| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 5cn | Structured version Visualization version GIF version | ||
| Description: The number 5 is a complex number. (Contributed by David A. Wheeler, 8-Dec-2018.) Reduce dependencies on axioms. (Revised by Steven Nguyen, 4-Oct-2022.) |
| Ref | Expression |
|---|---|
| 5cn | ⊢ 5 ∈ ℂ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-5 12252 | . 2 ⊢ 5 = (4 + 1) | |
| 2 | 4cn 12271 | . . 3 ⊢ 4 ∈ ℂ | |
| 3 | ax-1cn 11126 | . . 3 ⊢ 1 ∈ ℂ | |
| 4 | 2, 3 | addcli 11180 | . 2 ⊢ (4 + 1) ∈ ℂ |
| 5 | 1, 4 | eqeltri 2824 | 1 ⊢ 5 ∈ ℂ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 (class class class)co 7387 ℂcc 11066 1c1 11069 + caddc 11071 4c4 12243 5c5 12244 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-1cn 11126 ax-addcl 11128 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2721 df-clel 2803 df-2 12249 df-3 12250 df-4 12251 df-5 12252 |
| This theorem is referenced by: 6cn 12277 6m1e5 12312 5p2e7 12337 5p3e8 12338 5p4e9 12339 5p5e10 12720 5t2e10 12749 5recm6rec 12792 bpoly4 16025 ef01bndlem 16152 5ndvds3 16383 5ndvds6 16384 dec5dvds 17035 dec5nprm 17037 2exp11 17060 2exp16 17061 prmlem1 17078 17prm 17087 139prm 17094 163prm 17095 317prm 17096 631prm 17097 1259lem1 17101 1259lem2 17102 1259lem3 17103 1259lem4 17104 2503lem1 17107 2503lem2 17108 2503lem3 17109 4001lem1 17111 4001lem2 17112 4001lem3 17113 4001lem4 17114 4001prm 17115 log2ublem3 26858 log2ub 26859 ppiub 27115 bclbnd 27191 bposlem4 27198 bposlem5 27199 bposlem6 27200 bposlem8 27202 bposlem9 27203 lgsdir2lem1 27236 2lgslem3c 27309 2lgsoddprmlem3d 27324 ex-fac 30380 fib6 34397 hgt750lem2 34643 12lcm5e60 41996 lcmineqlem23 42039 3lexlogpow5ineq1 42042 3lexlogpow5ineq5 42048 aks4d1p1p4 42059 aks4d1p1p6 42061 aks4d1p1p7 42062 sqn5i 42273 4t5e20 42279 sq5 42282 235t711 42293 ex-decpmul 42294 inductionexd 44144 ceil5half3 47341 fmtno5lem1 47554 fmtno5lem2 47555 257prm 47562 fmtno4prmfac193 47574 fmtno4nprmfac193 47575 flsqrt5 47595 139prmALT 47597 127prm 47600 5tcu2e40 47616 41prothprmlem2 47619 41prothprm 47620 2exp340mod341 47734 gbpart8 47769 gpg5order 48051 linevalexample 48384 ackval3012 48681 5m4e1 49786 |
| Copyright terms: Public domain | W3C validator |