Proof of Theorem 4001lem4
| Step | Hyp | Ref
| Expression |
| 1 | | 2nn 12318 |
. . . 4
⊢ 2 ∈
ℕ |
| 2 | | 8nn0 12529 |
. . . . . 6
⊢ 8 ∈
ℕ0 |
| 3 | | 0nn0 12521 |
. . . . . 6
⊢ 0 ∈
ℕ0 |
| 4 | 2, 3 | deccl 12728 |
. . . . 5
⊢ ;80 ∈
ℕ0 |
| 5 | 4, 3 | deccl 12728 |
. . . 4
⊢ ;;800 ∈ ℕ0 |
| 6 | | nnexpcl 14097 |
. . . 4
⊢ ((2
∈ ℕ ∧ ;;800 ∈ ℕ0) →
(2↑;;800) ∈ ℕ) |
| 7 | 1, 5, 6 | mp2an 692 |
. . 3
⊢
(2↑;;800) ∈ ℕ |
| 8 | | nnm1nn0 12547 |
. . 3
⊢
((2↑;;800) ∈ ℕ →
((2↑;;800) − 1) ∈
ℕ0) |
| 9 | 7, 8 | ax-mp 5 |
. 2
⊢
((2↑;;800) − 1) ∈
ℕ0 |
| 10 | | 2nn0 12523 |
. . . . 5
⊢ 2 ∈
ℕ0 |
| 11 | | 3nn0 12524 |
. . . . 5
⊢ 3 ∈
ℕ0 |
| 12 | 10, 11 | deccl 12728 |
. . . 4
⊢ ;23 ∈
ℕ0 |
| 13 | | 1nn0 12522 |
. . . 4
⊢ 1 ∈
ℕ0 |
| 14 | 12, 13 | deccl 12728 |
. . 3
⊢ ;;231 ∈ ℕ0 |
| 15 | 14, 3 | deccl 12728 |
. 2
⊢ ;;;2310
∈ ℕ0 |
| 16 | | 4001prm.1 |
. . 3
⊢ 𝑁 = ;;;4001 |
| 17 | | 4nn0 12525 |
. . . . . 6
⊢ 4 ∈
ℕ0 |
| 18 | 17, 3 | deccl 12728 |
. . . . 5
⊢ ;40 ∈
ℕ0 |
| 19 | 18, 3 | deccl 12728 |
. . . 4
⊢ ;;400 ∈ ℕ0 |
| 20 | | 1nn 12256 |
. . . 4
⊢ 1 ∈
ℕ |
| 21 | 19, 20 | decnncl 12733 |
. . 3
⊢ ;;;4001
∈ ℕ |
| 22 | 16, 21 | eqeltri 2831 |
. 2
⊢ 𝑁 ∈ ℕ |
| 23 | 16 | 4001lem2 17166 |
. . 3
⊢
((2↑;;800) mod 𝑁) = (;;;2311 mod 𝑁) |
| 24 | | 0p1e1 12367 |
. . . 4
⊢ (0 + 1) =
1 |
| 25 | | eqid 2736 |
. . . 4
⊢ ;;;2310 =
;;;2310 |
| 26 | 14, 3, 24, 25 | decsuc 12744 |
. . 3
⊢ (;;;2310 +
1) = ;;;2311 |
| 27 | 22, 7, 13, 15, 23, 26 | modsubi 17097 |
. 2
⊢
(((2↑;;800) − 1) mod 𝑁) = (;;;2310 mod 𝑁) |
| 28 | | 6nn0 12527 |
. . . . . 6
⊢ 6 ∈
ℕ0 |
| 29 | 13, 28 | deccl 12728 |
. . . . 5
⊢ ;16 ∈
ℕ0 |
| 30 | | 9nn0 12530 |
. . . . 5
⊢ 9 ∈
ℕ0 |
| 31 | 29, 30 | deccl 12728 |
. . . 4
⊢ ;;169 ∈ ℕ0 |
| 32 | 31, 13 | deccl 12728 |
. . 3
⊢ ;;;1691
∈ ℕ0 |
| 33 | 28, 13 | deccl 12728 |
. . . . 5
⊢ ;61 ∈
ℕ0 |
| 34 | 33, 30 | deccl 12728 |
. . . 4
⊢ ;;619 ∈ ℕ0 |
| 35 | | 5nn0 12526 |
. . . . . . 7
⊢ 5 ∈
ℕ0 |
| 36 | 17, 35 | deccl 12728 |
. . . . . 6
⊢ ;45 ∈
ℕ0 |
| 37 | 36, 11 | deccl 12728 |
