Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 5cn | Structured version Visualization version GIF version |
Description: The number 5 is a complex number. (Contributed by David A. Wheeler, 8-Dec-2018.) Reduce dependencies on axioms. (Revised by Steven Nguyen, 4-Oct-2022.) |
Ref | Expression |
---|---|
5cn | ⊢ 5 ∈ ℂ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-5 11944 | . 2 ⊢ 5 = (4 + 1) | |
2 | 4cn 11963 | . . 3 ⊢ 4 ∈ ℂ | |
3 | ax-1cn 10835 | . . 3 ⊢ 1 ∈ ℂ | |
4 | 2, 3 | addcli 10887 | . 2 ⊢ (4 + 1) ∈ ℂ |
5 | 1, 4 | eqeltri 2836 | 1 ⊢ 5 ∈ ℂ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2112 (class class class)co 7252 ℂcc 10775 1c1 10778 + caddc 10780 4c4 11935 5c5 11936 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2114 ax-9 2122 ax-ext 2710 ax-1cn 10835 ax-addcl 10837 |
This theorem depends on definitions: df-bi 210 df-an 400 df-ex 1788 df-cleq 2731 df-clel 2818 df-2 11941 df-3 11942 df-4 11943 df-5 11944 |
This theorem is referenced by: 6cn 11969 6m1e5 12009 5p2e7 12034 5p3e8 12035 5p4e9 12036 5p5e10 12412 5t2e10 12441 5recm6rec 12485 bpoly4 15672 ef01bndlem 15796 dec5dvds 16668 dec5nprm 16670 2exp11 16694 2exp16 16695 prmlem1 16712 17prm 16721 139prm 16728 163prm 16729 317prm 16730 631prm 16731 1259lem1 16735 1259lem2 16736 1259lem3 16737 1259lem4 16738 2503lem1 16741 2503lem2 16742 2503lem3 16743 4001lem1 16745 4001lem2 16746 4001lem3 16747 4001lem4 16748 4001prm 16749 log2ublem3 25978 log2ub 25979 ppiub 26232 bclbnd 26308 bposlem4 26315 bposlem5 26316 bposlem6 26317 bposlem8 26319 bposlem9 26320 lgsdir2lem1 26353 2lgslem3c 26426 2lgsoddprmlem3d 26441 ex-fac 28691 fib6 32248 hgt750lem2 32507 12lcm5e60 39923 lcmineqlem23 39966 3lexlogpow5ineq1 39969 3lexlogpow5ineq5 39975 aks4d1p1p4 39985 aks4d1p1p6 39987 aks4d1p1p7 39988 sqn5i 40206 235t711 40212 ex-decpmul 40213 inductionexd 41627 fmtno5lem1 44866 fmtno5lem2 44867 257prm 44874 fmtno4prmfac193 44886 fmtno4nprmfac193 44887 flsqrt5 44907 139prmALT 44909 127prm 44912 5tcu2e40 44928 41prothprmlem2 44931 41prothprm 44932 2exp340mod341 45046 gbpart8 45081 linevalexample 45597 ackval3012 45899 5m4e1 46360 |
Copyright terms: Public domain | W3C validator |