| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > op2ndg | Structured version Visualization version GIF version | ||
| Description: Extract the second member of an ordered pair. (Contributed by NM, 19-Jul-2005.) |
| Ref | Expression |
|---|---|
| op2ndg | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (2nd ‘〈𝐴, 𝐵〉) = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opeq1 4849 | . . 3 ⊢ (𝑥 = 𝐴 → 〈𝑥, 𝑦〉 = 〈𝐴, 𝑦〉) | |
| 2 | 1 | fveqeq2d 6883 | . 2 ⊢ (𝑥 = 𝐴 → ((2nd ‘〈𝑥, 𝑦〉) = 𝑦 ↔ (2nd ‘〈𝐴, 𝑦〉) = 𝑦)) |
| 3 | opeq2 4850 | . . . 4 ⊢ (𝑦 = 𝐵 → 〈𝐴, 𝑦〉 = 〈𝐴, 𝐵〉) | |
| 4 | 3 | fveq2d 6879 | . . 3 ⊢ (𝑦 = 𝐵 → (2nd ‘〈𝐴, 𝑦〉) = (2nd ‘〈𝐴, 𝐵〉)) |
| 5 | id 22 | . . 3 ⊢ (𝑦 = 𝐵 → 𝑦 = 𝐵) | |
| 6 | 4, 5 | eqeq12d 2751 | . 2 ⊢ (𝑦 = 𝐵 → ((2nd ‘〈𝐴, 𝑦〉) = 𝑦 ↔ (2nd ‘〈𝐴, 𝐵〉) = 𝐵)) |
| 7 | vex 3463 | . . 3 ⊢ 𝑥 ∈ V | |
| 8 | vex 3463 | . . 3 ⊢ 𝑦 ∈ V | |
| 9 | 7, 8 | op2nd 7995 | . 2 ⊢ (2nd ‘〈𝑥, 𝑦〉) = 𝑦 |
| 10 | 2, 6, 9 | vtocl2g 3553 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (2nd ‘〈𝐴, 𝐵〉) = 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 〈cop 4607 ‘cfv 6530 2nd c2nd 7985 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 ax-un 7727 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-iota 6483 df-fun 6532 df-fv 6538 df-2nd 7987 |
| This theorem is referenced by: ot2ndg 8001 ot3rdg 8002 br2ndeqg 8009 2ndconst 8098 mposn 8100 curry1 8101 opco2 8121 xpmapenlem 9156 2ndinl 9940 2ndinr 9942 axdc4lem 10467 pinq 10939 addpipq 10949 mulpipq 10952 ordpipq 10954 swrdval 14659 ruclem1 16247 eucalg 16604 qnumdenbi 16761 setsstruct 17193 comffval 17709 oppccofval 17726 funcf2 17879 cofuval2 17898 resfval2 17904 resf2nd 17906 funcres 17907 isnat 17961 fucco 17976 homacd 18052 setcco 18094 catcco 18116 estrcco 18140 xpcco 18193 xpchom2 18196 xpcco2 18197 evlf2 18228 curfval 18233 curf1cl 18238 uncf1 18246 uncf2 18247 hof2fval 18265 yonedalem21 18283 yonedalem22 18288 mvmulfval 22478 imasdsf1olem 24310 ovolicc1 25467 ioombl1lem3 25511 ioombl1lem4 25512 addsqnreup 27404 addsval 27912 mulsval 28052 om2noseqrdg 28227 brcgr 28825 opiedgfv 28932 fsuppcurry1 32648 erlbrd 33204 rlocaddval 33209 rlocmulval 33210 fracerl 33246 sategoelfvb 35387 prv1n 35399 fvtransport 35996 bj-finsumval0 37249 poimirlem17 37607 poimirlem24 37614 poimirlem27 37617 dvhopvadd 41058 dvhopvsca 41067 dvhopaddN 41079 dvhopspN 41080 etransclem44 46255 uspgrsprfo 48071 rngccoALTV 48194 ringccoALTV 48228 lmod1zr 48417 oppf1st2nd 49027 upfval3 49061 swapf2fval 49130 fucofval 49178 fuco112 49188 fuco21 49195 prcofvala 49236 lanfval 49438 ranfval 49439 |
| Copyright terms: Public domain | W3C validator |