. . . . 5
⊢ ;;453 ∈ ℕ0 |
| 38 | 29, 28 | deccl 12728 |
. . . . . 6
⊢ ;;166 ∈ ℕ0 |
| 39 | 13, 10 | deccl 12728 |
. . . . . . . 8
⊢ ;12 ∈
ℕ0 |
| 40 | 39, 13 | deccl 12728 |
. . . . . . 7
⊢ ;;121 ∈ ℕ0 |
| 41 | 11, 13 | deccl 12728 |
. . . . . . . . 9
⊢ ;31 ∈
ℕ0 |
| 42 | 13, 17 | deccl 12728 |
. . . . . . . . . 10
⊢ ;14 ∈
ℕ0 |
| 43 | 42 | nn0zi 12622 |
. . . . . . . . . . . . 13
⊢ ;14 ∈ ℤ |
| 44 | 11 | nn0zi 12622 |
. . . . . . . . . . . . 13
⊢ 3 ∈
ℤ |
| 45 | | gcdcom 16537 |
. . . . . . . . . . . . 13
⊢ ((;14 ∈ ℤ ∧ 3 ∈
ℤ) → (;14 gcd 3) = (3
gcd ;14)) |
| 46 | 43, 44, 45 | mp2an 692 |
. . . . . . . . . . . 12
⊢ (;14 gcd 3) = (3 gcd ;14) |
| 47 | | 3nn 12324 |
. . . . . . . . . . . . . 14
⊢ 3 ∈
ℕ |
| 48 | | 4cn 12330 |
. . . . . . . . . . . . . . . 16
⊢ 4 ∈
ℂ |
| 49 | | 3cn 12326 |
. . . . . . . . . . . . . . . 16
⊢ 3 ∈
ℂ |
| 50 | | 4t3e12 12811 |
. . . . . . . . . . . . . . . 16
⊢ (4
· 3) = ;12 |
| 51 | 48, 49, 50 | mulcomli 11249 |
. . . . . . . . . . . . . . 15
⊢ (3
· 4) = ;12 |
| 52 | | 2p2e4 12380 |
. . . . . . . . . . . . . . 15
⊢ (2 + 2) =
4 |
| 53 | 13, 10, 10, 51, 52 | decaddi 12773 |
. . . . . . . . . . . . . 14
⊢ ((3
· 4) + 2) = ;14 |
| 54 | | 2lt3 12417 |
. . . . . . . . . . . . . 14
⊢ 2 <
3 |
| 55 | 47, 17, 1, 53, 54 | ndvdsi 16436 |
. . . . . . . . . . . . 13
⊢ ¬ 3
∥ ;14 |
| 56 | | 3prm 16718 |
. . . . . . . . . . . . . 14
⊢ 3 ∈
ℙ |
| 57 | | coprm 16735 |
. . . . . . . . . . . . . 14
⊢ ((3
∈ ℙ ∧ ;14 ∈
ℤ) → (¬ 3 ∥ ;14 ↔ (3 gcd ;14) = 1)) |
| 58 | 56, 43, 57 | mp2an 692 |
. . . . . . . . . . . . 13
⊢ (¬ 3
∥ ;14 ↔ (3 gcd ;14) = 1) |
| 59 | 55, 58 | mpbi 230 |
. . . . . . . . . . . 12
⊢ (3 gcd
;14) = 1 |
| 60 | 46, 59 | eqtri 2759 |
. . . . . . . . . . 11
⊢ (;14 gcd 3) = 1 |
| 61 | | eqid 2736 |
. . . . . . . . . . . 12
⊢ ;14 = ;14 |
| 62 | 11 | dec0h 12735 |
. . . . . . . . . . . 12
⊢ 3 = ;03 |
| 63 | | 2t1e2 12408 |
. . . . . . . . . . . . . 14
⊢ (2
· 1) = 2 |
| 64 | 63, 24 | oveq12i 7422 |
. . . . . . . . . . . . 13
