| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 5cn | Structured version Visualization version GIF version | ||
| Description: The number 5 is a complex number. (Contributed by David A. Wheeler, 8-Dec-2018.) Reduce dependencies on axioms. (Revised by Steven Nguyen, 4-Oct-2022.) |
| Ref | Expression |
|---|---|
| 5cn | ⊢ 5 ∈ ℂ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-5 12198 | . 2 ⊢ 5 = (4 + 1) | |
| 2 | 4cn 12217 | . . 3 ⊢ 4 ∈ ℂ | |
| 3 | ax-1cn 11071 | . . 3 ⊢ 1 ∈ ℂ | |
| 4 | 2, 3 | addcli 11125 | . 2 ⊢ (4 + 1) ∈ ℂ |
| 5 | 1, 4 | eqeltri 2829 | 1 ⊢ 5 ∈ ℂ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2113 (class class class)co 7352 ℂcc 11011 1c1 11014 + caddc 11016 4c4 12189 5c5 12190 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-1cn 11071 ax-addcl 11073 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-cleq 2725 df-clel 2808 df-2 12195 df-3 12196 df-4 12197 df-5 12198 |
| This theorem is referenced by: 6cn 12223 6m1e5 12258 5p2e7 12283 5p3e8 12284 5p4e9 12285 5p5e10 12665 5t2e10 12694 5recm6rec 12737 bpoly4 15968 ef01bndlem 16095 5ndvds3 16326 5ndvds6 16327 dec5dvds 16978 dec5nprm 16980 2exp11 17003 2exp16 17004 prmlem1 17021 17prm 17030 139prm 17037 163prm 17038 317prm 17039 631prm 17040 1259lem1 17044 1259lem2 17045 1259lem3 17046 1259lem4 17047 2503lem1 17050 2503lem2 17051 2503lem3 17052 4001lem1 17054 4001lem2 17055 4001lem3 17056 4001lem4 17057 4001prm 17058 log2ublem3 26886 log2ub 26887 ppiub 27143 bclbnd 27219 bposlem4 27226 bposlem5 27227 bposlem6 27228 bposlem8 27230 bposlem9 27231 lgsdir2lem1 27264 2lgslem3c 27337 2lgsoddprmlem3d 27352 ex-fac 30433 fib6 34440 hgt750lem2 34686 12lcm5e60 42121 lcmineqlem23 42164 3lexlogpow5ineq1 42167 3lexlogpow5ineq5 42173 aks4d1p1p4 42184 aks4d1p1p6 42186 aks4d1p1p7 42187 sqn5i 42403 4t5e20 42409 sq5 42412 235t711 42423 ex-decpmul 42424 inductionexd 44272 ceil5half3 47464 fmtno5lem1 47677 fmtno5lem2 47678 257prm 47685 fmtno4prmfac193 47697 fmtno4nprmfac193 47698 flsqrt5 47718 139prmALT 47720 127prm 47723 5tcu2e40 47739 41prothprmlem2 47742 41prothprm 47743 2exp340mod341 47857 gbpart8 47892 gpg5order 48184 linevalexample 48520 ackval3012 48817 5m4e1 49922 |
| Copyright terms: Public domain | W3C validator |