![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 5cn | Structured version Visualization version GIF version |
Description: The number 5 is a complex number. (Contributed by David A. Wheeler, 8-Dec-2018.) Reduce dependencies on axioms. (Revised by Steven Nguyen, 4-Oct-2022.) |
Ref | Expression |
---|---|
5cn | ⊢ 5 ∈ ℂ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-5 12300 | . 2 ⊢ 5 = (4 + 1) | |
2 | 4cn 12319 | . . 3 ⊢ 4 ∈ ℂ | |
3 | ax-1cn 11188 | . . 3 ⊢ 1 ∈ ℂ | |
4 | 2, 3 | addcli 11242 | . 2 ⊢ (4 + 1) ∈ ℂ |
5 | 1, 4 | eqeltri 2824 | 1 ⊢ 5 ∈ ℂ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2099 (class class class)co 7414 ℂcc 11128 1c1 11131 + caddc 11133 4c4 12291 5c5 12292 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2698 ax-1cn 11188 ax-addcl 11190 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1775 df-cleq 2719 df-clel 2805 df-2 12297 df-3 12298 df-4 12299 df-5 12300 |
This theorem is referenced by: 6cn 12325 6m1e5 12365 5p2e7 12390 5p3e8 12391 5p4e9 12392 5p5e10 12770 5t2e10 12799 5recm6rec 12843 bpoly4 16027 ef01bndlem 16152 dec5dvds 17024 dec5nprm 17026 2exp11 17050 2exp16 17051 prmlem1 17068 17prm 17077 139prm 17084 163prm 17085 317prm 17086 631prm 17087 1259lem1 17091 1259lem2 17092 1259lem3 17093 1259lem4 17094 2503lem1 17097 2503lem2 17098 2503lem3 17099 4001lem1 17101 4001lem2 17102 4001lem3 17103 4001lem4 17104 4001prm 17105 log2ublem3 26867 log2ub 26868 ppiub 27124 bclbnd 27200 bposlem4 27207 bposlem5 27208 bposlem6 27209 bposlem8 27211 bposlem9 27212 lgsdir2lem1 27245 2lgslem3c 27318 2lgsoddprmlem3d 27333 ex-fac 30248 fib6 33962 hgt750lem2 34220 12lcm5e60 41416 lcmineqlem23 41459 3lexlogpow5ineq1 41462 3lexlogpow5ineq5 41468 aks4d1p1p4 41479 aks4d1p1p6 41481 aks4d1p1p7 41482 sqn5i 41781 4t5e20 41787 235t711 41789 ex-decpmul 41790 inductionexd 43508 fmtno5lem1 46816 fmtno5lem2 46817 257prm 46824 fmtno4prmfac193 46836 fmtno4nprmfac193 46837 flsqrt5 46857 139prmALT 46859 127prm 46862 5tcu2e40 46878 41prothprmlem2 46881 41prothprm 46882 2exp340mod341 46996 gbpart8 47031 linevalexample 47386 ackval3012 47688 5m4e1 48153 |
Copyright terms: Public domain | W3C validator |