⊢ ((2
· 1) + (0 + 1)) = (2 + 1) |
| 65 | | 2p1e3 12387 |
. . . . . . . . . . . . 13
⊢ (2 + 1) =
3 |
| 66 | 64, 65 | eqtri 2759 |
. . . . . . . . . . . 12
⊢ ((2
· 1) + (0 + 1)) = 3 |
| 67 | | 2cn 12320 |
. . . . . . . . . . . . . . 15
⊢ 2 ∈
ℂ |
| 68 | | 4t2e8 12413 |
. . . . . . . . . . . . . . 15
⊢ (4
· 2) = 8 |
| 69 | 48, 67, 68 | mulcomli 11249 |
. . . . . . . . . . . . . 14
⊢ (2
· 4) = 8 |
| 70 | 69 | oveq1i 7420 |
. . . . . . . . . . . . 13
⊢ ((2
· 4) + 3) = (8 + 3) |
| 71 | | 8p3e11 12794 |
. . . . . . . . . . . . 13
⊢ (8 + 3) =
;11 |
| 72 | 70, 71 | eqtri 2759 |
. . . . . . . . . . . 12
⊢ ((2
· 4) + 3) = ;11 |
| 73 | 13, 17, 3, 11, 61, 62, 10, 13, 13, 66, 72 | decma2c 12766 |
. . . . . . . . . . 11
⊢ ((2
· ;14) + 3) = ;31 |
| 74 | 10, 11, 42, 60, 73 | gcdi 17098 |
. . . . . . . . . 10
⊢ (;31 gcd ;14) = 1 |
| 75 | | eqid 2736 |
. . . . . . . . . . 11
⊢ ;31 = ;31 |
| 76 | 49 | mullidi 11245 |
. . . . . . . . . . . . 13
⊢ (1
· 3) = 3 |
| 77 | | ax-1cn 11192 |
. . . . . . . . . . . . . 14
⊢ 1 ∈
ℂ |
| 78 | 77 | addridi 11427 |
. . . . . . . . . . . . 13
⊢ (1 + 0) =
1 |
| 79 | 76, 78 | oveq12i 7422 |
. . . . . . . . . . . 12
⊢ ((1
· 3) + (1 + 0)) = (3 + 1) |
| 80 | | 3p1e4 12390 |
. . . . . . . . . . . 12
⊢ (3 + 1) =
4 |
| 81 | 79, 80 | eqtri 2759 |
. . . . . . . . . . 11
⊢ ((1
· 3) + (1 + 0)) = 4 |
| 82 | | 1t1e1 12407 |
. . . . . . . . . . . . 13
⊢ (1
· 1) = 1 |
| 83 | 82 | oveq1i 7420 |
. . . . . . . . . . . 12
⊢ ((1
· 1) + 4) = (1 + 4) |
| 84 | | 4p1e5 12391 |
. . . . . . . . . . . . 13
⊢ (4 + 1) =
5 |
| 85 | 48, 77, 84 | addcomli 11432 |
. . . . . . . . . . . 12
⊢ (1 + 4) =
5 |
| 86 | 35 | dec0h 12735 |
. . . . . . . . . . . 12
⊢ 5 = ;05 |
| 87 | 83, 85, 86 | 3eqtri 2763 |
. . . . . . . . . . 11
⊢ ((1
· 1) + 4) = ;05 |
| 88 | 11, 13, 13, 17, 75, 61, 13, 35, 3, 81, 87 | decma2c 12766 |
. . . . . . . . . 10
⊢ ((1
· ;31) + ;14) = ;45 |
| 89 | 13, 42, 41, 74, 88 | gcdi 17098 |
. . . . . . . . 9
⊢ (;45 gcd ;31) = 1 |
| 90 | | eqid 2736 |
