Proof of Theorem 4001lem4
Step | Hyp | Ref
| Expression |
1 | | 2nn 12029 |
. . . 4
⊢ 2 ∈
ℕ |
2 | | 8nn0 12239 |
. . . . . 6
⊢ 8 ∈
ℕ0 |
3 | | 0nn0 12231 |
. . . . . 6
⊢ 0 ∈
ℕ0 |
4 | 2, 3 | deccl 12434 |
. . . . 5
⊢ ;80 ∈
ℕ0 |
5 | 4, 3 | deccl 12434 |
. . . 4
⊢ ;;800 ∈ ℕ0 |
6 | | nnexpcl 13776 |
. . . 4
⊢ ((2
∈ ℕ ∧ ;;800 ∈ ℕ0) →
(2↑;;800) ∈ ℕ) |
7 | 1, 5, 6 | mp2an 688 |
. . 3
⊢
(2↑;;800) ∈ ℕ |
8 | | nnm1nn0 12257 |
. . 3
⊢
((2↑;;800) ∈ ℕ →
((2↑;;800) − 1) ∈
ℕ0) |
9 | 7, 8 | ax-mp 5 |
. 2
⊢
((2↑;;800) − 1) ∈
ℕ0 |
10 | | 2nn0 12233 |
. . . . 5
⊢ 2 ∈
ℕ0 |
11 | | 3nn0 12234 |
. . . . 5
⊢ 3 ∈
ℕ0 |
12 | 10, 11 | deccl 12434 |
. . . 4
⊢ ;23 ∈
ℕ0 |
13 | | 1nn0 12232 |
. . . 4
⊢ 1 ∈
ℕ0 |
14 | 12, 13 | deccl 12434 |
. . 3
⊢ ;;231 ∈ ℕ0 |
15 | 14, 3 | deccl 12434 |
. 2
⊢ ;;;2310
∈ ℕ0 |
16 | | 4001prm.1 |
. . 3
⊢ 𝑁 = ;;;4001 |
17 | | 4nn0 12235 |
. . . . . 6
⊢ 4 ∈
ℕ0 |
18 | 17, 3 | deccl 12434 |
. . . . 5
⊢ ;40 ∈
ℕ0 |
19 | 18, 3 | deccl 12434 |
. . . 4
⊢ ;;400 ∈ ℕ0 |
20 | | 1nn 11967 |
. . . 4
⊢ 1 ∈
ℕ |
21 | 19, 20 | decnncl 12439 |
. . 3
⊢ ;;;4001
∈ ℕ |
22 | 16, 21 | eqeltri 2836 |
. 2
⊢ 𝑁 ∈ ℕ |
23 | 16 | 4001lem2 16824 |
. . 3
⊢
((2↑;;800) mod 𝑁) = (;;;2311 mod 𝑁) |
24 | | 0p1e1 12078 |
. . . 4
⊢ (0 + 1) =
1 |
25 | | eqid 2739 |
. . . 4
⊢ ;;;2310 =
;;;2310 |
26 | 14, 3, 24, 25 | decsuc 12450 |
. . 3
⊢ (;;;2310 +
1) = ;;;2311 |
27 | 22, 7, 13, 15, 23, 26 | modsubi 16754 |
. 2
⊢
(((2↑;;800) − 1) mod 𝑁) = (;;;2310 mod 𝑁) |
28 | | 6nn0 12237 |
. . . . . 6
⊢ 6 ∈
ℕ0 |
29 | 13, 28 | deccl 12434 |
. . . . 5
⊢ ;16 ∈
ℕ0 |
30 | | 9nn0 12240 |
. . . . 5
⊢ 9 ∈
ℕ0 |
31 | 29, 30 | deccl 12434 |
. . . 4
⊢ ;;169 ∈ ℕ0 |
32 | 31, 13 | deccl 12434 |
. . 3
⊢ ;;;1691
∈ ℕ0 |
33 | 28, 13 | deccl 12434 |
. . . . 5
⊢ ;61 ∈
ℕ0 |
34 | 33, 30 | deccl 12434 |
. . . 4
⊢ ;;619 ∈ ℕ0 |
35 | | 5nn0 12236 |
. . . . . . 7
⊢ 5 ∈
ℕ0 |
36 | 17, 35 | deccl 12434 |
. . . . . 6
⊢ ;45 ∈
ℕ0 |
37 | 36, 11 | deccl 12434 |
. . . . 5
⊢ ;;453 ∈ ℕ0 |
38 | 29, 28 | deccl 12434 |
. . . . . 6
⊢ ;;166 ∈ ℕ0 |
39 | 13, 10 | deccl 12434 |
. . . . . . . 8
⊢ ;12 ∈
ℕ0 |
40 | 39, 13 | deccl 12434 |
. . . . . . 7
⊢ ;;121 ∈ ℕ0 |
41 | 11, 13 | deccl 12434 |
. . . . . . . . 9
⊢ ;31 ∈
ℕ0 |
42 | 13, 17 | deccl 12434 |
