![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > op2ndg | Structured version Visualization version GIF version |
Description: Extract the second member of an ordered pair. (Contributed by NM, 19-Jul-2005.) |
Ref | Expression |
---|---|
op2ndg | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (2nd ‘〈𝐴, 𝐵〉) = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opeq1 4877 | . . 3 ⊢ (𝑥 = 𝐴 → 〈𝑥, 𝑦〉 = 〈𝐴, 𝑦〉) | |
2 | 1 | fveqeq2d 6914 | . 2 ⊢ (𝑥 = 𝐴 → ((2nd ‘〈𝑥, 𝑦〉) = 𝑦 ↔ (2nd ‘〈𝐴, 𝑦〉) = 𝑦)) |
3 | opeq2 4878 | . . . 4 ⊢ (𝑦 = 𝐵 → 〈𝐴, 𝑦〉 = 〈𝐴, 𝐵〉) | |
4 | 3 | fveq2d 6910 | . . 3 ⊢ (𝑦 = 𝐵 → (2nd ‘〈𝐴, 𝑦〉) = (2nd ‘〈𝐴, 𝐵〉)) |
5 | id 22 | . . 3 ⊢ (𝑦 = 𝐵 → 𝑦 = 𝐵) | |
6 | 4, 5 | eqeq12d 2750 | . 2 ⊢ (𝑦 = 𝐵 → ((2nd ‘〈𝐴, 𝑦〉) = 𝑦 ↔ (2nd ‘〈𝐴, 𝐵〉) = 𝐵)) |
7 | vex 3481 | . . 3 ⊢ 𝑥 ∈ V | |
8 | vex 3481 | . . 3 ⊢ 𝑦 ∈ V | |
9 | 7, 8 | op2nd 8021 | . 2 ⊢ (2nd ‘〈𝑥, 𝑦〉) = 𝑦 |
10 | 2, 6, 9 | vtocl2g 3573 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (2nd ‘〈𝐴, 𝐵〉) = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1536 ∈ wcel 2105 〈cop 4636 ‘cfv 6562 2nd c2nd 8011 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-sep 5301 ax-nul 5311 ax-pr 5437 ax-un 7753 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ral 3059 df-rex 3068 df-rab 3433 df-v 3479 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-nul 4339 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5582 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-iota 6515 df-fun 6564 df-fv 6570 df-2nd 8013 |
This theorem is referenced by: ot2ndg 8027 ot3rdg 8028 br2ndeqg 8035 2ndconst 8124 mposn 8126 curry1 8127 opco2 8147 xpmapenlem 9182 2ndinl 9965 2ndinr 9967 axdc4lem 10492 pinq 10964 addpipq 10974 mulpipq 10977 ordpipq 10979 swrdval 14677 ruclem1 16263 eucalg 16620 qnumdenbi 16777 setsstruct 17209 comffval 17743 oppccofval 17761 funcf2 17918 cofuval2 17937 resfval2 17943 resf2nd 17945 funcres 17946 isnat 18001 fucco 18018 homacd 18094 setcco 18136 catcco 18158 estrcco 18184 xpcco 18238 xpchom2 18241 xpcco2 18242 evlf2 18274 curfval 18279 curf1cl 18284 uncf1 18292 uncf2 18293 hof2fval 18311 yonedalem21 18329 yonedalem22 18334 mvmulfval 22563 imasdsf1olem 24398 ovolicc1 25564 ioombl1lem3 25608 ioombl1lem4 25609 addsqnreup 27501 addsval 28009 mulsval 28149 om2noseqrdg 28324 brcgr 28929 opiedgfv 29038 fsuppcurry1 32742 erlbrd 33249 rlocaddval 33254 rlocmulval 33255 fracerl 33287 sategoelfvb 35403 prv1n 35415 fvtransport 36013 bj-finsumval0 37267 poimirlem17 37623 poimirlem24 37630 poimirlem27 37633 dvhopvadd 41075 dvhopvsca 41084 dvhopaddN 41096 dvhopspN 41097 etransclem44 46233 uspgrsprfo 47991 rngccoALTV 48114 ringccoALTV 48148 lmod1zr 48338 |
Copyright terms: Public domain | W3C validator |