| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > op2ndg | Structured version Visualization version GIF version | ||
| Description: Extract the second member of an ordered pair. (Contributed by NM, 19-Jul-2005.) |
| Ref | Expression |
|---|---|
| op2ndg | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (2nd ‘〈𝐴, 𝐵〉) = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opeq1 4840 | . . 3 ⊢ (𝑥 = 𝐴 → 〈𝑥, 𝑦〉 = 〈𝐴, 𝑦〉) | |
| 2 | 1 | fveqeq2d 6869 | . 2 ⊢ (𝑥 = 𝐴 → ((2nd ‘〈𝑥, 𝑦〉) = 𝑦 ↔ (2nd ‘〈𝐴, 𝑦〉) = 𝑦)) |
| 3 | opeq2 4841 | . . . 4 ⊢ (𝑦 = 𝐵 → 〈𝐴, 𝑦〉 = 〈𝐴, 𝐵〉) | |
| 4 | 3 | fveq2d 6865 | . . 3 ⊢ (𝑦 = 𝐵 → (2nd ‘〈𝐴, 𝑦〉) = (2nd ‘〈𝐴, 𝐵〉)) |
| 5 | id 22 | . . 3 ⊢ (𝑦 = 𝐵 → 𝑦 = 𝐵) | |
| 6 | 4, 5 | eqeq12d 2746 | . 2 ⊢ (𝑦 = 𝐵 → ((2nd ‘〈𝐴, 𝑦〉) = 𝑦 ↔ (2nd ‘〈𝐴, 𝐵〉) = 𝐵)) |
| 7 | vex 3454 | . . 3 ⊢ 𝑥 ∈ V | |
| 8 | vex 3454 | . . 3 ⊢ 𝑦 ∈ V | |
| 9 | 7, 8 | op2nd 7980 | . 2 ⊢ (2nd ‘〈𝑥, 𝑦〉) = 𝑦 |
| 10 | 2, 6, 9 | vtocl2g 3543 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (2nd ‘〈𝐴, 𝐵〉) = 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 〈cop 4598 ‘cfv 6514 2nd c2nd 7970 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-iota 6467 df-fun 6516 df-fv 6522 df-2nd 7972 |
| This theorem is referenced by: ot2ndg 7986 ot3rdg 7987 br2ndeqg 7994 2ndconst 8083 mposn 8085 curry1 8086 opco2 8106 xpmapenlem 9114 2ndinl 9888 2ndinr 9890 axdc4lem 10415 pinq 10887 addpipq 10897 mulpipq 10900 ordpipq 10902 swrdval 14615 ruclem1 16206 eucalg 16564 qnumdenbi 16721 setsstruct 17153 comffval 17667 oppccofval 17684 funcf2 17837 cofuval2 17856 resfval2 17862 resf2nd 17864 funcres 17865 isnat 17919 fucco 17934 homacd 18010 setcco 18052 catcco 18074 estrcco 18098 xpcco 18151 xpchom2 18154 xpcco2 18155 evlf2 18186 curfval 18191 curf1cl 18196 uncf1 18204 uncf2 18205 hof2fval 18223 yonedalem21 18241 yonedalem22 18246 mvmulfval 22436 imasdsf1olem 24268 ovolicc1 25424 ioombl1lem3 25468 ioombl1lem4 25469 addsqnreup 27361 addsval 27876 mulsval 28019 om2noseqrdg 28205 brcgr 28834 opiedgfv 28941 fsuppcurry1 32655 erlbrd 33221 rlocaddval 33226 rlocmulval 33227 fracerl 33263 sategoelfvb 35413 prv1n 35425 fvtransport 36027 bj-finsumval0 37280 poimirlem17 37638 poimirlem24 37645 poimirlem27 37648 dvhopvadd 41094 dvhopvsca 41103 dvhopaddN 41115 dvhopspN 41116 etransclem44 46283 gpgedgiov 48060 gpgedg2ov 48061 gpgedg2iv 48062 uspgrsprfo 48140 rngccoALTV 48263 ringccoALTV 48297 lmod1zr 48486 func2nd 49071 oppf1st2nd 49124 upfval3 49171 swapf2fval 49258 fucofval 49312 fuco112 49322 fuco21 49329 prcofvala 49370 lanfval 49606 ranfval 49607 |
| Copyright terms: Public domain | W3C validator |