| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 1st2nd2 | Structured version Visualization version GIF version | ||
| Description: Reconstruction of a member of a Cartesian product in terms of its ordered pair components. (Contributed by NM, 20-Oct-2013.) |
| Ref | Expression |
|---|---|
| 1st2nd2 | ⊢ (𝐴 ∈ (𝐵 × 𝐶) → 𝐴 = 〈(1st ‘𝐴), (2nd ‘𝐴)〉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elxp6 7965 | . 2 ⊢ (𝐴 ∈ (𝐵 × 𝐶) ↔ (𝐴 = 〈(1st ‘𝐴), (2nd ‘𝐴)〉 ∧ ((1st ‘𝐴) ∈ 𝐵 ∧ (2nd ‘𝐴) ∈ 𝐶))) | |
| 2 | 1 | simplbi 497 | 1 ⊢ (𝐴 ∈ (𝐵 × 𝐶) → 𝐴 = 〈(1st ‘𝐴), (2nd ‘𝐴)〉) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 〈cop 4585 × cxp 5621 ‘cfv 6486 1st c1st 7929 2nd c2nd 7930 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-iota 6442 df-fun 6488 df-fv 6494 df-1st 7931 df-2nd 7932 |
| This theorem is referenced by: 1st2ndb 7971 xpopth 7972 eqop 7973 2nd1st 7980 1st2nd 7981 opiota 8001 fimaproj 8075 disjen 9058 xpmapenlem 9068 mapunen 9070 djulf1o 9827 djurf1o 9828 djur 9834 r0weon 9925 enqbreq2 10833 nqereu 10842 lterpq 10883 elreal2 11045 cnref1o 12904 ruclem6 16162 ruclem8 16164 ruclem9 16165 ruclem12 16168 eucalgval 16511 eucalginv 16513 eucalglt 16514 eucalg 16516 qnumdenbi 16673 isstruct2 17078 xpsff1o 17489 comfffval2 17625 comfeq 17630 idfucl 17806 funcpropd 17827 coapm 17996 xpccatid 18112 1stfcl 18121 2ndfcl 18122 1st2ndprf 18130 xpcpropd 18132 evlfcl 18146 hofcl 18183 hofpropd 18191 yonedalem3 18204 gsum2dlem2 19868 mdetunilem9 22523 tx1cn 23512 tx2cn 23513 txdis 23535 txlly 23539 txnlly 23540 txhaus 23550 txkgen 23555 txconn 23592 utop3cls 24155 ucnima 24184 fmucndlem 24194 psmetxrge0 24217 imasdsf1olem 24277 cnheiborlem 24869 caublcls 25225 bcthlem1 25240 bcthlem2 25241 bcthlem4 25243 bcthlem5 25244 ovolfcl 25383 ovolfioo 25384 ovolficc 25385 ovolficcss 25386 ovolfsval 25387 ovolicc2lem1 25434 ovolicc2lem5 25438 ovolfs2 25488 uniiccdif 25495 uniioovol 25496 uniiccvol 25497 uniioombllem2a 25499 uniioombllem2 25500 uniioombllem3a 25501 uniioombllem3 25502 uniioombllem4 25503 uniioombllem5 25504 uniioombllem6 25505 dyadmbl 25517 fsumvma 27140 opreu2reuALT 32439 ofpreima 32622 ofpreima2 32623 elrgspnsubrunlem2 33201 erler 33218 1stmbfm 34230 2ndmbfm 34231 sibfof 34310 oddpwdcv 34325 txsconnlem 35215 mpst123 35515 bj-elid4 37144 bj-elid6 37146 poimirlem4 37606 poimirlem26 37628 poimirlem27 37629 mblfinlem1 37639 mblfinlem2 37640 ftc2nc 37684 heiborlem8 37800 dvhgrp 41089 dvhlveclem 41090 fvovco 45174 dvnprodlem1 45931 volioof 45972 fvvolioof 45974 fvvolicof 45976 etransclem44 46263 ovolval3 46632 ovolval4lem1 46634 ovolval5lem2 46638 ovnovollem1 46641 ovnovollem2 46642 smfpimbor1lem1 46783 rrx2xpref1o 48707 2oppf 49121 eloppf 49122 funcoppc5 49134 swapf2f1oa 49266 swapfida 49269 swapffunca 49273 swapfiso 49274 cofuswapf1 49283 cofuswapf2 49284 fuco2eld2 49303 fuco11b 49326 fuco11bALT 49327 fucoco2 49347 fucofunca 49349 fucolid 49350 fucorid 49351 precofvalALT 49357 reldmlan2 49606 reldmran2 49607 rellan 49612 relran 49613 ranval3 49620 ranrcl4lem 49627 ranup 49631 |
| Copyright terms: Public domain | W3C validator |