![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 5cn | Structured version Visualization version GIF version |
Description: The number 5 is a complex number. (Contributed by David A. Wheeler, 8-Dec-2018.) Reduce dependencies on axioms. (Revised by Steven Nguyen, 4-Oct-2022.) |
Ref | Expression |
---|---|
5cn | ⊢ 5 ∈ ℂ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-5 12359 | . 2 ⊢ 5 = (4 + 1) | |
2 | 4cn 12378 | . . 3 ⊢ 4 ∈ ℂ | |
3 | ax-1cn 11242 | . . 3 ⊢ 1 ∈ ℂ | |
4 | 2, 3 | addcli 11296 | . 2 ⊢ (4 + 1) ∈ ℂ |
5 | 1, 4 | eqeltri 2840 | 1 ⊢ 5 ∈ ℂ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2108 (class class class)co 7448 ℂcc 11182 1c1 11185 + caddc 11187 4c4 12350 5c5 12351 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-1cn 11242 ax-addcl 11244 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 df-cleq 2732 df-clel 2819 df-2 12356 df-3 12357 df-4 12358 df-5 12359 |
This theorem is referenced by: 6cn 12384 6m1e5 12424 5p2e7 12449 5p3e8 12450 5p4e9 12451 5p5e10 12829 5t2e10 12858 5recm6rec 12902 bpoly4 16107 ef01bndlem 16232 dec5dvds 17111 dec5nprm 17113 2exp11 17137 2exp16 17138 prmlem1 17155 17prm 17164 139prm 17171 163prm 17172 317prm 17173 631prm 17174 1259lem1 17178 1259lem2 17179 1259lem3 17180 1259lem4 17181 2503lem1 17184 2503lem2 17185 2503lem3 17186 4001lem1 17188 4001lem2 17189 4001lem3 17190 4001lem4 17191 4001prm 17192 log2ublem3 27009 log2ub 27010 ppiub 27266 bclbnd 27342 bposlem4 27349 bposlem5 27350 bposlem6 27351 bposlem8 27353 bposlem9 27354 lgsdir2lem1 27387 2lgslem3c 27460 2lgsoddprmlem3d 27475 ex-fac 30483 fib6 34371 hgt750lem2 34629 12lcm5e60 41965 lcmineqlem23 42008 3lexlogpow5ineq1 42011 3lexlogpow5ineq5 42017 aks4d1p1p4 42028 aks4d1p1p6 42030 aks4d1p1p7 42031 sqn5i 42274 4t5e20 42280 sq5 42282 235t711 42293 ex-decpmul 42294 inductionexd 44117 fmtno5lem1 47427 fmtno5lem2 47428 257prm 47435 fmtno4prmfac193 47447 fmtno4nprmfac193 47448 flsqrt5 47468 139prmALT 47470 127prm 47473 5tcu2e40 47489 41prothprmlem2 47492 41prothprm 47493 2exp340mod341 47607 gbpart8 47642 linevalexample 48124 ackval3012 48426 5m4e1 48891 |
Copyright terms: Public domain | W3C validator |