Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > op2ndg | Structured version Visualization version GIF version |
Description: Extract the second member of an ordered pair. (Contributed by NM, 19-Jul-2005.) |
Ref | Expression |
---|---|
op2ndg | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (2nd ‘〈𝐴, 𝐵〉) = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opeq1 4804 | . . 3 ⊢ (𝑥 = 𝐴 → 〈𝑥, 𝑦〉 = 〈𝐴, 𝑦〉) | |
2 | 1 | fveqeq2d 6782 | . 2 ⊢ (𝑥 = 𝐴 → ((2nd ‘〈𝑥, 𝑦〉) = 𝑦 ↔ (2nd ‘〈𝐴, 𝑦〉) = 𝑦)) |
3 | opeq2 4805 | . . . 4 ⊢ (𝑦 = 𝐵 → 〈𝐴, 𝑦〉 = 〈𝐴, 𝐵〉) | |
4 | 3 | fveq2d 6778 | . . 3 ⊢ (𝑦 = 𝐵 → (2nd ‘〈𝐴, 𝑦〉) = (2nd ‘〈𝐴, 𝐵〉)) |
5 | id 22 | . . 3 ⊢ (𝑦 = 𝐵 → 𝑦 = 𝐵) | |
6 | 4, 5 | eqeq12d 2754 | . 2 ⊢ (𝑦 = 𝐵 → ((2nd ‘〈𝐴, 𝑦〉) = 𝑦 ↔ (2nd ‘〈𝐴, 𝐵〉) = 𝐵)) |
7 | vex 3436 | . . 3 ⊢ 𝑥 ∈ V | |
8 | vex 3436 | . . 3 ⊢ 𝑦 ∈ V | |
9 | 7, 8 | op2nd 7840 | . 2 ⊢ (2nd ‘〈𝑥, 𝑦〉) = 𝑦 |
10 | 2, 6, 9 | vtocl2g 3510 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (2nd ‘〈𝐴, 𝐵〉) = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 〈cop 4567 ‘cfv 6433 2nd c2nd 7830 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-iota 6391 df-fun 6435 df-fv 6441 df-2nd 7832 |
This theorem is referenced by: ot2ndg 7846 ot3rdg 7847 br2ndeqg 7854 2ndconst 7941 mposn 7943 curry1 7944 opco2 7965 xpmapenlem 8931 2ndinl 9686 2ndinr 9688 axdc4lem 10211 pinq 10683 addpipq 10693 mulpipq 10696 ordpipq 10698 swrdval 14356 ruclem1 15940 eucalg 16292 qnumdenbi 16448 setsstruct 16877 comffval 17408 oppccofval 17426 funcf2 17583 cofuval2 17602 resfval2 17608 resf2nd 17610 funcres 17611 isnat 17663 fucco 17680 homacd 17756 setcco 17798 catcco 17820 estrcco 17846 xpcco 17900 xpchom2 17903 xpcco2 17904 evlf2 17936 curfval 17941 curf1cl 17946 uncf1 17954 uncf2 17955 hof2fval 17973 yonedalem21 17991 yonedalem22 17996 mvmulfval 21691 imasdsf1olem 23526 ovolicc1 24680 ioombl1lem3 24724 ioombl1lem4 24725 addsqnreup 26591 brcgr 27268 opiedgfv 27377 fsuppcurry1 31060 sategoelfvb 33381 prv1n 33393 addsval 34126 fvtransport 34334 bj-finsumval0 35456 poimirlem17 35794 poimirlem24 35801 poimirlem27 35804 dvhopvadd 39107 dvhopvsca 39116 dvhopaddN 39128 dvhopspN 39129 etransclem44 43819 uspgrsprfo 45310 rngccoALTV 45546 ringccoALTV 45609 lmod1zr 45834 |
Copyright terms: Public domain | W3C validator |