| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 6t3e18 | Structured version Visualization version GIF version | ||
| Description: 6 times 3 equals 18. (Contributed by Mario Carneiro, 19-Apr-2015.) |
| Ref | Expression |
|---|---|
| 6t3e18 | ⊢ (6 · 3) = ;18 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 6nn0 12520 | . 2 ⊢ 6 ∈ ℕ0 | |
| 2 | 2nn0 12516 | . 2 ⊢ 2 ∈ ℕ0 | |
| 3 | df-3 12302 | . 2 ⊢ 3 = (2 + 1) | |
| 4 | 6t2e12 12810 | . 2 ⊢ (6 · 2) = ;12 | |
| 5 | 1nn0 12515 | . . 3 ⊢ 1 ∈ ℕ0 | |
| 6 | eqid 2735 | . . 3 ⊢ ;12 = ;12 | |
| 7 | 6cn 12329 | . . . 4 ⊢ 6 ∈ ℂ | |
| 8 | 2cn 12313 | . . . 4 ⊢ 2 ∈ ℂ | |
| 9 | 6p2e8 12397 | . . . 4 ⊢ (6 + 2) = 8 | |
| 10 | 7, 8, 9 | addcomli 11425 | . . 3 ⊢ (2 + 6) = 8 |
| 11 | 5, 2, 1, 6, 10 | decaddi 12766 | . 2 ⊢ (;12 + 6) = ;18 |
| 12 | 1, 2, 3, 4, 11 | 4t3lem 12803 | 1 ⊢ (6 · 3) = ;18 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 (class class class)co 7403 1c1 11128 · cmul 11132 2c2 12293 3c3 12294 6c6 12297 8c8 12299 ;cdc 12706 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7727 ax-resscn 11184 ax-1cn 11185 ax-icn 11186 ax-addcl 11187 ax-addrcl 11188 ax-mulcl 11189 ax-mulrcl 11190 ax-mulcom 11191 ax-addass 11192 ax-mulass 11193 ax-distr 11194 ax-i2m1 11195 ax-1ne0 11196 ax-1rid 11197 ax-rnegex 11198 ax-rrecex 11199 ax-cnre 11200 ax-pre-lttri 11201 ax-pre-lttrn 11202 ax-pre-ltadd 11203 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-f1 6535 df-fo 6536 df-f1o 6537 df-fv 6538 df-ov 7406 df-om 7860 df-2nd 7987 df-frecs 8278 df-wrecs 8309 df-recs 8383 df-rdg 8422 df-er 8717 df-en 8958 df-dom 8959 df-sdom 8960 df-pnf 11269 df-mnf 11270 df-ltxr 11272 df-nn 12239 df-2 12301 df-3 12302 df-4 12303 df-5 12304 df-6 12305 df-7 12306 df-8 12307 df-9 12308 df-n0 12500 df-dec 12707 |
| This theorem is referenced by: 6t4e24 12812 19prm 17135 83prm 17140 139prm 17141 1259lem2 17149 1259lem4 17151 ex-lcm 30385 fmtno5lem1 47515 fmtno5lem3 47517 fmtno4prmfac 47534 139prmALT 47558 |
| Copyright terms: Public domain | W3C validator |