. . . . . . . . . 10
⊢ ;14 ∈
ℕ0 |
43 | 42 | nn0zi 12328 |
. . . . . . . . . . . . 13
⊢ ;14 ∈ ℤ |
44 | 11 | nn0zi 12328 |
. . . . . . . . . . . . 13
⊢ 3 ∈
ℤ |
45 | | gcdcom 16201 |
. . . . . . . . . . . . 13
⊢ ((;14 ∈ ℤ ∧ 3 ∈
ℤ) → (;14 gcd 3) = (3
gcd ;14)) |
46 | 43, 44, 45 | mp2an 688 |
. . . . . . . . . . . 12
⊢ (;14 gcd 3) = (3 gcd ;14) |
47 | | 3nn 12035 |
. . . . . . . . . . . . . 14
⊢ 3 ∈
ℕ |
48 | | 4cn 12041 |
. . . . . . . . . . . . . . . 16
⊢ 4 ∈
ℂ |
49 | | 3cn 12037 |
. . . . . . . . . . . . . . . 16
⊢ 3 ∈
ℂ |
50 | | 4t3e12 12517 |
. . . . . . . . . . . . . . . 16
⊢ (4
· 3) = ;12 |
51 | 48, 49, 50 | mulcomli 10968 |
. . . . . . . . . . . . . . 15
⊢ (3
· 4) = ;12 |
52 | | 2p2e4 12091 |
. . . . . . . . . . . . . . 15
⊢ (2 + 2) =
4 |
53 | 13, 10, 10, 51, 52 | decaddi 12479 |
. . . . . . . . . . . . . 14
⊢ ((3
· 4) + 2) = ;14 |
54 | | 2lt3 12128 |
. . . . . . . . . . . . . 14
⊢ 2 <
3 |
55 | 47, 17, 1, 53, 54 | ndvdsi 16102 |
. . . . . . . . . . . . 13
⊢ ¬ 3
∥ ;14 |
56 | | 3prm 16380 |
. . . . . . . . . . . . . 14
⊢ 3 ∈
ℙ |
57 | | coprm 16397 |
. . . . . . . . . . . . . 14
⊢ ((3
∈ ℙ ∧ ;14 ∈
ℤ) → (¬ 3 ∥ ;14 ↔ (3 gcd ;14) = 1)) |
58 | 56, 43, 57 | mp2an 688 |
. . . . . . . . . . . . 13
⊢ (¬ 3
∥ ;14 ↔ (3 gcd ;14) = 1) |
59 | 55, 58 | mpbi 229 |
. . . . . . . . . . . 12
⊢ (3 gcd
;14) = 1 |
60 | 46, 59 | eqtri 2767 |
. . . . . . . . . . 11
⊢ (;14 gcd 3) = 1 |
61 | | eqid 2739 |
. . . . . . . . . . . 12
⊢ ;14 = ;14 |
62 | 11 | dec0h 12441 |
. . . . . . . . . . . 12
⊢ 3 = ;03 |
63 | | 2t1e2 12119 |
. . . . . . . . . . . . . 14
⊢ (2
· 1) = 2 |
64 | 63, 24 | oveq12i 7280 |
. . . . . . . . . . . . 13
⊢ ((2
· 1) + (0 + 1)) = (2 + 1) |
65 | | 2p1e3 12098 |
. . . . . . . . . . . . 13
⊢ (2 + 1) =
3 |
66 | 64, 65 | eqtri 2767 |
. . . . . . . . . . . 12
⊢ ((2
· 1) + (0 + 1)) = 3 |
67 | | 2cn 12031 |
. . . . . . . . . . . . . . 15
⊢ 2 ∈
ℂ |
68 | | 4t2e8 12124 |
. . . . . . . . . . . . . . 15
⊢ (4
· 2) = 8 |
69 | 48, 67, 68 | mulcomli 10968 |
. . . . . . . . . . . . . 14
⊢ (2
· 4) = 8 |
70 | 69 | oveq1i 7278 |
. . . . . . . . . . . . 13
⊢ ((2
· 4) + 3) = (8 + 3) |
71 | | 8p3e11 12500 |
. . . . . . . . . . . . 13
⊢ (8 + 3) =
;11 |
72 | 70, 71 | eqtri 2767 |
