![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > op2ndg | Structured version Visualization version GIF version |
Description: Extract the second member of an ordered pair. (Contributed by NM, 19-Jul-2005.) |
Ref | Expression |
---|---|
op2ndg | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (2nd ‘⟨𝐴, 𝐵⟩) = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opeq1 4872 | . . 3 ⊢ (𝑥 = 𝐴 → ⟨𝑥, 𝑦⟩ = ⟨𝐴, 𝑦⟩) | |
2 | 1 | fveqeq2d 6898 | . 2 ⊢ (𝑥 = 𝐴 → ((2nd ‘⟨𝑥, 𝑦⟩) = 𝑦 ↔ (2nd ‘⟨𝐴, 𝑦⟩) = 𝑦)) |
3 | opeq2 4873 | . . . 4 ⊢ (𝑦 = 𝐵 → ⟨𝐴, 𝑦⟩ = ⟨𝐴, 𝐵⟩) | |
4 | 3 | fveq2d 6894 | . . 3 ⊢ (𝑦 = 𝐵 → (2nd ‘⟨𝐴, 𝑦⟩) = (2nd ‘⟨𝐴, 𝐵⟩)) |
5 | id 22 | . . 3 ⊢ (𝑦 = 𝐵 → 𝑦 = 𝐵) | |
6 | 4, 5 | eqeq12d 2746 | . 2 ⊢ (𝑦 = 𝐵 → ((2nd ‘⟨𝐴, 𝑦⟩) = 𝑦 ↔ (2nd ‘⟨𝐴, 𝐵⟩) = 𝐵)) |
7 | vex 3476 | . . 3 ⊢ 𝑥 ∈ V | |
8 | vex 3476 | . . 3 ⊢ 𝑦 ∈ V | |
9 | 7, 8 | op2nd 7986 | . 2 ⊢ (2nd ‘⟨𝑥, 𝑦⟩) = 𝑦 |
10 | 2, 6, 9 | vtocl2g 3562 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (2nd ‘⟨𝐴, 𝐵⟩) = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1539 ∈ wcel 2104 ⟨cop 4633 ‘cfv 6542 2nd c2nd 7976 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-sep 5298 ax-nul 5305 ax-pr 5426 ax-un 7727 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ral 3060 df-rex 3069 df-rab 3431 df-v 3474 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-iota 6494 df-fun 6544 df-fv 6550 df-2nd 7978 |
This theorem is referenced by: ot2ndg 7992 ot3rdg 7993 br2ndeqg 8000 2ndconst 8089 mposn 8091 curry1 8092 opco2 8112 xpmapenlem 9146 2ndinl 9925 2ndinr 9927 axdc4lem 10452 pinq 10924 addpipq 10934 mulpipq 10937 ordpipq 10939 swrdval 14597 ruclem1 16178 eucalg 16528 qnumdenbi 16684 setsstruct 17113 comffval 17647 oppccofval 17665 funcf2 17822 cofuval2 17841 resfval2 17847 resf2nd 17849 funcres 17850 isnat 17902 fucco 17919 homacd 17995 setcco 18037 catcco 18059 estrcco 18085 xpcco 18139 xpchom2 18142 xpcco2 18143 evlf2 18175 curfval 18180 curf1cl 18185 uncf1 18193 uncf2 18194 hof2fval 18212 yonedalem21 18230 yonedalem22 18235 mvmulfval 22264 imasdsf1olem 24099 ovolicc1 25265 ioombl1lem3 25309 ioombl1lem4 25310 addsqnreup 27182 addsval 27684 mulsval 27804 brcgr 28425 opiedgfv 28534 fsuppcurry1 32217 sategoelfvb 34708 prv1n 34720 fvtransport 35308 bj-finsumval0 36469 poimirlem17 36808 poimirlem24 36815 poimirlem27 36818 dvhopvadd 40267 dvhopvsca 40276 dvhopaddN 40288 dvhopspN 40289 etransclem44 45292 uspgrsprfo 46824 rngccoALTV 46974 ringccoALTV 47037 lmod1zr 47261 |
Copyright terms: Public domain | W3C validator |