. . . . . . . . . 10
⊢ ;45 = ;45 |
| 91 | 69, 80 | oveq12i 7422 |
. . . . . . . . . . 11
⊢ ((2
· 4) + (3 + 1)) = (8 + 4) |
| 92 | | 8p4e12 12795 |
. . . . . . . . . . 11
⊢ (8 + 4) =
;12 |
| 93 | 91, 92 | eqtri 2759 |
. . . . . . . . . 10
⊢ ((2
· 4) + (3 + 1)) = ;12 |
| 94 | | 5cn 12333 |
. . . . . . . . . . . 12
⊢ 5 ∈
ℂ |
| 95 | | 5t2e10 12813 |
. . . . . . . . . . . 12
⊢ (5
· 2) = ;10 |
| 96 | 94, 67, 95 | mulcomli 11249 |
. . . . . . . . . . 11
⊢ (2
· 5) = ;10 |
| 97 | 13, 3, 24, 96 | decsuc 12744 |
. . . . . . . . . 10
⊢ ((2
· 5) + 1) = ;11 |
| 98 | 17, 35, 11, 13, 90, 75, 10, 13, 13, 93, 97 | decma2c 12766 |
. . . . . . . . 9
⊢ ((2
· ;45) + ;31) = ;;121 |
| 99 | 10, 41, 36, 89, 98 | gcdi 17098 |
. . . . . . . 8
⊢ (;;121 gcd ;45) = 1 |
| 100 | | eqid 2736 |
. . . . . . . . 9
⊢ ;;121 = ;;121 |
| 101 | | eqid 2736 |
. . . . . . . . . 10
⊢ ;12 = ;12 |
| 102 | 48 | addridi 11427 |
. . . . . . . . . . 11
⊢ (4 + 0) =
4 |
| 103 | 17 | dec0h 12735 |
. . . . . . . . . . 11
⊢ 4 = ;04 |
| 104 | 102, 103 | eqtri 2759 |
. . . . . . . . . 10
⊢ (4 + 0) =
;04 |
| 105 | | 00id 11415 |
. . . . . . . . . . . 12
⊢ (0 + 0) =
0 |
| 106 | 82, 105 | oveq12i 7422 |
. . . . . . . . . . 11
⊢ ((1
· 1) + (0 + 0)) = (1 + 0) |
| 107 | 106, 78 | eqtri 2759 |
. . . . . . . . . 10
⊢ ((1
· 1) + (0 + 0)) = 1 |
| 108 | 67 | mullidi 11245 |
. . . . . . . . . . . 12
⊢ (1
· 2) = 2 |
| 109 | 108 | oveq1i 7420 |
. . . . . . . . . . 11
⊢ ((1
· 2) + 4) = (2 + 4) |
| 110 | | 4p2e6 12398 |
. . . . . . . . . . . 12
⊢ (4 + 2) =
6 |
| 111 | 48, 67, 110 | addcomli 11432 |
. . . . . . . . . . 11
⊢ (2 + 4) =
6 |
| 112 | 28 | dec0h 12735 |
. . . . . . . . . . 11
⊢ 6 = ;06 |
| 113 | 109, 111,
112 | 3eqtri 2763 |
. . . . . . . . . 10
⊢ ((1
· 2) + 4) = ;06 |
| 114 | 13, 10, 3, 17, 101, 104, 13, 28, 3, 107, 113 | decma2c 12766 |
. . . . . . . . 9
⊢ ((1
· ;12) + (4 + 0)) = ;16 |
| 115 | 82 | oveq1i 7420 |
. . . . . . . . . 10
⊢ ((1
· 1) + 5) = (1 + 5) |
| 116 | | 5p1e6 12392 |
