| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 5cn | Structured version Visualization version GIF version | ||
| Description: The number 5 is a complex number. (Contributed by David A. Wheeler, 8-Dec-2018.) Reduce dependencies on axioms. (Revised by Steven Nguyen, 4-Oct-2022.) |
| Ref | Expression |
|---|---|
| 5cn | ⊢ 5 ∈ ℂ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-5 12188 | . 2 ⊢ 5 = (4 + 1) | |
| 2 | 4cn 12207 | . . 3 ⊢ 4 ∈ ℂ | |
| 3 | ax-1cn 11061 | . . 3 ⊢ 1 ∈ ℂ | |
| 4 | 2, 3 | addcli 11115 | . 2 ⊢ (4 + 1) ∈ ℂ |
| 5 | 1, 4 | eqeltri 2827 | 1 ⊢ 5 ∈ ℂ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2111 (class class class)co 7346 ℂcc 11001 1c1 11004 + caddc 11006 4c4 12179 5c5 12180 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-1cn 11061 ax-addcl 11063 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-cleq 2723 df-clel 2806 df-2 12185 df-3 12186 df-4 12187 df-5 12188 |
| This theorem is referenced by: 6cn 12213 6m1e5 12248 5p2e7 12273 5p3e8 12274 5p4e9 12275 5p5e10 12656 5t2e10 12685 5recm6rec 12728 bpoly4 15963 ef01bndlem 16090 5ndvds3 16321 5ndvds6 16322 dec5dvds 16973 dec5nprm 16975 2exp11 16998 2exp16 16999 prmlem1 17016 17prm 17025 139prm 17032 163prm 17033 317prm 17034 631prm 17035 1259lem1 17039 1259lem2 17040 1259lem3 17041 1259lem4 17042 2503lem1 17045 2503lem2 17046 2503lem3 17047 4001lem1 17049 4001lem2 17050 4001lem3 17051 4001lem4 17052 4001prm 17053 log2ublem3 26883 log2ub 26884 ppiub 27140 bclbnd 27216 bposlem4 27223 bposlem5 27224 bposlem6 27225 bposlem8 27227 bposlem9 27228 lgsdir2lem1 27261 2lgslem3c 27334 2lgsoddprmlem3d 27349 ex-fac 30426 fib6 34414 hgt750lem2 34660 12lcm5e60 42040 lcmineqlem23 42083 3lexlogpow5ineq1 42086 3lexlogpow5ineq5 42092 aks4d1p1p4 42103 aks4d1p1p6 42105 aks4d1p1p7 42106 sqn5i 42317 4t5e20 42323 sq5 42326 235t711 42337 ex-decpmul 42338 inductionexd 44187 ceil5half3 47370 fmtno5lem1 47583 fmtno5lem2 47584 257prm 47591 fmtno4prmfac193 47603 fmtno4nprmfac193 47604 flsqrt5 47624 139prmALT 47626 127prm 47629 5tcu2e40 47645 41prothprmlem2 47648 41prothprm 47649 2exp340mod341 47763 gbpart8 47798 gpg5order 48090 linevalexample 48426 ackval3012 48723 5m4e1 49828 |
| Copyright terms: Public domain | W3C validator |