![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 5cn | Structured version Visualization version GIF version |
Description: The number 5 is a complex number. (Contributed by David A. Wheeler, 8-Dec-2018.) Reduce dependencies on axioms. (Revised by Steven Nguyen, 4-Oct-2022.) |
Ref | Expression |
---|---|
5cn | ⊢ 5 ∈ ℂ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-5 12278 | . 2 ⊢ 5 = (4 + 1) | |
2 | 4cn 12297 | . . 3 ⊢ 4 ∈ ℂ | |
3 | ax-1cn 11168 | . . 3 ⊢ 1 ∈ ℂ | |
4 | 2, 3 | addcli 11220 | . 2 ⊢ (4 + 1) ∈ ℂ |
5 | 1, 4 | eqeltri 2830 | 1 ⊢ 5 ∈ ℂ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2107 (class class class)co 7409 ℂcc 11108 1c1 11111 + caddc 11113 4c4 12269 5c5 12270 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 ax-1cn 11168 ax-addcl 11170 |
This theorem depends on definitions: df-bi 206 df-an 398 df-ex 1783 df-cleq 2725 df-clel 2811 df-2 12275 df-3 12276 df-4 12277 df-5 12278 |
This theorem is referenced by: 6cn 12303 6m1e5 12343 5p2e7 12368 5p3e8 12369 5p4e9 12370 5p5e10 12748 5t2e10 12777 5recm6rec 12821 bpoly4 16003 ef01bndlem 16127 dec5dvds 16997 dec5nprm 16999 2exp11 17023 2exp16 17024 prmlem1 17041 17prm 17050 139prm 17057 163prm 17058 317prm 17059 631prm 17060 1259lem1 17064 1259lem2 17065 1259lem3 17066 1259lem4 17067 2503lem1 17070 2503lem2 17071 2503lem3 17072 4001lem1 17074 4001lem2 17075 4001lem3 17076 4001lem4 17077 4001prm 17078 log2ublem3 26453 log2ub 26454 ppiub 26707 bclbnd 26783 bposlem4 26790 bposlem5 26791 bposlem6 26792 bposlem8 26794 bposlem9 26795 lgsdir2lem1 26828 2lgslem3c 26901 2lgsoddprmlem3d 26916 ex-fac 29704 fib6 33405 hgt750lem2 33664 12lcm5e60 40873 lcmineqlem23 40916 3lexlogpow5ineq1 40919 3lexlogpow5ineq5 40925 aks4d1p1p4 40936 aks4d1p1p6 40938 aks4d1p1p7 40939 sqn5i 41197 4t5e20 41203 235t711 41205 ex-decpmul 41206 inductionexd 42906 fmtno5lem1 46221 fmtno5lem2 46222 257prm 46229 fmtno4prmfac193 46241 fmtno4nprmfac193 46242 flsqrt5 46262 139prmALT 46264 127prm 46267 5tcu2e40 46283 41prothprmlem2 46286 41prothprm 46287 2exp340mod341 46401 gbpart8 46436 linevalexample 47076 ackval3012 47378 5m4e1 47844 |
Copyright terms: Public domain | W3C validator |