| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 5cn | Structured version Visualization version GIF version | ||
| Description: The number 5 is a complex number. (Contributed by David A. Wheeler, 8-Dec-2018.) Reduce dependencies on axioms. (Revised by Steven Nguyen, 4-Oct-2022.) |
| Ref | Expression |
|---|---|
| 5cn | ⊢ 5 ∈ ℂ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-5 12212 | . 2 ⊢ 5 = (4 + 1) | |
| 2 | 4cn 12231 | . . 3 ⊢ 4 ∈ ℂ | |
| 3 | ax-1cn 11086 | . . 3 ⊢ 1 ∈ ℂ | |
| 4 | 2, 3 | addcli 11140 | . 2 ⊢ (4 + 1) ∈ ℂ |
| 5 | 1, 4 | eqeltri 2824 | 1 ⊢ 5 ∈ ℂ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 (class class class)co 7353 ℂcc 11026 1c1 11029 + caddc 11031 4c4 12203 5c5 12204 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-1cn 11086 ax-addcl 11088 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2721 df-clel 2803 df-2 12209 df-3 12210 df-4 12211 df-5 12212 |
| This theorem is referenced by: 6cn 12237 6m1e5 12272 5p2e7 12297 5p3e8 12298 5p4e9 12299 5p5e10 12680 5t2e10 12709 5recm6rec 12752 bpoly4 15984 ef01bndlem 16111 5ndvds3 16342 5ndvds6 16343 dec5dvds 16994 dec5nprm 16996 2exp11 17019 2exp16 17020 prmlem1 17037 17prm 17046 139prm 17053 163prm 17054 317prm 17055 631prm 17056 1259lem1 17060 1259lem2 17061 1259lem3 17062 1259lem4 17063 2503lem1 17066 2503lem2 17067 2503lem3 17068 4001lem1 17070 4001lem2 17071 4001lem3 17072 4001lem4 17073 4001prm 17074 log2ublem3 26874 log2ub 26875 ppiub 27131 bclbnd 27207 bposlem4 27214 bposlem5 27215 bposlem6 27216 bposlem8 27218 bposlem9 27219 lgsdir2lem1 27252 2lgslem3c 27325 2lgsoddprmlem3d 27340 ex-fac 30413 fib6 34373 hgt750lem2 34619 12lcm5e60 41981 lcmineqlem23 42024 3lexlogpow5ineq1 42027 3lexlogpow5ineq5 42033 aks4d1p1p4 42044 aks4d1p1p6 42046 aks4d1p1p7 42047 sqn5i 42258 4t5e20 42264 sq5 42267 235t711 42278 ex-decpmul 42279 inductionexd 44128 ceil5half3 47325 fmtno5lem1 47538 fmtno5lem2 47539 257prm 47546 fmtno4prmfac193 47558 fmtno4nprmfac193 47559 flsqrt5 47579 139prmALT 47581 127prm 47584 5tcu2e40 47600 41prothprmlem2 47603 41prothprm 47604 2exp340mod341 47718 gbpart8 47753 gpg5order 48045 linevalexample 48381 ackval3012 48678 5m4e1 49783 |
| Copyright terms: Public domain | W3C validator |