| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 1st2nd2 | Structured version Visualization version GIF version | ||
| Description: Reconstruction of a member of a Cartesian product in terms of its ordered pair components. (Contributed by NM, 20-Oct-2013.) |
| Ref | Expression |
|---|---|
| 1st2nd2 | ⊢ (𝐴 ∈ (𝐵 × 𝐶) → 𝐴 = 〈(1st ‘𝐴), (2nd ‘𝐴)〉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elxp6 7955 | . 2 ⊢ (𝐴 ∈ (𝐵 × 𝐶) ↔ (𝐴 = 〈(1st ‘𝐴), (2nd ‘𝐴)〉 ∧ ((1st ‘𝐴) ∈ 𝐵 ∧ (2nd ‘𝐴) ∈ 𝐶))) | |
| 2 | 1 | simplbi 497 | 1 ⊢ (𝐴 ∈ (𝐵 × 𝐶) → 𝐴 = 〈(1st ‘𝐴), (2nd ‘𝐴)〉) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 〈cop 4582 × cxp 5614 ‘cfv 6481 1st c1st 7919 2nd c2nd 7920 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-iota 6437 df-fun 6483 df-fv 6489 df-1st 7921 df-2nd 7922 |
| This theorem is referenced by: 1st2ndb 7961 xpopth 7962 eqop 7963 2nd1st 7970 1st2nd 7971 opiota 7991 fimaproj 8065 disjen 9047 xpmapenlem 9057 mapunen 9059 djulf1o 9805 djurf1o 9806 djur 9812 r0weon 9903 enqbreq2 10811 nqereu 10820 lterpq 10861 elreal2 11023 cnref1o 12883 ruclem6 16144 ruclem8 16146 ruclem9 16147 ruclem12 16150 eucalgval 16493 eucalginv 16495 eucalglt 16496 eucalg 16498 qnumdenbi 16655 isstruct2 17060 xpsff1o 17471 comfffval2 17607 comfeq 17612 idfucl 17788 funcpropd 17809 coapm 17978 xpccatid 18094 1stfcl 18103 2ndfcl 18104 1st2ndprf 18112 xpcpropd 18114 evlfcl 18128 hofcl 18165 hofpropd 18173 yonedalem3 18186 gsum2dlem2 19884 mdetunilem9 22536 tx1cn 23525 tx2cn 23526 txdis 23548 txlly 23552 txnlly 23553 txhaus 23563 txkgen 23568 txconn 23605 utop3cls 24167 ucnima 24196 fmucndlem 24206 psmetxrge0 24229 imasdsf1olem 24289 cnheiborlem 24881 caublcls 25237 bcthlem1 25252 bcthlem2 25253 bcthlem4 25255 bcthlem5 25256 ovolfcl 25395 ovolfioo 25396 ovolficc 25397 ovolficcss 25398 ovolfsval 25399 ovolicc2lem1 25446 ovolicc2lem5 25450 ovolfs2 25500 uniiccdif 25507 uniioovol 25508 uniiccvol 25509 uniioombllem2a 25511 uniioombllem2 25512 uniioombllem3a 25513 uniioombllem3 25514 uniioombllem4 25515 uniioombllem5 25516 uniioombllem6 25517 dyadmbl 25529 fsumvma 27152 opreu2reuALT 32454 ofpreima 32645 ofpreima2 32646 elrgspnsubrunlem2 33213 erler 33230 1stmbfm 34271 2ndmbfm 34272 sibfof 34351 oddpwdcv 34366 txsconnlem 35282 mpst123 35582 bj-elid4 37208 bj-elid6 37210 poimirlem4 37670 poimirlem26 37692 poimirlem27 37693 mblfinlem1 37703 mblfinlem2 37704 ftc2nc 37748 heiborlem8 37864 dvhgrp 41152 dvhlveclem 41153 fvovco 45236 dvnprodlem1 45990 volioof 46031 fvvolioof 46033 fvvolicof 46035 etransclem44 46322 ovolval3 46691 ovolval4lem1 46693 ovolval5lem2 46697 ovnovollem1 46700 ovnovollem2 46701 smfpimbor1lem1 46842 rrx2xpref1o 48756 2oppf 49170 eloppf 49171 funcoppc5 49183 swapf2f1oa 49315 swapfida 49318 swapffunca 49322 swapfiso 49323 cofuswapf1 49332 cofuswapf2 49333 fuco2eld2 49352 fuco11b 49375 fuco11bALT 49376 fucoco2 49396 fucofunca 49398 fucolid 49399 fucorid 49400 precofvalALT 49406 reldmlan2 49655 reldmran2 49656 rellan 49661 relran 49662 ranval3 49669 ranrcl4lem 49676 ranup 49680 |
| Copyright terms: Public domain | W3C validator |