| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 1st2nd2 | Structured version Visualization version GIF version | ||
| Description: Reconstruction of a member of a Cartesian product in terms of its ordered pair components. (Contributed by NM, 20-Oct-2013.) |
| Ref | Expression |
|---|---|
| 1st2nd2 | ⊢ (𝐴 ∈ (𝐵 × 𝐶) → 𝐴 = 〈(1st ‘𝐴), (2nd ‘𝐴)〉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elxp6 7961 | . 2 ⊢ (𝐴 ∈ (𝐵 × 𝐶) ↔ (𝐴 = 〈(1st ‘𝐴), (2nd ‘𝐴)〉 ∧ ((1st ‘𝐴) ∈ 𝐵 ∧ (2nd ‘𝐴) ∈ 𝐶))) | |
| 2 | 1 | simplbi 497 | 1 ⊢ (𝐴 ∈ (𝐵 × 𝐶) → 𝐴 = 〈(1st ‘𝐴), (2nd ‘𝐴)〉) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 〈cop 4581 × cxp 5617 ‘cfv 6486 1st c1st 7925 2nd c2nd 7926 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pr 5372 ax-un 7674 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-iota 6442 df-fun 6488 df-fv 6494 df-1st 7927 df-2nd 7928 |
| This theorem is referenced by: 1st2ndb 7967 xpopth 7968 eqop 7969 2nd1st 7976 1st2nd 7977 opiota 7997 fimaproj 8071 disjen 9054 xpmapenlem 9064 mapunen 9066 djulf1o 9812 djurf1o 9813 djur 9819 r0weon 9910 enqbreq2 10818 nqereu 10827 lterpq 10868 elreal2 11030 cnref1o 12885 ruclem6 16146 ruclem8 16148 ruclem9 16149 ruclem12 16152 eucalgval 16495 eucalginv 16497 eucalglt 16498 eucalg 16500 qnumdenbi 16657 isstruct2 17062 xpsff1o 17473 comfffval2 17609 comfeq 17614 idfucl 17790 funcpropd 17811 coapm 17980 xpccatid 18096 1stfcl 18105 2ndfcl 18106 1st2ndprf 18114 xpcpropd 18116 evlfcl 18130 hofcl 18167 hofpropd 18175 yonedalem3 18188 gsum2dlem2 19885 mdetunilem9 22536 tx1cn 23525 tx2cn 23526 txdis 23548 txlly 23552 txnlly 23553 txhaus 23563 txkgen 23568 txconn 23605 utop3cls 24167 ucnima 24196 fmucndlem 24206 psmetxrge0 24229 imasdsf1olem 24289 cnheiborlem 24881 caublcls 25237 bcthlem1 25252 bcthlem2 25253 bcthlem4 25255 bcthlem5 25256 ovolfcl 25395 ovolfioo 25396 ovolficc 25397 ovolficcss 25398 ovolfsval 25399 ovolicc2lem1 25446 ovolicc2lem5 25450 ovolfs2 25500 uniiccdif 25507 uniioovol 25508 uniiccvol 25509 uniioombllem2a 25511 uniioombllem2 25512 uniioombllem3a 25513 uniioombllem3 25514 uniioombllem4 25515 uniioombllem5 25516 uniioombllem6 25517 dyadmbl 25529 fsumvma 27152 opreu2reuALT 32458 ofpreima 32649 ofpreima2 32650 elrgspnsubrunlem2 33222 erler 33239 1stmbfm 34294 2ndmbfm 34295 sibfof 34374 oddpwdcv 34389 txsconnlem 35305 mpst123 35605 bj-elid4 37233 bj-elid6 37235 poimirlem4 37685 poimirlem26 37707 poimirlem27 37708 mblfinlem1 37718 mblfinlem2 37719 ftc2nc 37763 heiborlem8 37879 dvhgrp 41227 dvhlveclem 41228 fvovco 45315 dvnprodlem1 46069 volioof 46110 fvvolioof 46112 fvvolicof 46114 etransclem44 46401 ovolval3 46770 ovolval4lem1 46772 ovolval5lem2 46776 ovnovollem1 46779 ovnovollem2 46780 smfpimbor1lem1 46921 rrx2xpref1o 48844 2oppf 49258 eloppf 49259 funcoppc5 49271 swapf2f1oa 49403 swapfida 49406 swapffunca 49410 swapfiso 49411 cofuswapf1 49420 cofuswapf2 49421 fuco2eld2 49440 fuco11b 49463 fuco11bALT 49464 fucoco2 49484 fucofunca 49486 fucolid 49487 fucorid 49488 precofvalALT 49494 reldmlan2 49743 reldmran2 49744 rellan 49749 relran 49750 ranval3 49757 ranrcl4lem 49764 ranup 49768 |
| Copyright terms: Public domain | W3C validator |