| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > op2ndg | Structured version Visualization version GIF version | ||
| Description: Extract the second member of an ordered pair. (Contributed by NM, 19-Jul-2005.) |
| Ref | Expression |
|---|---|
| op2ndg | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (2nd ‘〈𝐴, 𝐵〉) = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opeq1 4837 | . . 3 ⊢ (𝑥 = 𝐴 → 〈𝑥, 𝑦〉 = 〈𝐴, 𝑦〉) | |
| 2 | 1 | fveqeq2d 6866 | . 2 ⊢ (𝑥 = 𝐴 → ((2nd ‘〈𝑥, 𝑦〉) = 𝑦 ↔ (2nd ‘〈𝐴, 𝑦〉) = 𝑦)) |
| 3 | opeq2 4838 | . . . 4 ⊢ (𝑦 = 𝐵 → 〈𝐴, 𝑦〉 = 〈𝐴, 𝐵〉) | |
| 4 | 3 | fveq2d 6862 | . . 3 ⊢ (𝑦 = 𝐵 → (2nd ‘〈𝐴, 𝑦〉) = (2nd ‘〈𝐴, 𝐵〉)) |
| 5 | id 22 | . . 3 ⊢ (𝑦 = 𝐵 → 𝑦 = 𝐵) | |
| 6 | 4, 5 | eqeq12d 2745 | . 2 ⊢ (𝑦 = 𝐵 → ((2nd ‘〈𝐴, 𝑦〉) = 𝑦 ↔ (2nd ‘〈𝐴, 𝐵〉) = 𝐵)) |
| 7 | vex 3451 | . . 3 ⊢ 𝑥 ∈ V | |
| 8 | vex 3451 | . . 3 ⊢ 𝑦 ∈ V | |
| 9 | 7, 8 | op2nd 7977 | . 2 ⊢ (2nd ‘〈𝑥, 𝑦〉) = 𝑦 |
| 10 | 2, 6, 9 | vtocl2g 3540 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (2nd ‘〈𝐴, 𝐵〉) = 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 〈cop 4595 ‘cfv 6511 2nd c2nd 7967 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-iota 6464 df-fun 6513 df-fv 6519 df-2nd 7969 |
| This theorem is referenced by: ot2ndg 7983 ot3rdg 7984 br2ndeqg 7991 2ndconst 8080 mposn 8082 curry1 8083 opco2 8103 xpmapenlem 9108 2ndinl 9881 2ndinr 9883 axdc4lem 10408 pinq 10880 addpipq 10890 mulpipq 10893 ordpipq 10895 swrdval 14608 ruclem1 16199 eucalg 16557 qnumdenbi 16714 setsstruct 17146 comffval 17660 oppccofval 17677 funcf2 17830 cofuval2 17849 resfval2 17855 resf2nd 17857 funcres 17858 isnat 17912 fucco 17927 homacd 18003 setcco 18045 catcco 18067 estrcco 18091 xpcco 18144 xpchom2 18147 xpcco2 18148 evlf2 18179 curfval 18184 curf1cl 18189 uncf1 18197 uncf2 18198 hof2fval 18216 yonedalem21 18234 yonedalem22 18239 mvmulfval 22429 imasdsf1olem 24261 ovolicc1 25417 ioombl1lem3 25461 ioombl1lem4 25462 addsqnreup 27354 addsval 27869 mulsval 28012 om2noseqrdg 28198 brcgr 28827 opiedgfv 28934 fsuppcurry1 32648 erlbrd 33214 rlocaddval 33219 rlocmulval 33220 fracerl 33256 sategoelfvb 35406 prv1n 35418 fvtransport 36020 bj-finsumval0 37273 poimirlem17 37631 poimirlem24 37638 poimirlem27 37641 dvhopvadd 41087 dvhopvsca 41096 dvhopaddN 41108 dvhopspN 41109 etransclem44 46276 gpgedgiov 48056 gpgedg2ov 48057 gpgedg2iv 48058 uspgrsprfo 48136 rngccoALTV 48259 ringccoALTV 48293 lmod1zr 48482 func2nd 49067 oppf1st2nd 49120 upfval3 49167 swapf2fval 49254 fucofval 49308 fuco112 49318 fuco21 49325 prcofvala 49366 lanfval 49602 ranfval 49603 |
| Copyright terms: Public domain | W3C validator |