. . . . . . . . . . 11
⊢ (5 + 1) =
6 |
| 117 | 94, 77, 116 | addcomli 11432 |
. . . . . . . . . 10
⊢ (1 + 5) =
6 |
| 118 | 115, 117,
112 | 3eqtri 2763 |
. . . . . . . . 9
⊢ ((1
· 1) + 5) = ;06 |
| 119 | 39, 13, 17, 35, 100, 90, 13, 28, 3, 114, 118 | decma2c 12766 |
. . . . . . . 8
⊢ ((1
· ;;121) + ;45) = ;;166 |
| 120 | 13, 36, 40, 99, 119 | gcdi 17098 |
. . . . . . 7
⊢ (;;166 gcd ;;121) =
1 |
| 121 | | eqid 2736 |
. . . . . . . 8
⊢ ;;166 = ;;166 |
| 122 | | eqid 2736 |
. . . . . . . . 9
⊢ ;16 = ;16 |
| 123 | 13, 10, 65, 101 | decsuc 12744 |
. . . . . . . . 9
⊢ (;12 + 1) = ;13 |
| 124 | | 1p1e2 12370 |
. . . . . . . . . . 11
⊢ (1 + 1) =
2 |
| 125 | 63, 124 | oveq12i 7422 |
. . . . . . . . . 10
⊢ ((2
· 1) + (1 + 1)) = (2 + 2) |
| 126 | 125, 52 | eqtri 2759 |
. . . . . . . . 9
⊢ ((2
· 1) + (1 + 1)) = 4 |
| 127 | | 6cn 12336 |
. . . . . . . . . . 11
⊢ 6 ∈
ℂ |
| 128 | | 6t2e12 12817 |
. . . . . . . . . . 11
⊢ (6
· 2) = ;12 |
| 129 | 127, 67, 128 | mulcomli 11249 |
. . . . . . . . . 10
⊢ (2
· 6) = ;12 |
| 130 | | 3p2e5 12396 |
. . . . . . . . . . 11
⊢ (3 + 2) =
5 |
| 131 | 49, 67, 130 | addcomli 11432 |
. . . . . . . . . 10
⊢ (2 + 3) =
5 |
| 132 | 13, 10, 11, 129, 131 | decaddi 12773 |
. . . . . . . . 9
⊢ ((2
· 6) + 3) = ;15 |
| 133 | 13, 28, 13, 11, 122, 123, 10, 35, 13, 126, 132 | decma2c 12766 |
. . . . . . . 8
⊢ ((2
· ;16) + (;12 + 1)) = ;45 |
| 134 | 13, 10, 65, 129 | decsuc 12744 |
. . . . . . . 8
⊢ ((2
· 6) + 1) = ;13 |
| 135 | 29, 28, 39, 13, 121, 100, 10, 11, 13, 133, 134 | decma2c 12766 |
. . . . . . 7
⊢ ((2
· ;;166) + ;;121) =
;;453 |
| 136 | 10, 40, 38, 120, 135 | gcdi 17098 |
. . . . . 6
⊢ (;;453 gcd ;;166) =
1 |
| 137 | | eqid 2736 |
. . . . . . 7
⊢ ;;453 = ;;453 |
| 138 | 29 | nn0cni 12518 |
. . . . . . . . 9
⊢ ;16 ∈ ℂ |
| 139 | 138 | addridi 11427 |
. . . . . . . 8
⊢ (;16 + 0) = ;16 |
| 140 | 48 | mullidi 11245 |
. . . . . . . . . 10
⊢ (1
· 4) = 4 |
| 141 | 140, 124 | oveq12i 7422 |
. . . . . . . . 9
⊢ ((1
· 4) + (1 + 1)) = (4 + 2) |
