 ovolval3 46568 ovolval4lem1 46570 ovolval5lem2 46574 ovnovollem1 46577 ovnovollem2 46578 smfpimbor1lem1 46719 rrx2xpref1o 48452 |
Copyright terms: Public domain | W3C validator |