. . . . . . . . . . . 12
⊢ ((2
· 4) + 3) = ;11 |
73 | 13, 17, 3, 11, 61, 62, 10, 13, 13, 66, 72 | decma2c 12472 |
. . . . . . . . . . 11
⊢ ((2
· ;14) + 3) = ;31 |
74 | 10, 11, 42, 60, 73 | gcdi 16755 |
. . . . . . . . . 10
⊢ (;31 gcd ;14) = 1 |
75 | | eqid 2739 |
. . . . . . . . . . 11
⊢ ;31 = ;31 |
76 | 49 | mulid2i 10964 |
. . . . . . . . . . . . 13
⊢ (1
· 3) = 3 |
77 | | ax-1cn 10913 |
. . . . . . . . . . . . . 14
⊢ 1 ∈
ℂ |
78 | 77 | addid1i 11145 |
. . . . . . . . . . . . 13
⊢ (1 + 0) =
1 |
79 | 76, 78 | oveq12i 7280 |
. . . . . . . . . . . 12
⊢ ((1
· 3) + (1 + 0)) = (3 + 1) |
80 | | 3p1e4 12101 |
. . . . . . . . . . . 12
⊢ (3 + 1) =
4 |
81 | 79, 80 | eqtri 2767 |
. . . . . . . . . . 11
⊢ ((1
· 3) + (1 + 0)) = 4 |
82 | | 1t1e1 12118 |
. . . . . . . . . . . . 13
⊢ (1
· 1) = 1 |
83 | 82 | oveq1i 7278 |
. . . . . . . . . . . 12
⊢ ((1
· 1) + 4) = (1 + 4) |
84 | | 4p1e5 12102 |
. . . . . . . . . . . . 13
⊢ (4 + 1) =
5 |
85 | 48, 77, 84 | addcomli 11150 |
. . . . . . . . . . . 12
⊢ (1 + 4) =
5 |
86 | 35 | dec0h 12441 |
. . . . . . . . . . . 12
⊢ 5 = ;05 |
87 | 83, 85, 86 | 3eqtri 2771 |
. . . . . . . . . . 11
⊢ ((1
· 1) + 4) = ;05 |
88 | 11, 13, 13, 17, 75, 61, 13, 35, 3, 81, 87 | decma2c 12472 |
. . . . . . . . . 10
⊢ ((1
· ;31) + ;14) = ;45 |
89 | 13, 42, 41, 74, 88 | gcdi 16755 |
. . . . . . . . 9
⊢ (;45 gcd ;31) = 1 |
90 | | eqid 2739 |
. . . . . . . . . 10
⊢ ;45 = ;45 |
91 | 69, 80 | oveq12i 7280 |
. . . . . . . . . . 11
⊢ ((2
· 4) + (3 + 1)) = (8 + 4) |
92 | | 8p4e12 12501 |
. . . . . . . . . . 11
⊢ (8 + 4) =
;12 |
93 | 91, 92 | eqtri 2767 |
. . . . . . . . . 10
⊢ ((2
· 4) + (3 + 1)) = ;12 |
94 | | 5cn 12044 |
. . . . . . . . . . . 12
⊢ 5 ∈
ℂ |
95 | | 5t2e10 12519 |
. . . . . . . . . . . 12
⊢ (5
· 2) = ;10 |
96 | 94, 67, 95 | mulcomli 10968 |
. . . . . . . . . . 11
⊢ (2
· 5) = ;10 |
97 | 13, 3, 24, 96 | decsuc 12450 |
. . . . . . . . . 10
⊢ ((2
· 5) + 1) = ;11 |
98 | 17, 35, 11, 13, 90, 75, 10, 13, 13, 93, 97 | decma2c 12472 |
. . . . . . . . 9
⊢ ((2
· ;45) + ;31) = ;;121 |
99 | 10, 41, 36, 89, 98 | gcdi 16755 |
. . . . . . . 8
⊢ (;;121 gcd ;45) = 1 |
100 | | eqid 2739 |
. . . . . . . . 9
⊢ ;;121 = ;;121 |
101 | | eqid 2739 |
. . . . . . . . . 10
