| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > op2ndg | Structured version Visualization version GIF version | ||
| Description: Extract the second member of an ordered pair. (Contributed by NM, 19-Jul-2005.) |
| Ref | Expression |
|---|---|
| op2ndg | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (2nd ‘〈𝐴, 𝐵〉) = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opeq1 4824 | . . 3 ⊢ (𝑥 = 𝐴 → 〈𝑥, 𝑦〉 = 〈𝐴, 𝑦〉) | |
| 2 | 1 | fveqeq2d 6836 | . 2 ⊢ (𝑥 = 𝐴 → ((2nd ‘〈𝑥, 𝑦〉) = 𝑦 ↔ (2nd ‘〈𝐴, 𝑦〉) = 𝑦)) |
| 3 | opeq2 4825 | . . . 4 ⊢ (𝑦 = 𝐵 → 〈𝐴, 𝑦〉 = 〈𝐴, 𝐵〉) | |
| 4 | 3 | fveq2d 6832 | . . 3 ⊢ (𝑦 = 𝐵 → (2nd ‘〈𝐴, 𝑦〉) = (2nd ‘〈𝐴, 𝐵〉)) |
| 5 | id 22 | . . 3 ⊢ (𝑦 = 𝐵 → 𝑦 = 𝐵) | |
| 6 | 4, 5 | eqeq12d 2749 | . 2 ⊢ (𝑦 = 𝐵 → ((2nd ‘〈𝐴, 𝑦〉) = 𝑦 ↔ (2nd ‘〈𝐴, 𝐵〉) = 𝐵)) |
| 7 | vex 3441 | . . 3 ⊢ 𝑥 ∈ V | |
| 8 | vex 3441 | . . 3 ⊢ 𝑦 ∈ V | |
| 9 | 7, 8 | op2nd 7936 | . 2 ⊢ (2nd ‘〈𝑥, 𝑦〉) = 𝑦 |
| 10 | 2, 6, 9 | vtocl2g 3526 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (2nd ‘〈𝐴, 𝐵〉) = 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 〈cop 4581 ‘cfv 6486 2nd c2nd 7926 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pr 5372 ax-un 7674 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-iota 6442 df-fun 6488 df-fv 6494 df-2nd 7928 |
| This theorem is referenced by: ot2ndg 7942 ot3rdg 7943 br2ndeqg 7950 2ndconst 8037 mposn 8039 curry1 8040 opco2 8060 xpmapenlem 9064 2ndinl 9828 2ndinr 9830 axdc4lem 10353 pinq 10825 addpipq 10835 mulpipq 10838 ordpipq 10840 swrdval 14553 ruclem1 16142 eucalg 16500 qnumdenbi 16657 setsstruct 17089 comffval 17607 oppccofval 17624 funcf2 17777 cofuval2 17796 resfval2 17802 resf2nd 17804 funcres 17805 isnat 17859 fucco 17874 homacd 17950 setcco 17992 catcco 18014 estrcco 18038 xpcco 18091 xpchom2 18094 xpcco2 18095 evlf2 18126 curfval 18131 curf1cl 18136 uncf1 18144 uncf2 18145 hof2fval 18163 yonedalem21 18181 yonedalem22 18186 mvmulfval 22458 imasdsf1olem 24289 ovolicc1 25445 ioombl1lem3 25489 ioombl1lem4 25490 addsqnreup 27382 addsval 27906 mulsval 28049 om2noseqrdg 28235 brcgr 28880 opiedgfv 28987 fsuppcurry1 32711 erlbrd 33237 rlocaddval 33242 rlocmulval 33243 fracerl 33279 sategoelfvb 35484 prv1n 35496 fvtransport 36097 bj-finsumval0 37350 poimirlem17 37697 poimirlem24 37704 poimirlem27 37707 dvhopvadd 41212 dvhopvsca 41221 dvhopaddN 41233 dvhopspN 41234 etransclem44 46400 gpgedgiov 48189 gpgedg2ov 48190 gpgedg2iv 48191 uspgrsprfo 48272 rngccoALTV 48395 ringccoALTV 48429 lmod1zr 48618 func2nd 49203 oppf1st2nd 49256 upfval3 49303 swapf2fval 49390 fucofval 49444 fuco112 49454 fuco21 49461 prcofvala 49502 lanfval 49738 ranfval 49739 |
| Copyright terms: Public domain | W3C validator |