MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  6t3e18 Structured version   Visualization version   GIF version

Theorem 6t3e18 12781
Description: 6 times 3 equals 18. (Contributed by Mario Carneiro, 19-Apr-2015.)
Assertion
Ref Expression
6t3e18 (6 · 3) = 18

Proof of Theorem 6t3e18
StepHypRef Expression
1 6nn0 12492 . 2 6 ∈ ℕ0
2 2nn0 12488 . 2 2 ∈ ℕ0
3 df-3 12275 . 2 3 = (2 + 1)
4 6t2e12 12780 . 2 (6 · 2) = 12
5 1nn0 12487 . . 3 1 ∈ ℕ0
6 eqid 2724 . . 3 12 = 12
7 6cn 12302 . . . 4 6 ∈ ℂ
8 2cn 12286 . . . 4 2 ∈ ℂ
9 6p2e8 12370 . . . 4 (6 + 2) = 8
107, 8, 9addcomli 11405 . . 3 (2 + 6) = 8
115, 2, 1, 6, 10decaddi 12736 . 2 (12 + 6) = 18
121, 2, 3, 4, 114t3lem 12773 1 (6 · 3) = 18
Colors of variables: wff setvar class
Syntax hints:   = wceq 1533  (class class class)co 7402  1c1 11108   · cmul 11112  2c2 12266  3c3 12267  6c6 12270  8c8 12272  cdc 12676
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-sep 5290  ax-nul 5297  ax-pow 5354  ax-pr 5418  ax-un 7719  ax-resscn 11164  ax-1cn 11165  ax-icn 11166  ax-addcl 11167  ax-addrcl 11168  ax-mulcl 11169  ax-mulrcl 11170  ax-mulcom 11171  ax-addass 11172  ax-mulass 11173  ax-distr 11174  ax-i2m1 11175  ax-1ne0 11176  ax-1rid 11177  ax-rnegex 11178  ax-rrecex 11179  ax-cnre 11180  ax-pre-lttri 11181  ax-pre-lttrn 11182  ax-pre-ltadd 11183
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-nel 3039  df-ral 3054  df-rex 3063  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3771  df-csb 3887  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-pss 3960  df-nul 4316  df-if 4522  df-pw 4597  df-sn 4622  df-pr 4624  df-op 4628  df-uni 4901  df-iun 4990  df-br 5140  df-opab 5202  df-mpt 5223  df-tr 5257  df-id 5565  df-eprel 5571  df-po 5579  df-so 5580  df-fr 5622  df-we 5624  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-pred 6291  df-ord 6358  df-on 6359  df-lim 6360  df-suc 6361  df-iota 6486  df-fun 6536  df-fn 6537  df-f 6538  df-f1 6539  df-fo 6540  df-f1o 6541  df-fv 6542  df-ov 7405  df-om 7850  df-2nd 7970  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-er 8700  df-en 8937  df-dom 8938  df-sdom 8939  df-pnf 11249  df-mnf 11250  df-ltxr 11252  df-nn 12212  df-2 12274  df-3 12275  df-4 12276  df-5 12277  df-6 12278  df-7 12279  df-8 12280  df-9 12281  df-n0 12472  df-dec 12677
This theorem is referenced by:  6t4e24  12782  19prm  17056  83prm  17061  139prm  17062  1259lem2  17070  1259lem4  17072  ex-lcm  30206  fmtno5lem1  46767  fmtno5lem3  46769  fmtno4prmfac  46786  139prmALT  46810
  Copyright terms: Public domain W3C validator