| 142 | 141, 110 | eqtri 2759 |
. . . . . . . 8
⊢ ((1
· 4) + (1 + 1)) = 6 |
| 143 | 94 | mullidi 11245 |
. . . . . . . . . 10
⊢ (1
· 5) = 5 |
| 144 | 143 | oveq1i 7420 |
. . . . . . . . 9
⊢ ((1
· 5) + 6) = (5 + 6) |
| 145 | | 6p5e11 12786 |
. . . . . . . . . 10
⊢ (6 + 5) =
;11 |
| 146 | 127, 94, 145 | addcomli 11432 |
. . . . . . . . 9
⊢ (5 + 6) =
;11 |
| 147 | 144, 146 | eqtri 2759 |
. . . . . . . 8
⊢ ((1
· 5) + 6) = ;11 |
| 148 | 17, 35, 13, 28, 90, 139, 13, 13, 13, 142, 147 | decma2c 12766 |
. . . . . . 7
⊢ ((1
· ;45) + (;16 + 0)) = ;61 |
| 149 | 76 | oveq1i 7420 |
. . . . . . . 8
⊢ ((1
· 3) + 6) = (3 + 6) |
| 150 | | 6p3e9 12405 |
. . . . . . . . 9
⊢ (6 + 3) =
9 |
| 151 | 127, 49, 150 | addcomli 11432 |
. . . . . . . 8
⊢ (3 + 6) =
9 |
| 152 | 30 | dec0h 12735 |
. . . . . . . 8
⊢ 9 = ;09 |
| 153 | 149, 151,
152 | 3eqtri 2763 |
. . . . . . 7
⊢ ((1
· 3) + 6) = ;09 |
| 154 | 36, 11, 29, 28, 137, 121, 13, 30, 3, 148, 153 | decma2c 12766 |
. . . . . 6
⊢ ((1
· ;;453) + ;;166) =
;;619 |
| 155 | 13, 38, 37, 136, 154 | gcdi 17098 |
. . . . 5
⊢ (;;619 gcd ;;453) =
1 |
| 156 | | eqid 2736 |
. . . . . 6
⊢ ;;619 = ;;619 |
| 157 | | 7nn0 12528 |
. . . . . . 7
⊢ 7 ∈
ℕ0 |
| 158 | | eqid 2736 |
. . . . . . 7
⊢ ;61 = ;61 |
| 159 | | 5p2e7 12401 |
. . . . . . . 8
⊢ (5 + 2) =
7 |
| 160 | 17, 35, 10, 90, 159 | decaddi 12773 |
. . . . . . 7
⊢ (;45 + 2) = ;47 |
| 161 | 102 | oveq2i 7421 |
. . . . . . . 8
⊢ ((2
· 6) + (4 + 0)) = ((2 · 6) + 4) |
| 162 | 13, 10, 17, 129, 111 | decaddi 12773 |
. . . . . . . 8
⊢ ((2
· 6) + 4) = ;16 |
| 163 | 161, 162 | eqtri 2759 |
. . . . . . 7
⊢ ((2
· 6) + (4 + 0)) = ;16 |
| 164 | 63 | oveq1i 7420 |
. . . . . . . 8
⊢ ((2
· 1) + 7) = (2 + 7) |
| 165 | | 7cn 12339 |
. . . . . . . . 9
⊢ 7 ∈
ℂ |
| 166 | | 7p2e9 12406 |
. . . . . . . . 9
⊢ (7 + 2) =
9 |
| 167 | 165, 67, 166 | addcomli 11432 |
. . . . . . . 8
⊢ (2 + 7) =
9 |
| 168 | 164, 167,
152 | 3eqtri 2763 |
. . . . . . 7
⊢ ((2
· 1) + 7) = ;09 |