⊢ ;12 = ;12 |
102 | 48 | addid1i 11145 |
. . . . . . . . . . 11
⊢ (4 + 0) =
4 |
103 | 17 | dec0h 12441 |
. . . . . . . . . . 11
⊢ 4 = ;04 |
104 | 102, 103 | eqtri 2767 |
. . . . . . . . . 10
⊢ (4 + 0) =
;04 |
105 | | 00id 11133 |
. . . . . . . . . . . 12
⊢ (0 + 0) =
0 |
106 | 82, 105 | oveq12i 7280 |
. . . . . . . . . . 11
⊢ ((1
· 1) + (0 + 0)) = (1 + 0) |
107 | 106, 78 | eqtri 2767 |
. . . . . . . . . 10
⊢ ((1
· 1) + (0 + 0)) = 1 |
108 | 67 | mulid2i 10964 |
. . . . . . . . . . . 12
⊢ (1
· 2) = 2 |
109 | 108 | oveq1i 7278 |
. . . . . . . . . . 11
⊢ ((1
· 2) + 4) = (2 + 4) |
110 | | 4p2e6 12109 |
. . . . . . . . . . . 12
⊢ (4 + 2) =
6 |
111 | 48, 67, 110 | addcomli 11150 |
. . . . . . . . . . 11
⊢ (2 + 4) =
6 |
112 | 28 | dec0h 12441 |
. . . . . . . . . . 11
⊢ 6 = ;06 |
113 | 109, 111,
112 | 3eqtri 2771 |
. . . . . . . . . 10
⊢ ((1
· 2) + 4) = ;06 |
114 | 13, 10, 3, 17, 101, 104, 13, 28, 3, 107, 113 | decma2c 12472 |
. . . . . . . . 9
⊢ ((1
· ;12) + (4 + 0)) = ;16 |
115 | 82 | oveq1i 7278 |
. . . . . . . . . 10
⊢ ((1
· 1) + 5) = (1 + 5) |
116 | | 5p1e6 12103 |
. . . . . . . . . . 11
⊢ (5 + 1) =
6 |
117 | 94, 77, 116 | addcomli 11150 |
. . . . . . . . . 10
⊢ (1 + 5) =
6 |
118 | 115, 117,
112 | 3eqtri 2771 |
. . . . . . . . 9
⊢ ((1
· 1) + 5) = ;06 |
119 | 39, 13, 17, 35, 100, 90, 13, 28, 3, 114, 118 | decma2c 12472 |
. . . . . . . 8
⊢ ((1
· ;;121) + ;45) = ;;166 |
120 | 13, 36, 40, 99, 119 | gcdi 16755 |
. . . . . . 7
⊢ (;;166 gcd ;;121) =
1 |
121 | | eqid 2739 |
. . . . . . . 8
⊢ ;;166 = ;;166 |
122 | | eqid 2739 |
. . . . . . . . 9
⊢ ;16 = ;16 |
123 | 13, 10, 65, 101 | decsuc 12450 |
. . . . . . . . 9
⊢ (;12 + 1) = ;13 |
124 | | 1p1e2 12081 |
. . . . . . . . . . 11
⊢ (1 + 1) =
2 |
125 | 63, 124 | oveq12i 7280 |
. . . . . . . . . 10
⊢ ((2
· 1) + (1 + 1)) = (2 + 2) |
126 | 125, 52 | eqtri 2767 |
. . . . . . . . 9
⊢ ((2
· 1) + (1 + 1)) = 4 |
127 | | 6cn 12047 |
. . . . . . . . . . 11
⊢ 6 ∈
ℂ |
128 | | 6t2e12 12523 |
. . . . . . . . . . 11
⊢ (6
· 2) = ;12 |
129 | 127, 67, 128 | mulcomli 10968 |
. . . . . . . . . 10
⊢ (2
· 6) = ;12 |
130 | | 3p2e5 12107 |
. . . . . . . . . . 11
⊢ (3 + 2) =
5 |
131 | 49, 67, 130 | addcomli 11150 |
. . . . . . . . . 10
