MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  6t3e18 Structured version   Visualization version   GIF version

Theorem 6t3e18 12811
Description: 6 times 3 equals 18. (Contributed by Mario Carneiro, 19-Apr-2015.)
Assertion
Ref Expression
6t3e18 (6 · 3) = 18

Proof of Theorem 6t3e18
StepHypRef Expression
1 6nn0 12520 . 2 6 ∈ ℕ0
2 2nn0 12516 . 2 2 ∈ ℕ0
3 df-3 12302 . 2 3 = (2 + 1)
4 6t2e12 12810 . 2 (6 · 2) = 12
5 1nn0 12515 . . 3 1 ∈ ℕ0
6 eqid 2735 . . 3 12 = 12
7 6cn 12329 . . . 4 6 ∈ ℂ
8 2cn 12313 . . . 4 2 ∈ ℂ
9 6p2e8 12397 . . . 4 (6 + 2) = 8
107, 8, 9addcomli 11425 . . 3 (2 + 6) = 8
115, 2, 1, 6, 10decaddi 12766 . 2 (12 + 6) = 18
121, 2, 3, 4, 114t3lem 12803 1 (6 · 3) = 18
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  (class class class)co 7403  1c1 11128   · cmul 11132  2c2 12293  3c3 12294  6c6 12297  8c8 12299  cdc 12706
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7727  ax-resscn 11184  ax-1cn 11185  ax-icn 11186  ax-addcl 11187  ax-addrcl 11188  ax-mulcl 11189  ax-mulrcl 11190  ax-mulcom 11191  ax-addass 11192  ax-mulass 11193  ax-distr 11194  ax-i2m1 11195  ax-1ne0 11196  ax-1rid 11197  ax-rnegex 11198  ax-rrecex 11199  ax-cnre 11200  ax-pre-lttri 11201  ax-pre-lttrn 11202  ax-pre-ltadd 11203
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-f1 6535  df-fo 6536  df-f1o 6537  df-fv 6538  df-ov 7406  df-om 7860  df-2nd 7987  df-frecs 8278  df-wrecs 8309  df-recs 8383  df-rdg 8422  df-er 8717  df-en 8958  df-dom 8959  df-sdom 8960  df-pnf 11269  df-mnf 11270  df-ltxr 11272  df-nn 12239  df-2 12301  df-3 12302  df-4 12303  df-5 12304  df-6 12305  df-7 12306  df-8 12307  df-9 12308  df-n0 12500  df-dec 12707
This theorem is referenced by:  6t4e24  12812  19prm  17135  83prm  17140  139prm  17141  1259lem2  17149  1259lem4  17151  ex-lcm  30385  fmtno5lem1  47515  fmtno5lem3  47517  fmtno4prmfac  47534  139prmALT  47558
  Copyright terms: Public domain W3C validator