Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 1st2nd2 | Structured version Visualization version GIF version |
Description: Reconstruction of a member of a Cartesian product in terms of its ordered pair components. (Contributed by NM, 20-Oct-2013.) |
Ref | Expression |
---|---|
1st2nd2 | ⊢ (𝐴 ∈ (𝐵 × 𝐶) → 𝐴 = 〈(1st ‘𝐴), (2nd ‘𝐴)〉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elxp6 7843 | . 2 ⊢ (𝐴 ∈ (𝐵 × 𝐶) ↔ (𝐴 = 〈(1st ‘𝐴), (2nd ‘𝐴)〉 ∧ ((1st ‘𝐴) ∈ 𝐵 ∧ (2nd ‘𝐴) ∈ 𝐶))) | |
2 | 1 | simplbi 497 | 1 ⊢ (𝐴 ∈ (𝐵 × 𝐶) → 𝐴 = 〈(1st ‘𝐴), (2nd ‘𝐴)〉) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 〈cop 4569 × cxp 5583 ‘cfv 6423 1st c1st 7807 2nd c2nd 7808 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2708 ax-sep 5223 ax-nul 5230 ax-pr 5352 ax-un 7571 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-ral 3067 df-rex 3068 df-rab 3071 df-v 3429 df-dif 3891 df-un 3893 df-in 3895 df-ss 3905 df-nul 4259 df-if 4462 df-sn 4564 df-pr 4566 df-op 4570 df-uni 4842 df-br 5076 df-opab 5138 df-mpt 5159 df-id 5485 df-xp 5591 df-rel 5592 df-cnv 5593 df-co 5594 df-dm 5595 df-rn 5596 df-iota 6381 df-fun 6425 df-fv 6431 df-1st 7809 df-2nd 7810 |
This theorem is referenced by: 1st2ndb 7849 xpopth 7850 eqop 7851 2nd1st 7857 1st2nd 7858 opiota 7877 fimaproj 7952 disjen 8875 xpmapenlem 8885 mapunen 8887 djulf1o 9617 djurf1o 9618 djur 9624 r0weon 9715 enqbreq2 10623 nqereu 10632 lterpq 10673 elreal2 10835 cnref1o 12670 ruclem6 15888 ruclem8 15890 ruclem9 15891 ruclem12 15894 eucalgval 16231 eucalginv 16233 eucalglt 16234 eucalg 16236 qnumdenbi 16392 isstruct2 16794 xpsff1o 17222 comfffval2 17354 comfeq 17359 idfucl 17540 funcpropd 17560 coapm 17730 xpccatid 17849 1stfcl 17858 2ndfcl 17859 1st2ndprf 17867 xpcpropd 17870 evlfcl 17884 hofcl 17921 hofpropd 17929 yonedalem3 17942 gsum2dlem2 19516 mdetunilem9 21713 tx1cn 22704 tx2cn 22705 txdis 22727 txlly 22731 txnlly 22732 txhaus 22742 txkgen 22747 txconn 22784 utop3cls 23347 ucnima 23377 fmucndlem 23387 psmetxrge0 23410 imasdsf1olem 23470 cnheiborlem 24061 caublcls 24416 bcthlem1 24431 bcthlem2 24432 bcthlem4 24434 bcthlem5 24435 ovolfcl 24573 ovolfioo 24574 ovolficc 24575 ovolficcss 24576 ovolfsval 24577 ovolicc2lem1 24624 ovolicc2lem5 24628 ovolfs2 24678 uniiccdif 24685 uniioovol 24686 uniiccvol 24687 uniioombllem2a 24689 uniioombllem2 24690 uniioombllem3a 24691 uniioombllem3 24692 uniioombllem4 24693 uniioombllem5 24694 uniioombllem6 24695 dyadmbl 24707 fsumvma 26304 opreu2reuALT 30766 ofpreima 30944 ofpreima2 30945 1stmbfm 32169 2ndmbfm 32170 sibfof 32249 oddpwdcv 32264 txsconnlem 33144 mpst123 33444 bj-elid4 35308 bj-elid6 35310 poimirlem4 35750 poimirlem26 35772 poimirlem27 35773 mblfinlem1 35783 mblfinlem2 35784 ftc2nc 35828 heiborlem8 35945 dvhgrp 39090 dvhlveclem 39091 fvovco 42663 dvnprodlem1 43419 volioof 43460 fvvolioof 43462 fvvolicof 43464 etransclem44 43751 ovolval3 44117 ovolval4lem1 44119 ovolval5lem2 44123 ovnovollem1 44126 ovnovollem2 44127 smfpimbor1lem1 44261 rrx2xpref1o 45994 |
Copyright terms: Public domain | W3C validator |