| 169 | 28, 13, 17, 157, 158, 160, 10, 30, 3, 163, 168 | decma2c 12766 |
. . . . . 6
⊢ ((2
· ;61) + (;45 + 2)) = ;;169 |
| 170 | | 9cn 12345 |
. . . . . . . 8
⊢ 9 ∈
ℂ |
| 171 | | 9t2e18 12835 |
. . . . . . . 8
⊢ (9
· 2) = ;18 |
| 172 | 170, 67, 171 | mulcomli 11249 |
. . . . . . 7
⊢ (2
· 9) = ;18 |
| 173 | 13, 2, 11, 172, 124, 13, 71 | decaddci 12774 |
. . . . . 6
⊢ ((2
· 9) + 3) = ;21 |
| 174 | 33, 30, 36, 11, 156, 137, 10, 13, 10, 169, 173 | decma2c 12766 |
. . . . 5
⊢ ((2
· ;;619) + ;;453) =
;;;1691 |
| 175 | 10, 37, 34, 155, 174 | gcdi 17098 |
. . . 4
⊢ (;;;1691
gcd ;;619) = 1 |
| 176 | | eqid 2736 |
. . . . 5
⊢ ;;;1691 =
;;;1691 |
| 177 | | eqid 2736 |
. . . . . 6
⊢ ;;169 = ;;169 |
| 178 | 28, 13, 124, 158 | decsuc 12744 |
. . . . . 6
⊢ (;61 + 1) = ;62 |
| 179 | | 6p1e7 12393 |
. . . . . . . 8
⊢ (6 + 1) =
7 |
| 180 | 157 | dec0h 12735 |
. . . . . . . 8
⊢ 7 = ;07 |
| 181 | 179, 180 | eqtri 2759 |
. . . . . . 7
⊢ (6 + 1) =
;07 |
| 182 | 82, 24 | oveq12i 7422 |
. . . . . . . 8
⊢ ((1
· 1) + (0 + 1)) = (1 + 1) |
| 183 | 182, 124 | eqtri 2759 |
. . . . . . 7
⊢ ((1
· 1) + (0 + 1)) = 2 |
| 184 | 127 | mullidi 11245 |
. . . . . . . . 9
⊢ (1
· 6) = 6 |
| 185 | 184 | oveq1i 7420 |
. . . . . . . 8
⊢ ((1
· 6) + 7) = (6 + 7) |
| 186 | | 7p6e13 12791 |
. . . . . . . . 9
⊢ (7 + 6) =
;13 |
| 187 | 165, 127,
186 | addcomli 11432 |
. . . . . . . 8
⊢ (6 + 7) =
;13 |
| 188 | 185, 187 | eqtri 2759 |
. . . . . . 7
⊢ ((1
· 6) + 7) = ;13 |
| 189 | 13, 28, 3, 157, 122, 181, 13, 11, 13, 183, 188 | decma2c 12766 |
. . . . . 6
⊢ ((1
· ;16) + (6 + 1)) = ;23 |
| 190 | 170 | mullidi 11245 |
. . . . . . . 8
⊢ (1
· 9) = 9 |
| 191 | 190 | oveq1i 7420 |
. . . . . . 7
⊢ ((1
· 9) + 2) = (9 + 2) |
| 192 | | 9p2e11 12800 |
. . . . . . 7
⊢ (9 + 2) =
;11 |
| 193 | 191, 192 | eqtri 2759 |
. . . . . 6
⊢ ((1
· 9) + 2) = ;11 |
| 194 | 29, 30, 28, 10, 177, 178, 13, 13, 13, 189, 193 | decma2c 12766 |
. . . . 5
⊢ ((1
· ;;169) + (;61 + 1)) = ;;231 |
| 195 | 82 | oveq1i 7420 |
. . . . . 6
⊢ ((1
