| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 5cn | Structured version Visualization version GIF version | ||
| Description: The number 5 is a complex number. (Contributed by David A. Wheeler, 8-Dec-2018.) Reduce dependencies on axioms. (Revised by Steven Nguyen, 4-Oct-2022.) |
| Ref | Expression |
|---|---|
| 5cn | ⊢ 5 ∈ ℂ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-5 12259 | . 2 ⊢ 5 = (4 + 1) | |
| 2 | 4cn 12278 | . . 3 ⊢ 4 ∈ ℂ | |
| 3 | ax-1cn 11133 | . . 3 ⊢ 1 ∈ ℂ | |
| 4 | 2, 3 | addcli 11187 | . 2 ⊢ (4 + 1) ∈ ℂ |
| 5 | 1, 4 | eqeltri 2825 | 1 ⊢ 5 ∈ ℂ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 (class class class)co 7390 ℂcc 11073 1c1 11076 + caddc 11078 4c4 12250 5c5 12251 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-1cn 11133 ax-addcl 11135 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2722 df-clel 2804 df-2 12256 df-3 12257 df-4 12258 df-5 12259 |
| This theorem is referenced by: 6cn 12284 6m1e5 12319 5p2e7 12344 5p3e8 12345 5p4e9 12346 5p5e10 12727 5t2e10 12756 5recm6rec 12799 bpoly4 16032 ef01bndlem 16159 5ndvds3 16390 5ndvds6 16391 dec5dvds 17042 dec5nprm 17044 2exp11 17067 2exp16 17068 prmlem1 17085 17prm 17094 139prm 17101 163prm 17102 317prm 17103 631prm 17104 1259lem1 17108 1259lem2 17109 1259lem3 17110 1259lem4 17111 2503lem1 17114 2503lem2 17115 2503lem3 17116 4001lem1 17118 4001lem2 17119 4001lem3 17120 4001lem4 17121 4001prm 17122 log2ublem3 26865 log2ub 26866 ppiub 27122 bclbnd 27198 bposlem4 27205 bposlem5 27206 bposlem6 27207 bposlem8 27209 bposlem9 27210 lgsdir2lem1 27243 2lgslem3c 27316 2lgsoddprmlem3d 27331 ex-fac 30387 fib6 34404 hgt750lem2 34650 12lcm5e60 42003 lcmineqlem23 42046 3lexlogpow5ineq1 42049 3lexlogpow5ineq5 42055 aks4d1p1p4 42066 aks4d1p1p6 42068 aks4d1p1p7 42069 sqn5i 42280 4t5e20 42286 sq5 42289 235t711 42300 ex-decpmul 42301 inductionexd 44151 ceil5half3 47345 fmtno5lem1 47558 fmtno5lem2 47559 257prm 47566 fmtno4prmfac193 47578 fmtno4nprmfac193 47579 flsqrt5 47599 139prmALT 47601 127prm 47604 5tcu2e40 47620 41prothprmlem2 47623 41prothprm 47624 2exp340mod341 47738 gbpart8 47773 gpg5order 48055 linevalexample 48388 ackval3012 48685 5m4e1 49790 |
| Copyright terms: Public domain | W3C validator |