| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 5cn | Structured version Visualization version GIF version | ||
| Description: The number 5 is a complex number. (Contributed by David A. Wheeler, 8-Dec-2018.) Reduce dependencies on axioms. (Revised by Steven Nguyen, 4-Oct-2022.) |
| Ref | Expression |
|---|---|
| 5cn | ⊢ 5 ∈ ℂ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-5 12311 | . 2 ⊢ 5 = (4 + 1) | |
| 2 | 4cn 12330 | . . 3 ⊢ 4 ∈ ℂ | |
| 3 | ax-1cn 11192 | . . 3 ⊢ 1 ∈ ℂ | |
| 4 | 2, 3 | addcli 11246 | . 2 ⊢ (4 + 1) ∈ ℂ |
| 5 | 1, 4 | eqeltri 2831 | 1 ⊢ 5 ∈ ℂ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 (class class class)co 7410 ℂcc 11132 1c1 11135 + caddc 11137 4c4 12302 5c5 12303 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 ax-1cn 11192 ax-addcl 11194 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2728 df-clel 2810 df-2 12308 df-3 12309 df-4 12310 df-5 12311 |
| This theorem is referenced by: 6cn 12336 6m1e5 12376 5p2e7 12401 5p3e8 12402 5p4e9 12403 5p5e10 12784 5t2e10 12813 5recm6rec 12856 bpoly4 16080 ef01bndlem 16207 5ndvds3 16437 5ndvds6 16438 dec5dvds 17089 dec5nprm 17091 2exp11 17114 2exp16 17115 prmlem1 17132 17prm 17141 139prm 17148 163prm 17149 317prm 17150 631prm 17151 1259lem1 17155 1259lem2 17156 1259lem3 17157 1259lem4 17158 2503lem1 17161 2503lem2 17162 2503lem3 17163 4001lem1 17165 4001lem2 17166 4001lem3 17167 4001lem4 17168 4001prm 17169 log2ublem3 26915 log2ub 26916 ppiub 27172 bclbnd 27248 bposlem4 27255 bposlem5 27256 bposlem6 27257 bposlem8 27259 bposlem9 27260 lgsdir2lem1 27293 2lgslem3c 27366 2lgsoddprmlem3d 27381 ex-fac 30437 fib6 34443 hgt750lem2 34689 12lcm5e60 42026 lcmineqlem23 42069 3lexlogpow5ineq1 42072 3lexlogpow5ineq5 42078 aks4d1p1p4 42089 aks4d1p1p6 42091 aks4d1p1p7 42092 sqn5i 42302 4t5e20 42308 sq5 42310 235t711 42321 ex-decpmul 42322 inductionexd 44146 ceil5half3 47336 fmtno5lem1 47534 fmtno5lem2 47535 257prm 47542 fmtno4prmfac193 47554 fmtno4nprmfac193 47555 flsqrt5 47575 139prmALT 47577 127prm 47580 5tcu2e40 47596 41prothprmlem2 47599 41prothprm 47600 2exp340mod341 47714 gbpart8 47749 gpg5order 48031 linevalexample 48338 ackval3012 48639 5m4e1 49628 |
| Copyright terms: Public domain | W3C validator |