Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 1st2nd2 | Structured version Visualization version GIF version |
Description: Reconstruction of a member of a Cartesian product in terms of its ordered pair components. (Contributed by NM, 20-Oct-2013.) |
Ref | Expression |
---|---|
1st2nd2 | ⊢ (𝐴 ∈ (𝐵 × 𝐶) → 𝐴 = 〈(1st ‘𝐴), (2nd ‘𝐴)〉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elxp6 7838 | . 2 ⊢ (𝐴 ∈ (𝐵 × 𝐶) ↔ (𝐴 = 〈(1st ‘𝐴), (2nd ‘𝐴)〉 ∧ ((1st ‘𝐴) ∈ 𝐵 ∧ (2nd ‘𝐴) ∈ 𝐶))) | |
2 | 1 | simplbi 497 | 1 ⊢ (𝐴 ∈ (𝐵 × 𝐶) → 𝐴 = 〈(1st ‘𝐴), (2nd ‘𝐴)〉) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 〈cop 4564 × cxp 5578 ‘cfv 6418 1st c1st 7802 2nd c2nd 7803 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-iota 6376 df-fun 6420 df-fv 6426 df-1st 7804 df-2nd 7805 |
This theorem is referenced by: 1st2ndb 7844 xpopth 7845 eqop 7846 2nd1st 7852 1st2nd 7853 opiota 7872 fimaproj 7947 disjen 8870 xpmapenlem 8880 mapunen 8882 djulf1o 9601 djurf1o 9602 djur 9608 r0weon 9699 enqbreq2 10607 nqereu 10616 lterpq 10657 elreal2 10819 cnref1o 12654 ruclem6 15872 ruclem8 15874 ruclem9 15875 ruclem12 15878 eucalgval 16215 eucalginv 16217 eucalglt 16218 eucalg 16220 qnumdenbi 16376 isstruct2 16778 xpsff1o 17195 comfffval2 17327 comfeq 17332 idfucl 17512 funcpropd 17532 coapm 17702 xpccatid 17821 1stfcl 17830 2ndfcl 17831 1st2ndprf 17839 xpcpropd 17842 evlfcl 17856 hofcl 17893 hofpropd 17901 yonedalem3 17914 gsum2dlem2 19487 mdetunilem9 21677 tx1cn 22668 tx2cn 22669 txdis 22691 txlly 22695 txnlly 22696 txhaus 22706 txkgen 22711 txconn 22748 utop3cls 23311 ucnima 23341 fmucndlem 23351 psmetxrge0 23374 imasdsf1olem 23434 cnheiborlem 24023 caublcls 24378 bcthlem1 24393 bcthlem2 24394 bcthlem4 24396 bcthlem5 24397 ovolfcl 24535 ovolfioo 24536 ovolficc 24537 ovolficcss 24538 ovolfsval 24539 ovolicc2lem1 24586 ovolicc2lem5 24590 ovolfs2 24640 uniiccdif 24647 uniioovol 24648 uniiccvol 24649 uniioombllem2a 24651 uniioombllem2 24652 uniioombllem3a 24653 uniioombllem3 24654 uniioombllem4 24655 uniioombllem5 24656 uniioombllem6 24657 dyadmbl 24669 fsumvma 26266 opreu2reuALT 30726 ofpreima 30904 ofpreima2 30905 1stmbfm 32127 2ndmbfm 32128 sibfof 32207 oddpwdcv 32222 txsconnlem 33102 mpst123 33402 bj-elid4 35266 bj-elid6 35268 poimirlem4 35708 poimirlem26 35730 poimirlem27 35731 mblfinlem1 35741 mblfinlem2 35742 ftc2nc 35786 heiborlem8 35903 dvhgrp 39048 dvhlveclem 39049 fvovco 42621 dvnprodlem1 43377 volioof 43418 fvvolioof 43420 fvvolicof 43422 etransclem44 43709 ovolval3 44075 ovolval4lem1 44077 ovolval5lem2 44081 ovnovollem1 44084 ovnovollem2 44085 smfpimbor1lem1 44219 rrx2xpref1o 45952 |
Copyright terms: Public domain | W3C validator |