| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > op2ndg | Structured version Visualization version GIF version | ||
| Description: Extract the second member of an ordered pair. (Contributed by NM, 19-Jul-2005.) |
| Ref | Expression |
|---|---|
| op2ndg | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (2nd ‘〈𝐴, 𝐵〉) = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opeq1 4827 | . . 3 ⊢ (𝑥 = 𝐴 → 〈𝑥, 𝑦〉 = 〈𝐴, 𝑦〉) | |
| 2 | 1 | fveqeq2d 6834 | . 2 ⊢ (𝑥 = 𝐴 → ((2nd ‘〈𝑥, 𝑦〉) = 𝑦 ↔ (2nd ‘〈𝐴, 𝑦〉) = 𝑦)) |
| 3 | opeq2 4828 | . . . 4 ⊢ (𝑦 = 𝐵 → 〈𝐴, 𝑦〉 = 〈𝐴, 𝐵〉) | |
| 4 | 3 | fveq2d 6830 | . . 3 ⊢ (𝑦 = 𝐵 → (2nd ‘〈𝐴, 𝑦〉) = (2nd ‘〈𝐴, 𝐵〉)) |
| 5 | id 22 | . . 3 ⊢ (𝑦 = 𝐵 → 𝑦 = 𝐵) | |
| 6 | 4, 5 | eqeq12d 2745 | . 2 ⊢ (𝑦 = 𝐵 → ((2nd ‘〈𝐴, 𝑦〉) = 𝑦 ↔ (2nd ‘〈𝐴, 𝐵〉) = 𝐵)) |
| 7 | vex 3442 | . . 3 ⊢ 𝑥 ∈ V | |
| 8 | vex 3442 | . . 3 ⊢ 𝑦 ∈ V | |
| 9 | 7, 8 | op2nd 7940 | . 2 ⊢ (2nd ‘〈𝑥, 𝑦〉) = 𝑦 |
| 10 | 2, 6, 9 | vtocl2g 3531 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (2nd ‘〈𝐴, 𝐵〉) = 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 〈cop 4585 ‘cfv 6486 2nd c2nd 7930 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-iota 6442 df-fun 6488 df-fv 6494 df-2nd 7932 |
| This theorem is referenced by: ot2ndg 7946 ot3rdg 7947 br2ndeqg 7954 2ndconst 8041 mposn 8043 curry1 8044 opco2 8064 xpmapenlem 9068 2ndinl 9843 2ndinr 9845 axdc4lem 10368 pinq 10840 addpipq 10850 mulpipq 10853 ordpipq 10855 swrdval 14568 ruclem1 16158 eucalg 16516 qnumdenbi 16673 setsstruct 17105 comffval 17623 oppccofval 17640 funcf2 17793 cofuval2 17812 resfval2 17818 resf2nd 17820 funcres 17821 isnat 17875 fucco 17890 homacd 17966 setcco 18008 catcco 18030 estrcco 18054 xpcco 18107 xpchom2 18110 xpcco2 18111 evlf2 18142 curfval 18147 curf1cl 18152 uncf1 18160 uncf2 18161 hof2fval 18179 yonedalem21 18197 yonedalem22 18202 mvmulfval 22445 imasdsf1olem 24277 ovolicc1 25433 ioombl1lem3 25477 ioombl1lem4 25478 addsqnreup 27370 addsval 27892 mulsval 28035 om2noseqrdg 28221 brcgr 28863 opiedgfv 28970 fsuppcurry1 32681 erlbrd 33213 rlocaddval 33218 rlocmulval 33219 fracerl 33255 sategoelfvb 35391 prv1n 35403 fvtransport 36005 bj-finsumval0 37258 poimirlem17 37616 poimirlem24 37623 poimirlem27 37626 dvhopvadd 41072 dvhopvsca 41081 dvhopaddN 41093 dvhopspN 41094 etransclem44 46260 gpgedgiov 48050 gpgedg2ov 48051 gpgedg2iv 48052 uspgrsprfo 48133 rngccoALTV 48256 ringccoALTV 48290 lmod1zr 48479 func2nd 49064 oppf1st2nd 49117 upfval3 49164 swapf2fval 49251 fucofval 49305 fuco112 49315 fuco21 49322 prcofvala 49363 lanfval 49599 ranfval 49600 |
| Copyright terms: Public domain | W3C validator |