⊢ (2 + 3) =
5 |
132 | 13, 10, 11, 129, 131 | decaddi 12479 |
. . . . . . . . 9
⊢ ((2
· 6) + 3) = ;15 |
133 | 13, 28, 13, 11, 122, 123, 10, 35, 13, 126, 132 | decma2c 12472 |
. . . . . . . 8
⊢ ((2
· ;16) + (;12 + 1)) = ;45 |
134 | 13, 10, 65, 129 | decsuc 12450 |
. . . . . . . 8
⊢ ((2
· 6) + 1) = ;13 |
135 | 29, 28, 39, 13, 121, 100, 10, 11, 13, 133, 134 | decma2c 12472 |
. . . . . . 7
⊢ ((2
· ;;166) + ;;121) =
;;453 |
136 | 10, 40, 38, 120, 135 | gcdi 16755 |
. . . . . 6
⊢ (;;453 gcd ;;166) =
1 |
137 | | eqid 2739 |
. . . . . . 7
⊢ ;;453 = ;;453 |
138 | 29 | nn0cni 12228 |
. . . . . . . . 9
⊢ ;16 ∈ ℂ |
139 | 138 | addid1i 11145 |
. . . . . . . 8
⊢ (;16 + 0) = ;16 |
140 | 48 | mulid2i 10964 |
. . . . . . . . . 10
⊢ (1
· 4) = 4 |
141 | 140, 124 | oveq12i 7280 |
. . . . . . . . 9
⊢ ((1
· 4) + (1 + 1)) = (4 + 2) |
142 | 141, 110 | eqtri 2767 |
. . . . . . . 8
⊢ ((1
· 4) + (1 + 1)) = 6 |
143 | 94 | mulid2i 10964 |
. . . . . . . . . 10
⊢ (1
· 5) = 5 |
144 | 143 | oveq1i 7278 |
. . . . . . . . 9
⊢ ((1
· 5) + 6) = (5 + 6) |
145 | | 6p5e11 12492 |
. . . . . . . . . 10
⊢ (6 + 5) =
;11 |
146 | 127, 94, 145 | addcomli 11150 |
. . . . . . . . 9
⊢ (5 + 6) =
;11 |
147 | 144, 146 | eqtri 2767 |
. . . . . . . 8
⊢ ((1
· 5) + 6) = ;11 |
148 | 17, 35, 13, 28, 90, 139, 13, 13, 13, 142, 147 | decma2c 12472 |
. . . . . . 7
⊢ ((1
· ;45) + (;16 + 0)) = ;61 |
149 | 76 | oveq1i 7278 |
. . . . . . . 8
⊢ ((1
· 3) + 6) = (3 + 6) |
150 | | 6p3e9 12116 |
. . . . . . . . 9
⊢ (6 + 3) =
9 |
151 | 127, 49, 150 | addcomli 11150 |
. . . . . . . 8
⊢ (3 + 6) =
9 |
152 | 30 | dec0h 12441 |
. . . . . . . 8
⊢ 9 = ;09 |
153 | 149, 151,
152 | 3eqtri 2771 |
. . . . . . 7
⊢ ((1
· 3) + 6) = ;09 |
154 | 36, 11, 29, 28, 137, 121, 13, 30, 3, 148, 153 | decma2c 12472 |
. . . . . 6
⊢ ((1
· ;;453) + ;;166) =
;;619 |
155 | 13, 38, 37, 136, 154 | gcdi 16755 |
. . . . 5
⊢ (;;619 gcd ;;453) =
1 |
156 | | eqid 2739 |
. . . . . 6
⊢ ;;619 = ;;619 |
157 | | 7nn0 12238 |
. . . . . . 7
⊢ 7 ∈
ℕ0 |
158 | | eqid 2739 |
. . . . . . 7
⊢ ;61 = ;61 |
159 | | 5p2e7 12112 |
. . . . . . . 8
⊢ (5 + 2) =
7 |
160 | 17, 35, 10, 90, 159 | decaddi 12479 |
. . . . . . 7
⊢ (;45 + 2) = ;47 |
161 | 102 | oveq2i 7279 |
. . . . . . . 8
