Proof of Theorem fmtno5faclem3
Step | Hyp | Ref
| Expression |
1 | | 4nn0 12302 |
. . . . . . . . 9
⊢ 4 ∈
ℕ0 |
2 | | 0nn0 12298 |
. . . . . . . . 9
⊢ 0 ∈
ℕ0 |
3 | 1, 2 | deccl 12502 |
. . . . . . . 8
⊢ ;40 ∈
ℕ0 |
4 | | 2nn0 12300 |
. . . . . . . 8
⊢ 2 ∈
ℕ0 |
5 | 3, 4 | deccl 12502 |
. . . . . . 7
⊢ ;;402 ∈ ℕ0 |
6 | 5, 2 | deccl 12502 |
. . . . . 6
⊢ ;;;4020
∈ ℕ0 |
7 | 6, 4 | deccl 12502 |
. . . . 5
⊢ ;;;;40202 ∈
ℕ0 |
8 | | 5nn0 12303 |
. . . . 5
⊢ 5 ∈
ℕ0 |
9 | 7, 8 | deccl 12502 |
. . . 4
⊢ ;;;;;402025 ∈ ℕ0 |
10 | 9, 2 | deccl 12502 |
. . 3
⊢ ;;;;;;4020250 ∈ ℕ0 |
11 | 10, 4 | deccl 12502 |
. 2
⊢ ;;;;;;;40202502 ∈
ℕ0 |
12 | | 6nn0 12304 |
. . . . . . . 8
⊢ 6 ∈
ℕ0 |
13 | 4, 12 | deccl 12502 |
. . . . . . 7
⊢ ;26 ∈
ℕ0 |
14 | | 8nn0 12306 |
. . . . . . 7
⊢ 8 ∈
ℕ0 |
15 | 13, 14 | deccl 12502 |
. . . . . 6
⊢ ;;268 ∈ ℕ0 |
16 | 15, 2 | deccl 12502 |
. . . . 5
⊢ ;;;2680
∈ ℕ0 |
17 | | 1nn0 12299 |
. . . . 5
⊢ 1 ∈
ℕ0 |
18 | 16, 17 | deccl 12502 |
. . . 4
⊢ ;;;;26801 ∈
ℕ0 |
19 | 18, 12 | deccl 12502 |
. . 3
⊢ ;;;;;268016 ∈ ℕ0 |
20 | 19, 12 | deccl 12502 |
. 2
⊢ ;;;;;;2680166 ∈ ℕ0 |
21 | | eqid 2736 |
. 2
⊢ ;;;;;;;;402025020 = ;;;;;;;;402025020 |
22 | | eqid 2736 |
. 2
⊢ ;;;;;;;26801668 = ;;;;;;;26801668 |
23 | | eqid 2736 |
. . 3
⊢ ;;;;;;;40202502 = ;;;;;;;40202502 |
24 | | eqid 2736 |
. . 3
⊢ ;;;;;;2680166 = ;;;;;;2680166 |
25 | | eqid 2736 |
. . . 4
⊢ ;;;;;;4020250 = ;;;;;;4020250 |
26 | | eqid 2736 |
. . . 4
⊢ ;;;;;268016 = ;;;;;268016 |
27 | | eqid 2736 |
. . . . 5
⊢ ;;;;;402025 = ;;;;;402025 |
28 | | eqid 2736 |
. . . . 5
⊢ ;;;;26801 = ;;;;26801 |
29 | | eqid 2736 |
. . . . . 6
⊢ ;;;;40202 = ;;;;40202 |
30 | | eqid 2736 |
. . . . . 6
⊢ ;;;2680 =
;;;2680 |
31 | | eqid 2736 |
. . . . . . 7
⊢ ;;;4020 =
;;;4020 |
32 | | eqid 2736 |
. . . . . . 7
⊢ ;;268 = ;;268 |
33 | | eqid 2736 |
. . . . . . . 8
⊢ ;;402 = ;;402 |
34 | | eqid 2736 |
. . . . . . . 8
⊢ ;26 = ;26 |
35 | | eqid 2736 |
. . . . . . . . 9
⊢ ;40 = ;40 |
36 | | 2cn 12098 |
. . . . . . . . . 10
⊢ 2 ∈
ℂ |
37 | 36 | addid2i 11213 |
. . . . . . . . 9
⊢ (0 + 2) =
2 |
38 | 1, 2, 4, 35, 37 | decaddi 12547 |
. . . . . . . 8
⊢ (;40 + 2) = ;42 |
39 | | 6cn 12114 |
. . . . . . . . 9
⊢ 6 ∈
ℂ |
40 | | 6p2e8 12182 |
. . . . . . . . 9
⊢ (6 + 2) =
8 |
41 | 39, 36, 40 | addcomli 11217 |
. . . . . . . 8
⊢ (2 + 6) =
8 |
42 | 3, 4, 4, 12, 33, 34, 38, 41 | decadd 12541 |
. . . . . . 7
⊢ (;;402 + ;26) = ;;428 |
43 | | 8cn 12120 |
. . . . . . . 8
⊢ 8 ∈
ℂ |
44 | 43 | addid2i 11213 |
. . . . . . 7
⊢ (0 + 8) =
8 |
45 | 5, 2, 13, 14, 31, 32, 42, 44 | decadd 12541 |
. . . . . 6
⊢ (;;;4020 +
;;268) = ;;;4288 |
46 | 36 | addid1i 11212 |
. . . . . 6
⊢ (2 + 0) =
2 |
47 | 6, 4, 15, 2, 29, 30, 45, 46 | decadd 12541 |
. . . . 5
⊢ (;;;;40202 + ;;;2680) = ;;;;42882 |
48 | | 5p1e6 12170 |
. . . . 5
⊢ (5 + 1) =
6 |
49 | 7, 8, 16, 17, 27, 28, 47, 48 | decadd 12541 |
. . . 4
⊢ (;;;;;402025 + ;;;;26801) = ;;;;;428826 |
50 | 39 | addid2i 11213 |
. . . 4
⊢ (0 + 6) =
6 |
51 | 9, 2, 18, 12, 25, 26, 49, 50 | decadd 12541 |
. . 3
⊢ (;;;;;;4020250 + ;;;;;268016) = ;;;;;;4288266 |
52 | 10, 4, 19, 12, 23, 24, 51, 41 | decadd 12541 |
. 2
⊢ (;;;;;;;40202502 + ;;;;;;2680166) = ;;;;;;;42882668 |
53 | 11, 2, 20, 14, 21, 22, 52, 44 | decadd 12541 |
1
⊢ (;;;;;;;;402025020 + ;;;;;;;26801668) = ;;;;;;;;428826688 |