![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 5cn | Structured version Visualization version GIF version |
Description: The number 5 is a complex number. (Contributed by David A. Wheeler, 8-Dec-2018.) Reduce dependencies on axioms. (Revised by Steven Nguyen, 4-Oct-2022.) |
Ref | Expression |
---|---|
5cn | ⊢ 5 ∈ ℂ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-5 12330 | . 2 ⊢ 5 = (4 + 1) | |
2 | 4cn 12349 | . . 3 ⊢ 4 ∈ ℂ | |
3 | ax-1cn 11211 | . . 3 ⊢ 1 ∈ ℂ | |
4 | 2, 3 | addcli 11265 | . 2 ⊢ (4 + 1) ∈ ℂ |
5 | 1, 4 | eqeltri 2835 | 1 ⊢ 5 ∈ ℂ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2106 (class class class)co 7431 ℂcc 11151 1c1 11154 + caddc 11156 4c4 12321 5c5 12322 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 ax-1cn 11211 ax-addcl 11213 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1777 df-cleq 2727 df-clel 2814 df-2 12327 df-3 12328 df-4 12329 df-5 12330 |
This theorem is referenced by: 6cn 12355 6m1e5 12395 5p2e7 12420 5p3e8 12421 5p4e9 12422 5p5e10 12802 5t2e10 12831 5recm6rec 12875 bpoly4 16092 ef01bndlem 16217 5ndvds3 16447 5ndvds6 16448 dec5dvds 17098 dec5nprm 17100 2exp11 17124 2exp16 17125 prmlem1 17142 17prm 17151 139prm 17158 163prm 17159 317prm 17160 631prm 17161 1259lem1 17165 1259lem2 17166 1259lem3 17167 1259lem4 17168 2503lem1 17171 2503lem2 17172 2503lem3 17173 4001lem1 17175 4001lem2 17176 4001lem3 17177 4001lem4 17178 4001prm 17179 log2ublem3 27006 log2ub 27007 ppiub 27263 bclbnd 27339 bposlem4 27346 bposlem5 27347 bposlem6 27348 bposlem8 27350 bposlem9 27351 lgsdir2lem1 27384 2lgslem3c 27457 2lgsoddprmlem3d 27472 ex-fac 30480 fib6 34388 hgt750lem2 34646 12lcm5e60 41990 lcmineqlem23 42033 3lexlogpow5ineq1 42036 3lexlogpow5ineq5 42042 aks4d1p1p4 42053 aks4d1p1p6 42055 aks4d1p1p7 42056 sqn5i 42299 4t5e20 42305 sq5 42307 235t711 42318 ex-decpmul 42319 inductionexd 44145 ceil5half3 47280 fmtno5lem1 47478 fmtno5lem2 47479 257prm 47486 fmtno4prmfac193 47498 fmtno4nprmfac193 47499 flsqrt5 47519 139prmALT 47521 127prm 47524 5tcu2e40 47540 41prothprmlem2 47543 41prothprm 47544 2exp340mod341 47658 gbpart8 47693 gpg5order 47949 linevalexample 48241 ackval3012 48542 5m4e1 49028 |
Copyright terms: Public domain | W3C validator |