| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 6t3e18 | Structured version Visualization version GIF version | ||
| Description: 6 times 3 equals 18. (Contributed by Mario Carneiro, 19-Apr-2015.) |
| Ref | Expression |
|---|---|
| 6t3e18 | ⊢ (6 · 3) = ;18 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 6nn0 12470 | . 2 ⊢ 6 ∈ ℕ0 | |
| 2 | 2nn0 12466 | . 2 ⊢ 2 ∈ ℕ0 | |
| 3 | df-3 12257 | . 2 ⊢ 3 = (2 + 1) | |
| 4 | 6t2e12 12760 | . 2 ⊢ (6 · 2) = ;12 | |
| 5 | 1nn0 12465 | . . 3 ⊢ 1 ∈ ℕ0 | |
| 6 | eqid 2730 | . . 3 ⊢ ;12 = ;12 | |
| 7 | 6cn 12284 | . . . 4 ⊢ 6 ∈ ℂ | |
| 8 | 2cn 12268 | . . . 4 ⊢ 2 ∈ ℂ | |
| 9 | 6p2e8 12347 | . . . 4 ⊢ (6 + 2) = 8 | |
| 10 | 7, 8, 9 | addcomli 11373 | . . 3 ⊢ (2 + 6) = 8 |
| 11 | 5, 2, 1, 6, 10 | decaddi 12716 | . 2 ⊢ (;12 + 6) = ;18 |
| 12 | 1, 2, 3, 4, 11 | 4t3lem 12753 | 1 ⊢ (6 · 3) = ;18 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 (class class class)co 7390 1c1 11076 · cmul 11080 2c2 12248 3c3 12249 6c6 12252 8c8 12254 ;cdc 12656 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-ov 7393 df-om 7846 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-pnf 11217 df-mnf 11218 df-ltxr 11220 df-nn 12194 df-2 12256 df-3 12257 df-4 12258 df-5 12259 df-6 12260 df-7 12261 df-8 12262 df-9 12263 df-n0 12450 df-dec 12657 |
| This theorem is referenced by: 6t4e24 12762 19prm 17095 83prm 17100 139prm 17101 1259lem2 17109 1259lem4 17111 ex-lcm 30394 fmtno5lem1 47558 fmtno5lem3 47560 fmtno4prmfac 47577 139prmALT 47601 |
| Copyright terms: Public domain | W3C validator |