![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 5cn | Structured version Visualization version GIF version |
Description: The number 5 is a complex number. (Contributed by David A. Wheeler, 8-Dec-2018.) Reduce dependencies on axioms. (Revised by Steven Nguyen, 4-Oct-2022.) |
Ref | Expression |
---|---|
5cn | ⊢ 5 ∈ ℂ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-5 12308 | . 2 ⊢ 5 = (4 + 1) | |
2 | 4cn 12327 | . . 3 ⊢ 4 ∈ ℂ | |
3 | ax-1cn 11196 | . . 3 ⊢ 1 ∈ ℂ | |
4 | 2, 3 | addcli 11250 | . 2 ⊢ (4 + 1) ∈ ℂ |
5 | 1, 4 | eqeltri 2821 | 1 ⊢ 5 ∈ ℂ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2098 (class class class)co 7417 ℂcc 11136 1c1 11139 + caddc 11141 4c4 12299 5c5 12300 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2696 ax-1cn 11196 ax-addcl 11198 |
This theorem depends on definitions: df-bi 206 df-an 395 df-ex 1774 df-cleq 2717 df-clel 2802 df-2 12305 df-3 12306 df-4 12307 df-5 12308 |
This theorem is referenced by: 6cn 12333 6m1e5 12373 5p2e7 12398 5p3e8 12399 5p4e9 12400 5p5e10 12778 5t2e10 12807 5recm6rec 12851 bpoly4 16035 ef01bndlem 16160 dec5dvds 17032 dec5nprm 17034 2exp11 17058 2exp16 17059 prmlem1 17076 17prm 17085 139prm 17092 163prm 17093 317prm 17094 631prm 17095 1259lem1 17099 1259lem2 17100 1259lem3 17101 1259lem4 17102 2503lem1 17105 2503lem2 17106 2503lem3 17107 4001lem1 17109 4001lem2 17110 4001lem3 17111 4001lem4 17112 4001prm 17113 log2ublem3 26910 log2ub 26911 ppiub 27167 bclbnd 27243 bposlem4 27250 bposlem5 27251 bposlem6 27252 bposlem8 27254 bposlem9 27255 lgsdir2lem1 27288 2lgslem3c 27361 2lgsoddprmlem3d 27376 ex-fac 30317 fib6 34096 hgt750lem2 34354 12lcm5e60 41548 lcmineqlem23 41591 3lexlogpow5ineq1 41594 3lexlogpow5ineq5 41600 aks4d1p1p4 41611 aks4d1p1p6 41613 aks4d1p1p7 41614 sqn5i 41924 4t5e20 41930 235t711 41932 ex-decpmul 41933 inductionexd 43650 fmtno5lem1 46956 fmtno5lem2 46957 257prm 46964 fmtno4prmfac193 46976 fmtno4nprmfac193 46977 flsqrt5 46997 139prmALT 46999 127prm 47002 5tcu2e40 47018 41prothprmlem2 47021 41prothprm 47022 2exp340mod341 47136 gbpart8 47171 linevalexample 47575 ackval3012 47877 5m4e1 48342 |
Copyright terms: Public domain | W3C validator |