MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  5p5e10 Structured version   Visualization version   GIF version

Theorem 5p5e10 11982
Description: 5 + 5 = 10. (Contributed by NM, 5-Feb-2007.) (Revised by Stanislas Polu, 7-Apr-2020.) (Revised by AV, 6-Sep-2021.)
Assertion
Ref Expression
5p5e10 (5 + 5) = 10

Proof of Theorem 5p5e10
StepHypRef Expression
1 df-5 11504 . . . 4 5 = (4 + 1)
21oveq2i 6985 . . 3 (5 + 5) = (5 + (4 + 1))
3 5cn 11528 . . . 4 5 ∈ ℂ
4 4cn 11524 . . . 4 4 ∈ ℂ
5 ax-1cn 10391 . . . 4 1 ∈ ℂ
63, 4, 5addassi 10448 . . 3 ((5 + 4) + 1) = (5 + (4 + 1))
72, 6eqtr4i 2798 . 2 (5 + 5) = ((5 + 4) + 1)
8 5p4e9 11603 . . 3 (5 + 4) = 9
98oveq1i 6984 . 2 ((5 + 4) + 1) = (9 + 1)
10 9p1e10 11911 . 2 (9 + 1) = 10
117, 9, 103eqtri 2799 1 (5 + 5) = 10
Colors of variables: wff setvar class
Syntax hints:   = wceq 1508  (class class class)co 6974  0cc0 10333  1c1 10334   + caddc 10336  4c4 11495  5c5 11496  9c9 11500  cdc 11909
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1759  ax-4 1773  ax-5 1870  ax-6 1929  ax-7 1966  ax-8 2053  ax-9 2060  ax-10 2080  ax-11 2094  ax-12 2107  ax-13 2302  ax-ext 2743  ax-sep 5056  ax-nul 5063  ax-pow 5115  ax-pr 5182  ax-un 7277  ax-resscn 10390  ax-1cn 10391  ax-icn 10392  ax-addcl 10393  ax-addrcl 10394  ax-mulcl 10395  ax-mulrcl 10396  ax-mulcom 10397  ax-addass 10398  ax-mulass 10399  ax-distr 10400  ax-i2m1 10401  ax-1ne0 10402  ax-1rid 10403  ax-rnegex 10404  ax-rrecex 10405  ax-cnre 10406  ax-pre-lttri 10407  ax-pre-lttrn 10408  ax-pre-ltadd 10409
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 835  df-3or 1070  df-3an 1071  df-tru 1511  df-ex 1744  df-nf 1748  df-sb 2017  df-mo 2548  df-eu 2585  df-clab 2752  df-cleq 2764  df-clel 2839  df-nfc 2911  df-ne 2961  df-nel 3067  df-ral 3086  df-rex 3087  df-reu 3088  df-rab 3090  df-v 3410  df-sbc 3675  df-csb 3780  df-dif 3825  df-un 3827  df-in 3829  df-ss 3836  df-pss 3838  df-nul 4173  df-if 4345  df-pw 4418  df-sn 4436  df-pr 4438  df-tp 4440  df-op 4442  df-uni 4709  df-iun 4790  df-br 4926  df-opab 4988  df-mpt 5005  df-tr 5027  df-id 5308  df-eprel 5313  df-po 5322  df-so 5323  df-fr 5362  df-we 5364  df-xp 5409  df-rel 5410  df-cnv 5411  df-co 5412  df-dm 5413  df-rn 5414  df-res 5415  df-ima 5416  df-pred 5983  df-ord 6029  df-on 6030  df-lim 6031  df-suc 6032  df-iota 6149  df-fun 6187  df-fn 6188  df-f 6189  df-f1 6190  df-fo 6191  df-f1o 6192  df-fv 6193  df-ov 6977  df-om 7395  df-wrecs 7748  df-recs 7810  df-rdg 7848  df-er 8087  df-en 8305  df-dom 8306  df-sdom 8307  df-pnf 10474  df-mnf 10475  df-ltxr 10477  df-nn 11438  df-2 11501  df-3 11502  df-4 11503  df-5 11504  df-6 11505  df-7 11506  df-8 11507  df-9 11508  df-dec 11910
This theorem is referenced by:  5t2e10  12011  5t4e20  12013  2503lem2  16325  log2ublem3  25243  threehalves  30361  hgt750lem2  31603  sqn5i  38641  235t711  38647  bgoldbtbndlem1  43372
  Copyright terms: Public domain W3C validator