Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > op2ndg | Structured version Visualization version GIF version |
Description: Extract the second member of an ordered pair. (Contributed by NM, 19-Jul-2005.) |
Ref | Expression |
---|---|
op2ndg | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (2nd ‘〈𝐴, 𝐵〉) = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opeq1 4801 | . . 3 ⊢ (𝑥 = 𝐴 → 〈𝑥, 𝑦〉 = 〈𝐴, 𝑦〉) | |
2 | 1 | fveqeq2d 6764 | . 2 ⊢ (𝑥 = 𝐴 → ((2nd ‘〈𝑥, 𝑦〉) = 𝑦 ↔ (2nd ‘〈𝐴, 𝑦〉) = 𝑦)) |
3 | opeq2 4802 | . . . 4 ⊢ (𝑦 = 𝐵 → 〈𝐴, 𝑦〉 = 〈𝐴, 𝐵〉) | |
4 | 3 | fveq2d 6760 | . . 3 ⊢ (𝑦 = 𝐵 → (2nd ‘〈𝐴, 𝑦〉) = (2nd ‘〈𝐴, 𝐵〉)) |
5 | id 22 | . . 3 ⊢ (𝑦 = 𝐵 → 𝑦 = 𝐵) | |
6 | 4, 5 | eqeq12d 2754 | . 2 ⊢ (𝑦 = 𝐵 → ((2nd ‘〈𝐴, 𝑦〉) = 𝑦 ↔ (2nd ‘〈𝐴, 𝐵〉) = 𝐵)) |
7 | vex 3426 | . . 3 ⊢ 𝑥 ∈ V | |
8 | vex 3426 | . . 3 ⊢ 𝑦 ∈ V | |
9 | 7, 8 | op2nd 7813 | . 2 ⊢ (2nd ‘〈𝑥, 𝑦〉) = 𝑦 |
10 | 2, 6, 9 | vtocl2g 3500 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (2nd ‘〈𝐴, 𝐵〉) = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 〈cop 4564 ‘cfv 6418 2nd c2nd 7803 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-iota 6376 df-fun 6420 df-fv 6426 df-2nd 7805 |
This theorem is referenced by: ot2ndg 7819 ot3rdg 7820 br2ndeqg 7827 2ndconst 7912 mposn 7914 curry1 7915 opco2 7936 xpmapenlem 8880 2ndinl 9617 2ndinr 9619 axdc4lem 10142 pinq 10614 addpipq 10624 mulpipq 10627 ordpipq 10629 swrdval 14284 ruclem1 15868 eucalg 16220 qnumdenbi 16376 setsstruct 16805 comffval 17325 oppccofval 17343 funcf2 17499 cofuval2 17518 resfval2 17524 resf2nd 17526 funcres 17527 isnat 17579 fucco 17596 homacd 17672 setcco 17714 catcco 17736 estrcco 17762 xpcco 17816 xpchom2 17819 xpcco2 17820 evlf2 17852 curfval 17857 curf1cl 17862 uncf1 17870 uncf2 17871 hof2fval 17889 yonedalem21 17907 yonedalem22 17912 mvmulfval 21599 imasdsf1olem 23434 ovolicc1 24585 ioombl1lem3 24629 ioombl1lem4 24630 addsqnreup 26496 brcgr 27171 opiedgfv 27280 fsuppcurry1 30962 sategoelfvb 33281 prv1n 33293 addsval 34053 fvtransport 34261 bj-finsumval0 35383 poimirlem17 35721 poimirlem24 35728 poimirlem27 35731 dvhopvadd 39034 dvhopvsca 39043 dvhopaddN 39055 dvhopspN 39056 etransclem44 43709 uspgrsprfo 45198 rngccoALTV 45434 ringccoALTV 45497 lmod1zr 45722 |
Copyright terms: Public domain | W3C validator |