Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 6t3e18 | Structured version Visualization version GIF version |
Description: 6 times 3 equals 18. (Contributed by Mario Carneiro, 19-Apr-2015.) |
Ref | Expression |
---|---|
6t3e18 | ⊢ (6 · 3) = ;18 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 6nn0 11940 | . 2 ⊢ 6 ∈ ℕ0 | |
2 | 2nn0 11936 | . 2 ⊢ 2 ∈ ℕ0 | |
3 | df-3 11723 | . 2 ⊢ 3 = (2 + 1) | |
4 | 6t2e12 12226 | . 2 ⊢ (6 · 2) = ;12 | |
5 | 1nn0 11935 | . . 3 ⊢ 1 ∈ ℕ0 | |
6 | eqid 2759 | . . 3 ⊢ ;12 = ;12 | |
7 | 6cn 11750 | . . . 4 ⊢ 6 ∈ ℂ | |
8 | 2cn 11734 | . . . 4 ⊢ 2 ∈ ℂ | |
9 | 6p2e8 11818 | . . . 4 ⊢ (6 + 2) = 8 | |
10 | 7, 8, 9 | addcomli 10855 | . . 3 ⊢ (2 + 6) = 8 |
11 | 5, 2, 1, 6, 10 | decaddi 12182 | . 2 ⊢ (;12 + 6) = ;18 |
12 | 1, 2, 3, 4, 11 | 4t3lem 12219 | 1 ⊢ (6 · 3) = ;18 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 (class class class)co 7143 1c1 10561 · cmul 10565 2c2 11714 3c3 11715 6c6 11718 8c8 11720 ;cdc 12122 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2159 ax-12 2176 ax-ext 2730 ax-sep 5162 ax-nul 5169 ax-pow 5227 ax-pr 5291 ax-un 7452 ax-resscn 10617 ax-1cn 10618 ax-icn 10619 ax-addcl 10620 ax-addrcl 10621 ax-mulcl 10622 ax-mulrcl 10623 ax-mulcom 10624 ax-addass 10625 ax-mulass 10626 ax-distr 10627 ax-i2m1 10628 ax-1ne0 10629 ax-1rid 10630 ax-rnegex 10631 ax-rrecex 10632 ax-cnre 10633 ax-pre-lttri 10634 ax-pre-lttrn 10635 ax-pre-ltadd 10636 |
This theorem depends on definitions: df-bi 210 df-an 401 df-or 846 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2071 df-mo 2558 df-eu 2589 df-clab 2737 df-cleq 2751 df-clel 2831 df-nfc 2899 df-ne 2950 df-nel 3054 df-ral 3073 df-rex 3074 df-reu 3075 df-rab 3077 df-v 3409 df-sbc 3694 df-csb 3802 df-dif 3857 df-un 3859 df-in 3861 df-ss 3871 df-pss 3873 df-nul 4222 df-if 4414 df-pw 4489 df-sn 4516 df-pr 4518 df-tp 4520 df-op 4522 df-uni 4792 df-iun 4878 df-br 5026 df-opab 5088 df-mpt 5106 df-tr 5132 df-id 5423 df-eprel 5428 df-po 5436 df-so 5437 df-fr 5476 df-we 5478 df-xp 5523 df-rel 5524 df-cnv 5525 df-co 5526 df-dm 5527 df-rn 5528 df-res 5529 df-ima 5530 df-pred 6119 df-ord 6165 df-on 6166 df-lim 6167 df-suc 6168 df-iota 6287 df-fun 6330 df-fn 6331 df-f 6332 df-f1 6333 df-fo 6334 df-f1o 6335 df-fv 6336 df-ov 7146 df-om 7573 df-wrecs 7950 df-recs 8011 df-rdg 8049 df-er 8292 df-en 8521 df-dom 8522 df-sdom 8523 df-pnf 10700 df-mnf 10701 df-ltxr 10703 df-nn 11660 df-2 11722 df-3 11723 df-4 11724 df-5 11725 df-6 11726 df-7 11727 df-8 11728 df-9 11729 df-n0 11920 df-dec 12123 |
This theorem is referenced by: 6t4e24 12228 19prm 16494 83prm 16499 139prm 16500 1259lem2 16508 1259lem4 16510 ex-lcm 28327 fmtno5lem1 44423 fmtno5lem3 44425 fmtno4prmfac 44442 139prmALT 44466 |
Copyright terms: Public domain | W3C validator |