| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > op2ndg | Structured version Visualization version GIF version | ||
| Description: Extract the second member of an ordered pair. (Contributed by NM, 19-Jul-2005.) |
| Ref | Expression |
|---|---|
| op2ndg | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (2nd ‘〈𝐴, 𝐵〉) = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opeq1 4825 | . . 3 ⊢ (𝑥 = 𝐴 → 〈𝑥, 𝑦〉 = 〈𝐴, 𝑦〉) | |
| 2 | 1 | fveqeq2d 6830 | . 2 ⊢ (𝑥 = 𝐴 → ((2nd ‘〈𝑥, 𝑦〉) = 𝑦 ↔ (2nd ‘〈𝐴, 𝑦〉) = 𝑦)) |
| 3 | opeq2 4826 | . . . 4 ⊢ (𝑦 = 𝐵 → 〈𝐴, 𝑦〉 = 〈𝐴, 𝐵〉) | |
| 4 | 3 | fveq2d 6826 | . . 3 ⊢ (𝑦 = 𝐵 → (2nd ‘〈𝐴, 𝑦〉) = (2nd ‘〈𝐴, 𝐵〉)) |
| 5 | id 22 | . . 3 ⊢ (𝑦 = 𝐵 → 𝑦 = 𝐵) | |
| 6 | 4, 5 | eqeq12d 2747 | . 2 ⊢ (𝑦 = 𝐵 → ((2nd ‘〈𝐴, 𝑦〉) = 𝑦 ↔ (2nd ‘〈𝐴, 𝐵〉) = 𝐵)) |
| 7 | vex 3440 | . . 3 ⊢ 𝑥 ∈ V | |
| 8 | vex 3440 | . . 3 ⊢ 𝑦 ∈ V | |
| 9 | 7, 8 | op2nd 7930 | . 2 ⊢ (2nd ‘〈𝑥, 𝑦〉) = 𝑦 |
| 10 | 2, 6, 9 | vtocl2g 3529 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (2nd ‘〈𝐴, 𝐵〉) = 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 〈cop 4582 ‘cfv 6481 2nd c2nd 7920 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-iota 6437 df-fun 6483 df-fv 6489 df-2nd 7922 |
| This theorem is referenced by: ot2ndg 7936 ot3rdg 7937 br2ndeqg 7944 2ndconst 8031 mposn 8033 curry1 8034 opco2 8054 xpmapenlem 9057 2ndinl 9818 2ndinr 9820 axdc4lem 10343 pinq 10815 addpipq 10825 mulpipq 10828 ordpipq 10830 swrdval 14548 ruclem1 16137 eucalg 16495 qnumdenbi 16652 setsstruct 17084 comffval 17602 oppccofval 17619 funcf2 17772 cofuval2 17791 resfval2 17797 resf2nd 17799 funcres 17800 isnat 17854 fucco 17869 homacd 17945 setcco 17987 catcco 18009 estrcco 18033 xpcco 18086 xpchom2 18089 xpcco2 18090 evlf2 18121 curfval 18126 curf1cl 18131 uncf1 18139 uncf2 18140 hof2fval 18158 yonedalem21 18176 yonedalem22 18181 mvmulfval 22455 imasdsf1olem 24286 ovolicc1 25442 ioombl1lem3 25486 ioombl1lem4 25487 addsqnreup 27379 addsval 27903 mulsval 28046 om2noseqrdg 28232 brcgr 28876 opiedgfv 28983 fsuppcurry1 32702 erlbrd 33225 rlocaddval 33230 rlocmulval 33231 fracerl 33267 sategoelfvb 35451 prv1n 35463 fvtransport 36065 bj-finsumval0 37318 poimirlem17 37676 poimirlem24 37683 poimirlem27 37686 dvhopvadd 41131 dvhopvsca 41140 dvhopaddN 41152 dvhopspN 41153 etransclem44 46315 gpgedgiov 48095 gpgedg2ov 48096 gpgedg2iv 48097 uspgrsprfo 48178 rngccoALTV 48301 ringccoALTV 48335 lmod1zr 48524 func2nd 49109 oppf1st2nd 49162 upfval3 49209 swapf2fval 49296 fucofval 49350 fuco112 49360 fuco21 49367 prcofvala 49408 lanfval 49644 ranfval 49645 |
| Copyright terms: Public domain | W3C validator |