⊢ ((2
· 6) + (4 + 0)) = ((2 · 6) + 4) |
162 | 13, 10, 17, 129, 111 | decaddi 12479 |
. . . . . . . 8
⊢ ((2
· 6) + 4) = ;16 |
163 | 161, 162 | eqtri 2767 |
. . . . . . 7
⊢ ((2
· 6) + (4 + 0)) = ;16 |
164 | 63 | oveq1i 7278 |
. . . . . . . 8
⊢ ((2
· 1) + 7) = (2 + 7) |
165 | | 7cn 12050 |
. . . . . . . . 9
⊢ 7 ∈
ℂ |
166 | | 7p2e9 12117 |
. . . . . . . . 9
⊢ (7 + 2) =
9 |
167 | 165, 67, 166 | addcomli 11150 |
. . . . . . . 8
⊢ (2 + 7) =
9 |
168 | 164, 167,
152 | 3eqtri 2771 |
. . . . . . 7
⊢ ((2
· 1) + 7) = ;09 |
169 | 28, 13, 17, 157, 158, 160, 10, 30, 3, 163, 168 | decma2c 12472 |
. . . . . 6
⊢ ((2
· ;61) + (;45 + 2)) = ;;169 |
170 | | 9cn 12056 |
. . . . . . . 8
⊢ 9 ∈
ℂ |
171 | | 9t2e18 12541 |
. . . . . . . 8
⊢ (9
· 2) = ;18 |
172 | 170, 67, 171 | mulcomli 10968 |
. . . . . . 7
⊢ (2
· 9) = ;18 |
173 | 13, 2, 11, 172, 124, 13, 71 | decaddci 12480 |
. . . . . 6
⊢ ((2
· 9) + 3) = ;21 |
174 | 33, 30, 36, 11, 156, 137, 10, 13, 10, 169, 173 | decma2c 12472 |
. . . . 5
⊢ ((2
· ;;619) + ;;453) =
;;;1691 |
175 | 10, 37, 34, 155, 174 | gcdi 16755 |
. . . 4
⊢ (;;;1691
gcd ;;619) = 1 |
176 | | eqid 2739 |
. . . . 5
⊢ ;;;1691 =
;;;1691 |
177 | | eqid 2739 |
. . . . . 6
⊢ ;;169 = ;;169 |
178 | 28, 13, 124, 158 | decsuc 12450 |
. . . . . 6
⊢ (;61 + 1) = ;62 |
179 | | 6p1e7 12104 |
. . . . . . . 8
⊢ (6 + 1) =
7 |
180 | 157 | dec0h 12441 |
. . . . . . . 8
⊢ 7 = ;07 |
181 | 179, 180 | eqtri 2767 |
. . . . . . 7
⊢ (6 + 1) =
;07 |
182 | 82, 24 | oveq12i 7280 |
. . . . . . . 8
⊢ ((1
· 1) + (0 + 1)) = (1 + 1) |
183 | 182, 124 | eqtri 2767 |
. . . . . . 7
⊢ ((1
· 1) + (0 + 1)) = 2 |
184 | 127 | mulid2i 10964 |
. . . . . . . . 9
⊢ (1
· 6) = 6 |
185 | 184 | oveq1i 7278 |
. . . . . . . 8
⊢ ((1
· 6) + 7) = (6 + 7) |
186 | | 7p6e13 12497 |
. . . . . . . . 9
⊢ (7 + 6) =
;13 |
187 | 165, 127,
186 | addcomli 11150 |
. . . . . . . 8
⊢ (6 + 7) =
;13 |
188 | 185, 187 | eqtri 2767 |
. . . . . . 7
⊢ ((1
· 6) + 7) = ;13 |
189 | 13, 28, 3, 157, 122, 181, 13, 11, 13, 183, 188 | decma2c 12472 |
. . . . . 6
⊢ ((1
· ;16) + (6 + 1)) = ;23 |
190 | 170 | mulid2i 10964 |
. . . . . . . 8
⊢ (1
· 9) = 9 |
191 | 190 | oveq1i 7278 |
. . . . . . 7
⊢ ((1
· 9) + 2) = (9 + 2) |
192 | | 9p2e11 12506 |
