Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 5cn | Structured version Visualization version GIF version |
Description: The number 5 is a complex number. (Contributed by David A. Wheeler, 8-Dec-2018.) Reduce dependencies on axioms. (Revised by Steven Nguyen, 4-Oct-2022.) |
Ref | Expression |
---|---|
5cn | ⊢ 5 ∈ ℂ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-5 12039 | . 2 ⊢ 5 = (4 + 1) | |
2 | 4cn 12058 | . . 3 ⊢ 4 ∈ ℂ | |
3 | ax-1cn 10930 | . . 3 ⊢ 1 ∈ ℂ | |
4 | 2, 3 | addcli 10982 | . 2 ⊢ (4 + 1) ∈ ℂ |
5 | 1, 4 | eqeltri 2837 | 1 ⊢ 5 ∈ ℂ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2110 (class class class)co 7271 ℂcc 10870 1c1 10873 + caddc 10875 4c4 12030 5c5 12031 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-ext 2711 ax-1cn 10930 ax-addcl 10932 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1787 df-cleq 2732 df-clel 2818 df-2 12036 df-3 12037 df-4 12038 df-5 12039 |
This theorem is referenced by: 6cn 12064 6m1e5 12104 5p2e7 12129 5p3e8 12130 5p4e9 12131 5p5e10 12507 5t2e10 12536 5recm6rec 12580 bpoly4 15767 ef01bndlem 15891 dec5dvds 16763 dec5nprm 16765 2exp11 16789 2exp16 16790 prmlem1 16807 17prm 16816 139prm 16823 163prm 16824 317prm 16825 631prm 16826 1259lem1 16830 1259lem2 16831 1259lem3 16832 1259lem4 16833 2503lem1 16836 2503lem2 16837 2503lem3 16838 4001lem1 16840 4001lem2 16841 4001lem3 16842 4001lem4 16843 4001prm 16844 log2ublem3 26096 log2ub 26097 ppiub 26350 bclbnd 26426 bposlem4 26433 bposlem5 26434 bposlem6 26435 bposlem8 26437 bposlem9 26438 lgsdir2lem1 26471 2lgslem3c 26544 2lgsoddprmlem3d 26559 ex-fac 28811 fib6 32369 hgt750lem2 32628 12lcm5e60 40013 lcmineqlem23 40056 3lexlogpow5ineq1 40059 3lexlogpow5ineq5 40065 aks4d1p1p4 40076 aks4d1p1p6 40078 aks4d1p1p7 40079 sqn5i 40310 235t711 40316 ex-decpmul 40317 inductionexd 41735 fmtno5lem1 44974 fmtno5lem2 44975 257prm 44982 fmtno4prmfac193 44994 fmtno4nprmfac193 44995 flsqrt5 45015 139prmALT 45017 127prm 45020 5tcu2e40 45036 41prothprmlem2 45039 41prothprm 45040 2exp340mod341 45154 gbpart8 45189 linevalexample 45705 ackval3012 46007 5m4e1 46470 |
Copyright terms: Public domain | W3C validator |