| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 1st2nd2 | Structured version Visualization version GIF version | ||
| Description: Reconstruction of a member of a Cartesian product in terms of its ordered pair components. (Contributed by NM, 20-Oct-2013.) |
| Ref | Expression |
|---|---|
| 1st2nd2 | ⊢ (𝐴 ∈ (𝐵 × 𝐶) → 𝐴 = 〈(1st ‘𝐴), (2nd ‘𝐴)〉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elxp6 8002 | . 2 ⊢ (𝐴 ∈ (𝐵 × 𝐶) ↔ (𝐴 = 〈(1st ‘𝐴), (2nd ‘𝐴)〉 ∧ ((1st ‘𝐴) ∈ 𝐵 ∧ (2nd ‘𝐴) ∈ 𝐶))) | |
| 2 | 1 | simplbi 497 | 1 ⊢ (𝐴 ∈ (𝐵 × 𝐶) → 𝐴 = 〈(1st ‘𝐴), (2nd ‘𝐴)〉) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 〈cop 4595 × cxp 5636 ‘cfv 6511 1st c1st 7966 2nd c2nd 7967 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-iota 6464 df-fun 6513 df-fv 6519 df-1st 7968 df-2nd 7969 |
| This theorem is referenced by: 1st2ndb 8008 xpopth 8009 eqop 8010 2nd1st 8017 1st2nd 8018 opiota 8038 fimaproj 8114 disjen 9098 xpmapenlem 9108 mapunen 9110 djulf1o 9865 djurf1o 9866 djur 9872 r0weon 9965 enqbreq2 10873 nqereu 10882 lterpq 10923 elreal2 11085 cnref1o 12944 ruclem6 16203 ruclem8 16205 ruclem9 16206 ruclem12 16209 eucalgval 16552 eucalginv 16554 eucalglt 16555 eucalg 16557 qnumdenbi 16714 isstruct2 17119 xpsff1o 17530 comfffval2 17662 comfeq 17667 idfucl 17843 funcpropd 17864 coapm 18033 xpccatid 18149 1stfcl 18158 2ndfcl 18159 1st2ndprf 18167 xpcpropd 18169 evlfcl 18183 hofcl 18220 hofpropd 18228 yonedalem3 18241 gsum2dlem2 19901 mdetunilem9 22507 tx1cn 23496 tx2cn 23497 txdis 23519 txlly 23523 txnlly 23524 txhaus 23534 txkgen 23539 txconn 23576 utop3cls 24139 ucnima 24168 fmucndlem 24178 psmetxrge0 24201 imasdsf1olem 24261 cnheiborlem 24853 caublcls 25209 bcthlem1 25224 bcthlem2 25225 bcthlem4 25227 bcthlem5 25228 ovolfcl 25367 ovolfioo 25368 ovolficc 25369 ovolficcss 25370 ovolfsval 25371 ovolicc2lem1 25418 ovolicc2lem5 25422 ovolfs2 25472 uniiccdif 25479 uniioovol 25480 uniiccvol 25481 uniioombllem2a 25483 uniioombllem2 25484 uniioombllem3a 25485 uniioombllem3 25486 uniioombllem4 25487 uniioombllem5 25488 uniioombllem6 25489 dyadmbl 25501 fsumvma 27124 opreu2reuALT 32406 ofpreima 32589 ofpreima2 32590 elrgspnsubrunlem2 33199 erler 33216 1stmbfm 34251 2ndmbfm 34252 sibfof 34331 oddpwdcv 34346 txsconnlem 35227 mpst123 35527 bj-elid4 37156 bj-elid6 37158 poimirlem4 37618 poimirlem26 37640 poimirlem27 37641 mblfinlem1 37651 mblfinlem2 37652 ftc2nc 37696 heiborlem8 37812 dvhgrp 41101 dvhlveclem 41102 fvovco 45187 dvnprodlem1 45944 volioof 45985 fvvolioof 45987 fvvolicof 45989 etransclem44 46276 ovolval3 46645 ovolval4lem1 46647 ovolval5lem2 46651 ovnovollem1 46654 ovnovollem2 46655 smfpimbor1lem1 46796 rrx2xpref1o 48707 2oppf 49121 eloppf 49122 funcoppc5 49134 swapf2f1oa 49266 swapfida 49269 swapffunca 49273 swapfiso 49274 cofuswapf1 49283 cofuswapf2 49284 fuco2eld2 49303 fuco11b 49326 fuco11bALT 49327 fucoco2 49347 fucofunca 49349 fucolid 49350 fucorid 49351 precofvalALT 49357 reldmlan2 49606 reldmran2 49607 rellan 49612 relran 49613 ranval3 49620 ranrcl4lem 49627 ranup 49631 |
| Copyright terms: Public domain | W3C validator |