. . . . . . 7
⊢ (9 + 2) =
;11 |
193 | 191, 192 | eqtri 2767 |
. . . . . 6
⊢ ((1
· 9) + 2) = ;11 |
194 | 29, 30, 28, 10, 177, 178, 13, 13, 13, 189, 193 | decma2c 12472 |
. . . . 5
⊢ ((1
· ;;169) + (;61 + 1)) = ;;231 |
195 | 82 | oveq1i 7278 |
. . . . . 6
⊢ ((1
· 1) + 9) = (1 + 9) |
196 | | 9p1e10 12421 |
. . . . . . 7
⊢ (9 + 1) =
;10 |
197 | 170, 77, 196 | addcomli 11150 |
. . . . . 6
⊢ (1 + 9) =
;10 |
198 | 195, 197 | eqtri 2767 |
. . . . 5
⊢ ((1
· 1) + 9) = ;10 |
199 | 31, 13, 33, 30, 176, 156, 13, 3, 13, 194, 198 | decma2c 12472 |
. . . 4
⊢ ((1
· ;;;1691)
+ ;;619) = ;;;2310 |
200 | 13, 34, 32, 175, 199 | gcdi 16755 |
. . 3
⊢ (;;;2310
gcd ;;;1691)
= 1 |
201 | | eqid 2739 |
. . . . . 6
⊢ ;;231 = ;;231 |
202 | 31 | nn0cni 12228 |
. . . . . . 7
⊢ ;;169 ∈ ℂ |
203 | 202 | addid1i 11145 |
. . . . . 6
⊢ (;;169 + 0) = ;;169 |
204 | | eqid 2739 |
. . . . . . 7
⊢ ;23 = ;23 |
205 | 13, 28, 179, 122 | decsuc 12450 |
. . . . . . 7
⊢ (;16 + 1) = ;17 |
206 | 108, 124 | oveq12i 7280 |
. . . . . . . 8
⊢ ((1
· 2) + (1 + 1)) = (2 + 2) |
207 | 206, 52 | eqtri 2767 |
. . . . . . 7
⊢ ((1
· 2) + (1 + 1)) = 4 |
208 | 76 | oveq1i 7278 |
. . . . . . . 8
⊢ ((1
· 3) + 7) = (3 + 7) |
209 | | 7p3e10 12494 |
. . . . . . . . 9
⊢ (7 + 3) =
;10 |
210 | 165, 49, 209 | addcomli 11150 |
. . . . . . . 8
⊢ (3 + 7) =
;10 |
211 | 208, 210 | eqtri 2767 |
. . . . . . 7
⊢ ((1
· 3) + 7) = ;10 |
212 | 10, 11, 13, 157, 204, 205, 13, 3, 13, 207, 211 | decma2c 12472 |
. . . . . 6
⊢ ((1
· ;23) + (;16 + 1)) = ;40 |
213 | 12, 13, 29, 30, 201, 203, 13, 3, 13, 212, 198 | decma2c 12472 |
. . . . 5
⊢ ((1
· ;;231) + (;;169 +
0)) = ;;400 |
214 | 77 | mul01i 11148 |
. . . . . . 7
⊢ (1
· 0) = 0 |
215 | 214 | oveq1i 7278 |
. . . . . 6
⊢ ((1
· 0) + 1) = (0 + 1) |
216 | 13 | dec0h 12441 |
. . . . . 6
⊢ 1 = ;01 |
217 | 215, 24, 216 | 3eqtri 2771 |
. . . . 5
⊢ ((1
· 0) + 1) = ;01 |
218 | 14, 3, 31, 13, 25, 176, 13, 13, 3, 213, 217 | decma2c 12472 |
. . . 4
⊢ ((1
· ;;;2310)
+ ;;;1691)
= ;;;4001 |
219 | 218, 16 | eqtr4i 2770 |
. . 3
⊢ ((1
· ;;;2310)
+ ;;;1691)
= 𝑁 |
220 | 13, 32, 15, 200, 219 | gcdi 16755 |
. 2
⊢ (𝑁 gcd ;;;2310) = 1 |
221 | 9, 15, 22, 27, 220 | gcdmodi 16756 |
1
⊢
(((2↑;;800) − 1) gcd 𝑁) = 1 |