MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  6t3e18 Structured version   Visualization version   GIF version

Theorem 6t3e18 12781
Description: 6 times 3 equals 18. (Contributed by Mario Carneiro, 19-Apr-2015.)
Assertion
Ref Expression
6t3e18 (6 · 3) = 18

Proof of Theorem 6t3e18
StepHypRef Expression
1 6nn0 12492 . 2 6 ∈ ℕ0
2 2nn0 12488 . 2 2 ∈ ℕ0
3 df-3 12275 . 2 3 = (2 + 1)
4 6t2e12 12780 . 2 (6 · 2) = 12
5 1nn0 12487 . . 3 1 ∈ ℕ0
6 eqid 2732 . . 3 12 = 12
7 6cn 12302 . . . 4 6 ∈ ℂ
8 2cn 12286 . . . 4 2 ∈ ℂ
9 6p2e8 12370 . . . 4 (6 + 2) = 8
107, 8, 9addcomli 11405 . . 3 (2 + 6) = 8
115, 2, 1, 6, 10decaddi 12736 . 2 (12 + 6) = 18
121, 2, 3, 4, 114t3lem 12773 1 (6 · 3) = 18
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  (class class class)co 7408  1c1 11110   · cmul 11114  2c2 12266  3c3 12267  6c6 12270  8c8 12272  cdc 12676
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7724  ax-resscn 11166  ax-1cn 11167  ax-icn 11168  ax-addcl 11169  ax-addrcl 11170  ax-mulcl 11171  ax-mulrcl 11172  ax-mulcom 11173  ax-addass 11174  ax-mulass 11175  ax-distr 11176  ax-i2m1 11177  ax-1ne0 11178  ax-1rid 11179  ax-rnegex 11180  ax-rrecex 11181  ax-cnre 11182  ax-pre-lttri 11183  ax-pre-lttrn 11184  ax-pre-ltadd 11185
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-ov 7411  df-om 7855  df-2nd 7975  df-frecs 8265  df-wrecs 8296  df-recs 8370  df-rdg 8409  df-er 8702  df-en 8939  df-dom 8940  df-sdom 8941  df-pnf 11249  df-mnf 11250  df-ltxr 11252  df-nn 12212  df-2 12274  df-3 12275  df-4 12276  df-5 12277  df-6 12278  df-7 12279  df-8 12280  df-9 12281  df-n0 12472  df-dec 12677
This theorem is referenced by:  6t4e24  12782  19prm  17050  83prm  17055  139prm  17056  1259lem2  17064  1259lem4  17066  ex-lcm  29708  fmtno5lem1  46211  fmtno5lem3  46213  fmtno4prmfac  46230  139prmALT  46254
  Copyright terms: Public domain W3C validator