· 1) + 9) = (1 + 9) |
| 196 | | 9p1e10 12715 |
. . . . . . 7
⊢ (9 + 1) =
;10 |
| 197 | 170, 77, 196 | addcomli 11432 |
. . . . . 6
⊢ (1 + 9) =
;10 |
| 198 | 195, 197 | eqtri 2759 |
. . . . 5
⊢ ((1
· 1) + 9) = ;10 |
| 199 | 31, 13, 33, 30, 176, 156, 13, 3, 13, 194, 198 | decma2c 12766 |
. . . 4
⊢ ((1
· ;;;1691)
+ ;;619) = ;;;2310 |
| 200 | 13, 34, 32, 175, 199 | gcdi 17098 |
. . 3
⊢ (;;;2310
gcd ;;;1691)
= 1 |
| 201 | | eqid 2736 |
. . . . . 6
⊢ ;;231 = ;;231 |
| 202 | 31 | nn0cni 12518 |
. . . . . . 7
⊢ ;;169 ∈ ℂ |
| 203 | 202 | addridi 11427 |
. . . . . 6
⊢ (;;169 + 0) = ;;169 |
| 204 | | eqid 2736 |
. . . . . . 7
⊢ ;23 = ;23 |
| 205 | 13, 28, 179, 122 | decsuc 12744 |
. . . . . . 7
⊢ (;16 + 1) = ;17 |
| 206 | 108, 124 | oveq12i 7422 |
. . . . . . . 8
⊢ ((1
· 2) + (1 + 1)) = (2 + 2) |
| 207 | 206, 52 | eqtri 2759 |
. . . . . . 7
⊢ ((1
· 2) + (1 + 1)) = 4 |
| 208 | 76 | oveq1i 7420 |
. . . . . . . 8
⊢ ((1
· 3) + 7) = (3 + 7) |
| 209 | | 7p3e10 12788 |
. . . . . . . . 9
⊢ (7 + 3) =
;10 |
| 210 | 165, 49, 209 | addcomli 11432 |
. . . . . . . 8
⊢ (3 + 7) =
;10 |
| 211 | 208, 210 | eqtri 2759 |
. . . . . . 7
⊢ ((1
· 3) + 7) = ;10 |
| 212 | 10, 11, 13, 157, 204, 205, 13, 3, 13, 207, 211 | decma2c 12766 |
. . . . . 6
⊢ ((1
· ;23) + (;16 + 1)) = ;40 |
| 213 | 12, 13, 29, 30, 201, 203, 13, 3, 13, 212, 198 | decma2c 12766 |
. . . . 5
⊢ ((1
· ;;231) + (;;169 +
0)) = ;;400 |
| 214 | 77 | mul01i 11430 |
. . . . . . 7
⊢ (1
· 0) = 0 |
| 215 | 214 | oveq1i 7420 |
. . . . . 6
⊢ ((1
· 0) + 1) = (0 + 1) |
| 216 | 13 | dec0h 12735 |
. . . . . 6
⊢ 1 = ;01 |
| 217 | 215, 24, 216 | 3eqtri 2763 |
. . . . 5
⊢ ((1
· 0) + 1) = ;01 |
| 218 | 14, 3, 31, 13, 25, 176, 13, 13, 3, 213, 217 | decma2c 12766 |
. . . 4
⊢ ((1
· ;;;2310)
+ ;;;1691)
= ;;;4001 |
| 219 | 218, 16 | eqtr4i 2762 |
. . 3
⊢ ((1
· ;;;2310)
+ ;;;1691)
= 𝑁 |
| 220 | 13, 32, 15, 200, 219 | gcdi 17098 |
. 2
⊢ (𝑁 gcd ;;;2310) = 1 |
| 221 | 9, 15, 22, 27, 220 | gcdmodi 17099 |
1
⊢
(((2↑;;800) − 1) gcd 𝑁) = 1 |